
Exercise 06
Randomized Smoothing

Reliable and Trustworthy Artificial Intelligence
ETH Zurich

Problem 1. In this problem, we want to proof the following theorem:

Theorem 1 (From [1]). Let f : Rd → Y be any deterministic or random function. Let
ε ∼ N (0, σ2I). Let g(x) = argmaxc P(f(x+ ε) = c). Suppose that for a specific x ∈ Rd,
there exist cA ∈ Y and pA, pB ∈ [0, 1] such that:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P(f(x+ ε) = c) (1)

Then g(x+ δ) = cA for all ∥δ∥2 < R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)). (2)

The proof is broken down into four steps, corresponding to the following tasks.

1. We decompose the input space into two half spaces, A and B, such that the
probabilities for the samples from the non-displaced gaussian X ∼ N (x, σ2I) to
lie in A or B are pA and pB respectively. This induces a linear separation between
the two gaussians (the worst case).

2. We use Lemma 1 (stated below) to relate the probabilities of the displaced gaussian
Y ∼ N (x + δ, σ2I) to observe class cA or cB to the probabilities that Y ∈ A or
Y ∈ B respectively.

3. Then we show how these probabilities relate to δ and σ.

4. Finally, we obtain a condition on ∥δ∥ such that the classification is robust for all
δ satisfying ∥δ∥ < R.
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Lemma 1 (Special case of Neyman-Pearson). Let X ∼ N (µ, σ2I), Y ∼ N (µ +
δ, σ2I), f : Rd → Y a deterministic or random function and c ∈ Y. Then:

1. If S =
{
z ∈ Rd : δTz ≤ t

}
for some t and P(f(X) = c) ≥ P(X ∈ S), then

P(f(Y ) = c) ≥ P(Y ∈ S)

2. If S =
{
z ∈ Rd : δTz ≥ t

}
for some t and P(f(X) = c) ≤ P(X ∈ S), then

P(f(Y ) = c) ≤ P(Y ∈ S).

To this end, solve the following tasks:

1. Show that P(X ∈ A) = pA and P(X ∈ B) = pB, where X := x+ ε ∼ N (x, σ2I)
and

A := {z ∈ Rd : δT (z − x) ≤ σ∥δ∥Φ−1(pA)}
B := {z ∈ Rd : δT (z − x) ≥ σ∥δ∥Φ−1(1− pB)}.

Hint: Let x ∼ N (µx, σ
2
x) and y ∼ N (µy, σ

2
y). Then x + y ∼ N (µx + µy, σ

2
x + σ2

y)
and cx ∼ N (cµx, c

2σ2
x).

2. Use Lemma 1, the results from sub-task 1 and the assumptions of the theorem to
show

P(f(Y ) = cA) ≥ P(Y ∈ A) and P(f(Y ) = cB) ≤ P(Y ∈ B),

where Y := (x+ δ + ε) ∼ N (x+ δ, σ2I).

3. Show that P(Y ∈ A) = Φ
(
Φ−1(pA)− ∥δ∥

σ

)
and P(Y ∈ B) = Φ

(
Φ−1(pB) +

∥δ∥
σ

)
.

Hint: Let z ∼ N (0, σ2). Then (z + µ) ∼ N (µ, σ2).

4. Find the condition for δ such that P(Y ∈ A) > P(Y ∈ B) holds.

2



Problem 2. Randomized smoothing currently is usually formulated for the ℓ1 or ℓ2-
norm. However, well-known equalities can be used to bound norms other than the
one guaranteed by the method used; for an example see [2] which uses the l2-norm to
obtain ℓ∞-bounds. In the following we will show different useful inequalities. Show the
inequality and provide the tightest value of c you can find. (You don’t need to prove the
tightness, although you easily can through an example). Hint: To obtain the tightest
bounds you might need to use an additional theorem such as the subadditivity of the
square root function or the Cauchy-Schwartz inequality. As a reminder:

∥x∥1 =
d∑

i=1

|xi| ∥x∥2 =

√√√√ d∑
i=1

|xi|2 ∥x∥∞ = max
i∈{1,...,d}

|xi| for x ∈ Rd

1. Show ∥x∥∞ ≤ c1∥x∥1.

2. Show ∥x∥1 ≤ c2∥x∥∞.

3. Show ∥x∥∞ ≤ c3∥x∥2.

4. Show ∥x∥2 ≤ c4∥x∥∞.

5. Show ∥x∥2 ≤ c5∥x∥1.

6. Show ∥x∥1 ≤ c6∥x∥2.

7. Let Bp
ϵ := {x ∈ Rd | ∥x∥p ≤ ϵ} denote the lp-norm ball of size e. Order

B1
1,B2

1,B∞
1 ,B1

d,B2√
d
with respect to the inclusion relation ⊆.
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The following optional task goes into the details of the proof. It is indented to deepen
the understanding of Randomized Smoothing and provide further background for those
wanting to work on it. It is not examinable.

Problem (opt.) 3. In this task we will prove Lemma 1. Let

g(x;µ, σ2I) :=
1√

(2πσ2)d
exp

(
− 1

2σ2
(x− µ)T (x− µ)

)
denote the Gaussian probability density function (for mean µ and co-variance matrix
σ2I) evaluate at x. For convenience we write gX(x) := g(x;µX , σ2

XI) for Gaussian
Random Variables X ∼ N (µX , σ2

XI). Further, we let AC denote the complement of a
set A over Rd, AC := Rd \A. Then we can trivially decompose

Rd = A ∪AC . (3)

1. Compute and simplify m(z) := gY (z)
gX(z) .

2. Show that for any t there exists a t′ > 0 such that
{
z ∈ Rd : δTz ≤ t

}
= {z ∈ Rd :

m(z) ≤ t′}.

3. Given S := {z ∈ Rd : m(z) ≤ t′} show that

(∫
SC

gY (z)dz −
∫
S
gY (z)dz

)
≥ t′

(∫
SC

gX(z)dz −
∫
S
gX(z)dz

)
.

Extend this to
(∫

SC [f(z) = c] · gY (z)dz −
∫
S [f(z) ̸= c] · gY (z)dz

)
≥ t′

(∫
SC [f(z) = c] · gX(z)dz −

∫
S [f(z) ̸= c] · gX(z)dz

)
.

4. Let f : Rd → Y be a classifier (function) and c ∈ Y a class. Show that for
S := {z ∈ Rd : m(z) ≤ t′} for a given t′ > 0 and P(f(X) = c) ≥ P(X ∈ S), then
P(f(Y ) = c) ≥ P(Y ∈ S). Hint: Show that P(f(Y ) = c)− P(Y ∈ S) ≤ 0 and use
the results from the previous tasks.

5. Putting the previous tasks together gives you the proof for the first part of Lemma 1.
What changes are required for the second part?
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