
Exercise 11 - Solution
Individual Fairness

Reliable and Trustworthy Artificial Intelligence
ETH Zurich

Recall the standard notations from the lecture:

• ϕ : Rn×Rn → {0, 1} – binary function specifying if its inputs, x and x′, are similar;
• fθ : Rn → Rk – encoder (data producer) mapping the input x to a learned repre-
sentation fθ(x);

• hψ : Rk → Ro – classifier (data consumer) mapping the learnt representation to
the logits corresponding to each label y ∈ Y;

Problem 1 (Similarity Sets). One of the goals for the data producer fθ is to map similar
individuals close to each other:

ϕ
(
x, x′

)
=⇒ ∥fθ (x)− fθ

(
x′
)
∥∞ ≤ δ, (1)

where ϕ defines input similarity and δ is a hyperparameter. Assuming that x is given
(e.g., as a sample from the dataset), let L(ϕ =⇒ ω)(x, x′) be the standard DL2 loss
of Formula (1) at x′ (as discussed in the lectures). In this problem, you will consider
different notions of input similarity.

1. Let x ∈ Rd represent samples from the following dataset (only the first 2 rows and
a subset of the features are shown below):

Name Gender Age Salary

Alice Female 30 $130,000 . . .
Bob Male 32 $121,000
...

Assume that categorical features are encoded in a finite range of numbers, e.g.,
by enumeration. Two individuals x and x′ are similar if all of their attributes are
equal except for:
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• Their name or gender;
• Their age can differ by at most 3;
• Their salary can differ by at most $10,000.

Define ϕ formally and design a DL2 query which finds a counterexample of (1).

2. Let x ∈ Rd be an image of a person and G = D ◦ E be a generative model with
an encoder E and a decoder D. Two individuals x and x′ are similar if all of
their attributes are the same apart from their skin color and hair color. Propose a
formal definition of the similarity set Sϕ(x) of individuals similar to x and design
a DL2 query which can be used to find counterexamples of (1).

Hint: Assume access to the vectors askin and ahair which manipulate these at-
tributes in the latent space of the generative model.

3. What algorithms can be used to solve the DL2 queries which you wrote in the
previous subtasks?

Solution 1.

1.

ϕ(x, x′) :=
∧

i∈Cat\{name, gender}

(xi = x′i)∧
j∈Num\{age, salary}

(xj = x′j)∧∣∣xage − x′age
∣∣ ≤ 3∧∣∣xsalary − x′salary

∣∣ ≤ 10,000

Assuming that the feature columns are 0-indexed, we can write the following DL2
query:

find x’[d]

where x ’[4:] = x[4:],∣∣x[2] - x’[2]
∣∣ ≤ 3,∣∣x[3] - x’[3]
∣∣ ≤ 10000 ,

∥fθ(x) - fθ(x’)∥∞ > δ

2. One possible approach is to define similarity in the latent space of the generative
model: Sϕ(x) = {D (E (x) + t1 · askin + t2 · ahair) | t1, t2 ∈ [−ε, ε]}. Here, ε is a
hyperparameter controlling the maximum perturbation level and without loss of
generality can be set to 1 (e.g., after scaling the attribute vectors askin and ahair

appropriately).
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We notice that since we parameterize the similar individuals by t (the generative
model G, the input x and the attribute vectors are fixed), we can design the DL2
query to search for a t which results in a counterexample:

find t[2]

where t in [-1, 1],

let x’ = D(E(x) + t[0]·a_skin + t[1]·a_hair),
∥fθ(x) - fθ(x’)∥∞ > δ

3. The DL2 queries aim to find counterexamples of Formula (1), i.e., x∗ such that
x and x∗ are similar (that is, ϕ(x, x∗) holds) but their representations fθ(x) and
fθ(x

∗) are far away from each other. As you will see next, x∗ will be used for
adversarial training, so solving the queries with PGD is a natural fit. However, in
cases where the underlying search domain is low-dimensional (as in subtask 2.),
adversarial random sampling can be just as efficient or effective.

Problem 2 (Enforcing Individual Fairness). A typical strategy in fair representation
learning is to enforce fairness by casting it as an optimization problem. In this task
we will design a loss function which can be used to train the data producer fθ. You
can assume a dataset D = {(xi, yi)}ni=1 and a binary function ϕ defining similarity, with
respect to which the end-to-end model should be individually fair.

1. Define a loss term which enforces individual fairness and explain how you can
compute or approximate it.

2. Define a loss term which makes the data producer fθ aware of the potential data
consumer hψ during training and encourages high task utility.

3. Define a loss term which promotes the transferability of the learnt representations,
i.e., making them useful to other downstream tasks as well.

4. Mention at least one issue which must be considered when combining all of the
above loss terms together.

Solution 2.

1. We define a fairness loss term:

LF = max
x′∈Sϕ(x)

L(ϕ =⇒ ω)(x, x′)

Then, minimizing LF becomes a min-max optimization problem. Therefore, we
approximate LF by first computing x∗ = argminx′∈Sϕ(x)

L(¬(ϕ =⇒ ω))(x, x′)
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(e.g., by executing the DL2 queries which you designed in the previous problem),
and then setting LF = L(ϕ =⇒ ω)(x, x∗).

Note: A slightly different approach to enforcing fairness based on adversarial learn-
ing has been adopted by [1], although they focus on group fairness and not on
individual fairness.

2. We can train fθ jointly with an auxiliary classifier q (e.g., with the same architec-
ture as hψ) and introduce the classification loss term:

LC = cross entropy(q(fθ(x)), y).

3. In order to learn representations which are potentially useful for different down-
stream tasks, we should aim to preserve as much of the original signal as possible,
while obfuscating only the sensitive or biased features. To that end, we introduce a
decoder g, which is optimized to reconstruct the original data. The transferability
loss term can then be defined as:

LT = ∥x− g(fθ(x))∥2

where any other suitable distance metric other than ℓ2 can be used.

4. Finally, we can combine all loss terms into a single total loss which is used to
train fθ (jointly with q and g). A simple strategy is to employ linear weighting:
Ltotal = λ1LF+λ2LC+λ3LT , where λ1, λ2 and λ3 are hyperparameters controlling
the trade-off between the different objectives. Multi-objective optimization is an
active area of research and careful exploration of the optimization landscape is
required in order to setup all hyperparameters appropriately.

Problem 3 (Certifying Individual Fairness). Prove the following lemma which formal-
izes the compositional individual fairness certificate:

Lemma 1 (Individual fairness certificate). Suppose M = hψ ◦ fθ with data point x and
similarity notion ϕ. Furthermore, let z = fθ (x), Sϕ (x) = {x′ ∈ Rd | ϕ (x, x′)} and
ϵ = maxx′∈Sϕ(x) ∥z − fθ (x

′) ∥∞. If

max
z′∈B∞(z,ϵ)

h
(y′)
ψ

(
z′
)
− h

(y)
ψ

(
z′
)
< 0 (2)

for all labels y′ different from the predicted label y = M(x), then for all x′ ∈ Sϕ (x) we
have M(x) = M(x′).

Here, h
(y)
ψ (z) is the value of the logit corresponding to label y computed by the classifier

hψ for the input z. Note that both ϵ and the left-hand side of Eq. (2) can be computed
by MILP or soundly approximated by other incomplete certification methods.
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Solution 3. The data producer computes the latent representation z = fθ(x) and
certifies that

ϵ = max
x′∈Sϕ(x)

∥z − fθ(x
′)∥∞. (3)

Thus, it immediately follows that fθ(Sϕ(x)) ⊆ B∞ (z, ϵ), where B∞ (z, ϵ) is the ℓ∞-
bounding box with center z and radius ϵ. Consider any label y′ different from the
predicted label y = M(x). If the data consumer certifies that

max
z′∈B∞(z,ϵ)

h
(y′)
ψ

(
z′
)
− h

(y)
ψ

(
z′
)
< 0, (4)

then the classifier will predict label y for all z′ ∈ B∞ (z, ϵ). Combining this with
fθ(Sϕ(x)) ⊆ B∞ (z, ϵ), we have

∀x′ ∈ Sϕ(x). M(x) = M(x′), (5)

implying that the end-to-end classifier is individually fair for similarity notion ϕ at data
point x.

Problem 4 (Properties of Fair Representation – from a previous exam). The encoder
fθ and the classifier hψ are trained jointly to compose the end-to-end model M =
hψ◦fθ. Moreover, fθ is trained (via DL2 and adversarial training) to satisfy the following
condition

ϕ(x, x′) =⇒ ∥fθ(x)− fθ(x
′)∥∞ ≤ δ (6)

for a given input x and a fixed hyperparameter δ.

1. Let δ = 0. The model M is such that its encoder fθ satisfies Condition (6) for all
inputs x ∈ Rn and for all similarity functions ϕ. That is,

∀ϕ, x, x′ : ϕ(x, x′) =⇒ ∥fθ(x)− fθ(x
′)∥∞ ≤ 0.

Show that M is a constant classifier, i.e., it classifies all inputs x ∈ Rn the same.

Consider the case δ > 0. The model M = hψ ◦ fθ was trained on a given dataset
D = {(xi, yi)}mi=1. Assume that the set of all valid inputs x is closed and bounded, e.g.,
x, x′ ∈ [0, 1]n, and therefore L = maxx∈[0,1]n ∥fθ(x)∥∞ > 0 exists.

2. Prove that the encoder f ′
θ(x) :=

δ
2Lfθ(x) satisfies Condition (6) for all valid inputs

x and for all similarity functions ϕ. That is,

∀ϕ, x, x′ : ϕ(x, x′) =⇒ ∥f ′
θ(x)− f ′

θ(x
′)∥∞ ≤ δ.

3. Construct a model M ′ = h′ψ ◦ f ′
θ with the same accuracy on D as M such that f ′

θ

satisfies Condition (6) for all valid inputs x, x′ and for all similarity functions ϕ.
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4. Which of the models, M or M ′ (from the previous subtask), is more individually
fair?

Solution 4.

1. Consider the similarity function ϕ(x, x′) = 1 for all x, x′ ∈ Rn. Then, we have

∀x, x′ ∈ Rn. ∥fθ(x)− fθ(x
′)∥∞ = 0

=⇒ ∀x, x′ ∈ Rn. fθ(x) = fθ(x
′)

=⇒ ∀x, x′ ∈ Rn. M(x) = hψ (fθ(x)) = hψ
(
fθ(x

′)
)
= M(x′)

as required.

2.

∥f ′
θ(x)− f ′

θ(x
′)∥∞ =

∥∥∥∥ δ

2L
fθ(x)−

δ

2L
fθ(x

′)

∥∥∥∥
∞

=
δ

2L

∥∥fθ(x)− fθ(x
′)
∥∥
∞

≤ δ

�2L
· �2max

(
∥fθ(x)∥∞ ,

∥∥fθ(x′)∥∥∞)
=

δ

�L
· �L = δ,

as required.

3. Consider

f ′
θ(x) =

δ

2L
fθ(x)

h′ψ(z) = hψ

(
2L

δ
z

)
Then:

M ′(x) = h′ψ(f
′
θ(x)) = h′ψ

(
δ

2L
fθ(x)

)
= hψ

(
��2L

�δ
· �δ

��2L
fθ(x)

)
= hψ (fθ(x)) = M(x).

That is, M ′ makes the same classifications as M . Therefore, M and M ′ have the
same accuracy on D. The encoder f ′

θ satisfies Condition (6) for all valid inputs x
and for all similarity functions ϕ, as proved in the previous subtask.

4. Neither. M and M ′ make the same classifications, so if M is individually fair at
x, so is M ′, and vice versa.
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