
Exercise 10 - Solution
Introduction to Fairness & Combining Logic and Deep Learning

Reliable and Trustworthy Artificial Intelligence
ETH Zurich

1 Introduction to Fairness

Problem 1 (Fairness in automated recruiting). Consider a setting in which a company
wants to use an automated component in their hiring pipeline. To this end, the recruiting
team would like to use a classifier h : X → {0, 1}, which takes in an input x containing
data about a certain applicant (e.g. their CV, number of years of experience, grades in
relevant university courses, etc.). The output is a binary label y = h(x) indicating the
recommendation of the classifier about the application outcome, with y = 0 meaning
that no offer should be made to this applicant and y = 1 meaning that the applicant
should receive an offer. The goal is to obtain a classifier that is accurate at predicting
whether an applicant is qualified for the job or not. However, by law the company should
not discriminate applicants based on whether they come in with a M.Sc. or PhD degree.

To train a model, the ML engineering team gathers data about 40 applicants that ap-
plied to the company previously. For each of the applicants, there is information about
their application profiles {xi}40i=1, their protected attributes {gi}40i=1 (indicating an M.Sc.
or PhD degree) and their “true labels” {yi}40i=1 indicating they are actually qualified
for the job or not (e.g. labeled by an expert recruiter). We assume that these triplets
{(xi, gi, yi)}40i=1 are i.i.d. samples from a distribution D on X × {0, 1} × {0, 1}.

A summary of the training data is presented in the table below, where the total number
of qualified (yi = 1) and unqualified (yi = 0) applicants with M.Sc. and PhD respectively
are listed.

Degree
Qualified

Yes No Total

M.Sc. 16 12 28

PhD 8 4 12

1

Note: For the group fairness part of the problem, the classifiers we will consider here
do NOT take g as an input. This notation is more general than considering classifiers
h(x, g), since if we want to model classifiers that do use g, we can just assume that g is
also included inside x (e.g. as one additional feature)1. In addition, in many cases it is
explicitly forbidden by law to directly use a protected attribute when making a decision.
Finally, information about g may not be available at test/prediction time.

Even when g is not used inside the classifier, one can still use information about the
protected attribute at training time, to guide the training process towards discovering
classifiers that will be more fair at test time. This is also one of the points of this exer-
cise. Note that the ML literature is inconsistent on whether the protected attribute can
be used as an input to the classifier or not and some papers do consider classifiers that
use g also directly. In a lot of applications this is acceptable.

a) The ML team now applies classic ML techniques to learn several classifiers hj : X → Y.
For each classifier, we give the number of applicants from the training data of each of 4
types ((un-)qualified with a PhD/M.Sc.) that were recommended for acceptance by the
learned classifier.

• h1 makes an offer to 7 qualified M.Sc. and 3 qualified PhD applicants

• h2 makes an offer to 4 qualified M.Sc., 2 qualified PhD, 12 unqualified M.Sc.
applicants

• h3 makes an offer to 4 qualified M.Sc., 2 qualified PhD, 9 unqualified M.Sc., 3
unqualified PhD applicants

• h4 makes an offer to 7 unqualified M.Sc. and 3 qualified PhD applicants

• h5 makes an offer to all qualified applicants and to none of the unqualified ones

• h6 makes an offer to all unqualified applicants and to none of the qualified ones

• h7 makes an offer to nobody

• h8 makes an offer to exactly half of the applicants from each of the 4 types (accepts
8 qualified M.Sc. etc.), therefore essentially acting as a random 50− 50 classifier

For each classifier, determine which of the properties demographic parity, equalized odds
and equality of opportunity are satisfied.

1We will actually do that in part e), where individual fairness will impose that we do not use g “much”
in a classifier.

2

Note: Here you are meant to evaluate the fairness properties on the empirical, training
data distribution (i.e. you should use empirical counts instead of probabilities under D).

b) Describe all classifiers that achieve both demographic parity and equalized odds (on
the training data) by specifying the number of applicants of each of the 4 types ((un)-
qualified M.Sc./PhD) that such classifiers recommend giving offers to.

c) Propose a quantity Γ̂(h) that measures the amount of demographic parity unfair-
ness that a classifier h possesses on the training data (that is, a metric measuring how
far a classifier is from achieving demographic parity). Evaluate the unfairness of classi-
fiers h1, h2, h3, h4 under this metric.

d) Define the corresponding measure Γ(h) on the population level (under the distri-
bution D of the data, as in the lecture). For a fixed classifier h, do you expect the
value of the empirical unfairness measure Γ̂(h) to approach the value of the population
measure Γ(h) as we evaluate Γ̂(h) on more and more applicants? Justify your answer
informally.

e) Now consider a situation where the company is instead interested in ensuring a notion
of individual fairness. Assume that the input variable x consists of:

• CV (text)

• Age (a positive integer)

• A binary indicator of whether the applicant has a PhD or an M.Sc.

Suppose that the CV does not contain any information about the age and the degree
of the applicant (e.g. because this information was removed during pre-processing) and
that a metric d is given, which measures a distance between any two CVs (e.g. by using
a large language model). Assume also that the fairness requirement that the company
is trying to fulfil is “Do not discriminate based on the degree of an applicant. Also you
should treat applicants whose age differs by no more that 10 years similarly”. Define a
distance measure between any two inputs x and x′ (any pair of applicants) that can be
used together with the concept of individual fairness to ensure that the stated fairness
notion is addressed by the company.

Solution 1. The empirical equivalent of the demographic parity notion is

of accepted applicants with M.Sc.

of applicants with M.Sc.
=

of accepted applicants with PhD

of applicants with PhD
.

3

Similarly equalized odds requires that

of accepted qualified applicants with M.Sc.

of qualified applicants with M.Sc.

equals
of accepted qualified applicants with PhD

of qualified applicants with PhD

and
of accepted unqualified applicants with M.Sc.

of unqualified applicants with M.Sc.

equals
of accepted unqualified applicants with PhD

of unqualified applicants with PhD
.

Finally, equality of opportunity asks for the first condition of equalized odds.

For a fixed classifier h denote by:

• x the number of accepted qualified applicants with a M.Sc.

• y the number of accepted unqualified applicants with a M.Sc.

• z the number of accepted qualified applicants with a PhD.

• t the number of accepted unqualified applicants with a PhD.

Then demographic parity requires that x+y
28 = z+t

12 . Equalized odds requires that x
16 = z

8
and y

12 = t
4 . Finally, equality of opportunity requires that x

16 = z
8 only.

a) Checking which constraints are satisfied by which classifier shows that:

• Demographic parity is satisfied by h1, h4, h7, h8

• Equalized odds is satisfied by h3, h5, h6, h7, h8

• Equality of opportunity is satisfied by all classifiers that satisfy equalized odds and
also h2.

b) If a classifier satisfied both equalized odds and demographic parity, this will mean that
x
16 = z

8 ,
y
12 = t

4 and x+y
28 = z+t

12 . Therefore, x = 2z, y = 3t and 3(x+y) = 7(z+t), so that
6z + 9t = 7z + 7t, implying that z = 2t. Thus it must be that (x, y, z, t) = (4t, 3t, 2t, t),
with possible values of t being 0, 1, 2, 3, 4.

4

(c) One can use

Γ̂(h) =

∣∣∣∣# of accepted applicants with M.Sc.

of applicants with M.Sc.
− # of accepted applicants with PhD

of applicants with PhD

∣∣∣∣ .
Then Γ̂(h1) = Γ̂(h4) = 0. We also have Γ̂(h2) = |1628−

2
12 | =

17
42 and Γ̂(h3) = |1328−

5
12 | =

1
21 .

(d) The corresponding population equivalent is

Γ(h) =
∣∣P(X,A,Y)∼D(h(X) = 1|A = M.Sc.)− P(X,A,Y)∼D(h(X) = 1|A = PhD)

∣∣ .
Note that P(h(X) = 1|A = M.Sc.) = P(h(X)=1,A=M.Sc.)

P(A=M.Sc.) . As we get more and more
samples from D, by the law of large numbers we will have that

of applicants with M.Sc.

of all applicants
≈ P(A = M.Sc.).

Similarly,

of accepted applicants with M.Sc.

of all applicants
≈ P(h(X) = 1, A = M.Sc.).

Therefore, we expect that

of accepted applicants with M.Sc.

of applicants with M.Sc.
≈ P(h(X) = 1, A = M.Sc.)

P(A = M.Sc.)
= P(h(X) = 1|A = M.Sc.).

Similarly,

of accepted applicants with PhD

of applicants with PhD
≈ P(h(X) = 1, A = PhD)

P(A = PhD)
= P(h(X) = 1|A = PhD).

Therefore, we do expect Γ̂(h) ≈ Γ(h).

(e) One example distance is D(x, x′) = d(x.CV, (x′).CV)+λ1 {|x.age− (x′).age| > 10},
for some weight λ. This ensures that similar applicants are exactly those that have
similar CVs and whose ages differ by no more than 10 years, regardless of their gender.

2 Combining Logic and Deep Learning

Problem 2 (Interpreting Queries). Describe (in words) the objective of the following
queries. Here, ref is an image from the test set, and N, N1, N2 are neural networks with
two output classes 1 and 2 such that class(N(ref)) = 1.

5

1. find i[10 ,10]

where i in [0,1],

∥i - ref∥∞ < 0.1,

∥i - ref∥∞ > 0.05,

class(N(i)) = 2

2. find i[10 ,10]

where i in [0,1],

∥i∥∞ < 0.2,

class(N(i)) = 1

3. find i[10 ,10]

where i in [0,1],

∥i - ref∥2 < 2,

class(N1(i)) = 1,

class(N2(i)) = 2

Solution 2.

1. This query looks for an adversarial example grayscale image of 10 by 10 pixels,
which has bounded ℓ∞-distance (upper and lower) from the reference image ref

and is classified differently than ref.

2. This query looks for a dark (due to the ℓ∞-norm constraint) grayscale image of 10
by 10 pixels which is classified as 1.

3. Here, we perform differencing of the networks N1 and N2: the query looks for a
grayscale 10 by 10 pixels image that is similar to ref (in terms of ℓ2-norm) and
classified differently by the two networks.

Problem 3 (Translating Negations). In this question, we will inspect how to support
negation (¬) within constraints.

1. Translate the following constraint φ to a loss function using the rules discussed in
the lecture. Here, i is a 2 by 2 pixel query image and ref is a given 2 by 2 pixel
image from the test set.

φ := (i[0,0] = ref[0,0] ∧ i[1,0] ̸= ref [1,0]) ∨
(i[0,0] ≤ ref[0,0] ∧ i[1,0] < ref [1,0])

2. Describe a way to transform a constraint involving negation (¬) to a constraint
that lies in the fragment discussed in the lecture (e.g., a constraint that only uses
the operations described on lecture slide 20).

3. Transform the constraint ¬φ to a constraint not involving negation.

6

Solution 3.

1. It is

T (φ)
(∨)
= T (i[0,0] = ref[0,0] ∧ i[1,0] ̸= ref[1,0]) ·

T (i[0,0] ≤ ref[0,0] ∧ i[1,0] < ref[1,0])

(∧)
= (T (i[0,0] = ref[0,0])︸ ︷︷ ︸

t1

+ T (i[1,0] ̸= ref[1,0])︸ ︷︷ ︸
t2

) ·

(T (i[0,0] ≤ ref[0,0])︸ ︷︷ ︸
t3

+ T (i[1,0] < ref[1,0])︸ ︷︷ ︸
t4

)

= (t1 + t2) · (t3 + t4),

where

t1
(=)
= T (i[0,0] ≤ ref[0,0] ∧ ref[0,0] ≤ i[0,0])

(∧)
= T (i[0,0] ≤ ref[0,0]) + T (ref[0,0] ≤ i[0,0])

(≤)
= max(0, i[0,0]− ref[0,0]) + max(0, ref[0,0]− i[0,0])

t2
(̸=)
= [i[1,0] = ref[1,0]]

t3
(≤)
= max(0, i[0,0]− ref[0,0])

t4
(<)
= T (i[1,0] ≤ ref[1,0] ∧ i[1,0] ̸= ref[1,0])

(∧)
= T (i[1,0] ≤ ref[1,0]) + T (i[1,0] ̸= ref[1,0])

(≤, ̸=)
= max(0, i[1,0]− ref[1,0]) + [i[1,0] = ref[1,0]].

2. Constraints involving negations can be transformed to the desired fragment by
“pushing” negation ¬ down to the leafs such that the resulting constraint does not
involve any negations (note that ̸= is not a negation).

In particular, one can recursively re-write conjunctions and disjunctions using De
Morgan’s laws: ¬(φ ∧ ψ) is equivalent to ¬φ ∨ ¬ψ, and ¬(φ ∨ ψ) is equivalent
to ¬φ ∧ ¬ψ. The negation of atomic constraints can be re-written to equivalent
constraints not involving negation: for example, ¬(x ≤ y) is equivalent to y < x.

7

3. We can re-write the constraint to get rid of the negation as follows:

¬ϕ = ¬
(
(i[0,0] = ref[0,0] ∧ i[1,0] ̸= ref[1,0]) ∨
(i[0,0] ≤ ref[0,0] ∧ i[1,0] < ref[1,0])

)
= ¬(i[0,0] = ref[0,0] ∧ i[1,0] ̸= ref[1,0]) ∧

¬(i[0,0] ≤ ref[0,0]) ∧ i[1,0] < ref[1,0])

=
(
¬(i[0,0] = ref[0,0]) ∨ ¬(i[1,0] ̸= ref[1,0])

)
∧(

¬(i[0,0] ≤ ref[0,0]) ∨ ¬(i[1,0] < ref[1,0])
)

= (i[0,0] ̸= ref[0,0] ∨ i[1,0] = ref[1,0]) ∧
(i[0,0] > ref[0,0] ∨ i[1,0] ≥ ref[1,0])

Problem 4 (Alternative Translation). In the lecture, we studied one particular way to
translate constraints to nonnegative loss functions. Consider the following alternative
translation T , which also produces nonnegative loss functions:

ω T (ω)

t1 = t2 (t1 − t2)2

t1 ≤ t2 max(sgn(t1 − t2) · (t1 − t2)2, 0)
ϕ ∨ ψ T (ϕ) · T (ψ)
ϕ ∧ ψ T (ϕ) + T (ψ)

Further, consider the formula

ψ := (ReLU(x1 + 2x2) = x3 ∧ x3 ≤ 4) ∨ (x3 ≤ 0 ∧ x1 + x2 ≥ 0),

which has free variables x1, x2, x3. We denote the set of free variables as x, and the
assignment to these variables x1 ← y1, . . . , x3 ← y3 as y. The translation of ψ according
to T is denoted T (ψ) and the numerical value of the translation evaluated for assignment
y is indicated by T (ψ)(x← y).

1. Derive the translation T (ψ) of formula ψ.

2. Prove that for any assignment y, T (ψ)(x ← y) = 0 implies that y is a satisfying
assignment of ψ.

Solution 4.

8

1. The formula ψ is transformed as follows:

(ReLU(x1 + 2 · x2) = x3︸ ︷︷ ︸
φ1

∧ x3 ≤ 4︸ ︷︷ ︸
φ2

) ∨ (x3 ≤ 0︸ ︷︷ ︸
φ3

∧ x1 + x2 ≥ 0︸ ︷︷ ︸
φ4

)

t1 := T (φ1) = (ReLU(x1 + 2 · x2)− x3)2

t2 := T (φ2) = max(sgn(x3 − 4) · (x3 − 4)2, 0)

t3 := T (φ3) = max(sgn(x3) · (x3)2, 0)
t4 := T (φ4) = max(sgn(−x1 − x2) · (x1 + x2)

2, 0)

T (φ) = (T (φ1) + T (φ2)) · (T (φ3) + T (φ4)) = (t1 + t2) · (t3 + t4)

2. We prove the claim by structural induction over any formula ω involving only
equality (=), inequality (≤), disjunction (∨) and conjunction (∧). Because ψ is an
instance of such a formula, the claim also holds for ψ.

Base case
Equality (ω has the form t1 = t2). It is T (ω) = 0 ⇐⇒ (t1−t2)2 = 0 =⇒ t1−t2 =
0 =⇒ t1 = t2, meaning that ω is satisfied.

Inequality (ω has the form t1 ≤ t2). Assume T (ω) = 0, which is equivalent to
max(sgn(t1 − t2) · (t1 − t2)2, 0) = 0. This means that sgn(t1 − t2) · (t1 − t2)2 is
either zero or less than zero. In the first case, sgn(t1 − t2) · (t1 − t2)2 = 0 ⇐⇒
t1 − t2 = 0 ⇐⇒ t1 = t2. In the second case, we know that since (t1 − t2)2 is
always non-negative, sgn(t1 − t2) must be negative and thus t1 < t2. Therefore, it
is guaranteed that t1 ≤ t2, meaning that ω is satisfied.

Step case
As induction hypothesis, assume that the claim holds for two arbitrary formulae
ϕ and ψ (i.e., T (ϕ) = 0 implies that ϕ is satisfied, and similarly for ψ).

Disjunction (ω has the form ϕ ∨ ψ). If T (ω) = T (ϕ) · T (ψ) = 0, then either
T (ϕ) = 0 or T (ψ) = 0. By the induction hypothesis, either ϕ is satisfied or ψ is
satisfied, implying that ϕ ∨ ψ is satisfied.

Conjunction (ω has the form ϕ ∧ ψ). If T (ω) = T (ϕ) + T (ψ) = 0, then it must be
both T (ϕ) = 0 and T (ψ) = 0 (for any ω′, T (ω′) is nonnegative). By the induction
hypothesis, ϕ and ψ are satisfied, implying that ϕ ∧ ψ is satisfied.

9

	Introduction to Fairness
	Combining Logic and Deep Learning

