
Exercise 12 - Solution
Group Fairness

Reliable and Trustworthy Artificial Intelligence
ETH Zurich

Problem 1 (Group Fairness via Post-processing). Consider the post-processing method
described in the lecture (slide 6). In this task we will explore this method on a toy
example. Consider the following dataset of 10 points from distribution X , represented
as tuples (x, s, y), denoting respectively a 1D feature vector, binary sensitive group
membership, and the target label:

D = {(0.1, 0, 0), (0.2, 0, 0), (0.3, 0, 0), (0.8, 0, 1), (0.9, 0, 0),

(0.1, 1, 0), (0.3, 1, 1), (0.4, 1, 0), (0.5, 1, 0), (0.7, 1, 1)}.

Further, assume our binary classifier g is the identity function.

1. For standard thresholds of t0 = 0.5 and t1 = 0.5 (no post-processing), estimate the
accuracy of g using D?

2. Estimate the fairness of g using D, i.e., calculate the values of demographic parity
distance, equalized odds distance, and equal opportunity distance? Definitions of
these fairness constraints are given in the first fairness lecture. To interpret them
as a distance follow the example of DP-distance given in the group fairness lecture
(for equalized odds, the distances for two cases should be averaged).

3. Assume we keep t0 = 0.5 fixed and want to change t1 as a way to apply post-
processing to make g more fair. For what value of t1 is g the most fair with
respect to three distances? To answer this question, fill in the code in the provided
task1.py to calculate the relevant metrics, and plot the dependence of accuracy
and fairness metrics on t1.

Solution 1. 1. Accuracy of g is defined as A(g) = P (y = g(x)), and can be estimated
with n given samples (xi, si, yi) as follows: A(g) = 1

n

∑n
i=1 1{yi = g(xi)}. Applying

this on D gives A(g) = 0.8.
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2. The distances that correspond to unfairness constraints can be defined as follows,
and estimated on D in a similar way as above:

• Demographic parity:

∆DP (g) = |P (g(x) = 1|s = 0)− P (g(x) = 1|s = 1)|

• Equalized odds:

∆EO(g) =
1

2

1∑
c=0

|P (g(x) = 1|s = 0, y = c)− P (g(x) = 1|s = 1, y = c)|

• Equality of opportunity:

∆EOP (g) = |P (g(x) = 1|s = 0, y = 1)− P (g(x) = 1|s = 1, y = 1)|

The values on D with t0 = t1 = 0.5 are: ∆DP (g) = 0.2, ∆EO(g) = 0.375, and
∆EOP (g) = 0.5.

3. See the solution file task1 solution.py. Demographic parity distance is mini-
mized for t1 ∈ [0.4, 0.5), and the two other distances for t1 < 0.3.

Problem 2 (Bounding Unfairness with the Optimal Adversary). Prove the key inequal-
ity used by FNF and FARE to upper bound the DP-distance of downstream classifiers:

∆DP
Z0,Z1

(g) ≤ 2 ·BAZ0,Z1(h?)− 1,

where we use the notation from the lecture. Namely, Z0 and Z1 are the conditional
distributions of z for s = 0 and s = 1, respectively. The DP-distance is defined as:

∆DP
Z0,Z1

(g) =

∣∣∣∣ E
z∼Z0

g(z)− E
z∼Z1

g(z)

∣∣∣∣ ,
and the balanced accuracy of the adversary as:

BAZ0,Z1(h) =
1

2

(
E

z∼Z0

(1− h(z)) + E
z∼Z1

h(z)

)
.

Solution 2. Suppose WLOG (other case is similar) that

E
z∼Z0

g(z) ≥ E
z∼Z1

g(z),
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i.e., the classifier g predicts the positive outcome more often for sensitive group 0. Then,
we can drop the absolute value in our definition of ∆DP

Z0,Z1
(g). Further, it holds that:

E
z∼Z1

g(z) = 1− E
z∼Z1

(1− g(z)).

Combining these we can rewrite the DP distance as:

∆DP
Z0,Z1

(g) = E
z∼Z0

g(z) + E
z∼Z1

(1− g(z))− 1.

Now consider some adversary h which makes opposite predictions of g, i.e., h = 1 − g.
Its balanced accuracy is (using the equations above):

BAZ0,Z1(h) =
1

2

(
E

z∼Z0

g(z) + E
z∼Z1

(1− g(z))

)
=

1

2
(∆DP
Z0,Z1

(g) + 1).

For the optimal adversary h? it by definition holds that BAZ0,Z1(h?) ≥ BAZ0,Z1(h).
Combining with above we have BAZ0,Z1(h?) ≥ 1

2(∆DP
Z0,Z1

(g) + 1), i.e.,

∆DP
Z0,Z1

(g) ≤ 2BAZ0,Z1(h?)− 1,

which recovers the inequality we have to prove.

Problem 3 (FNF with Categorical Features). Real-world datasets often contain cate-
gorical data, in which case the optimal bijections f0 and f1 can be directly computed,
instead of using normalizing flows. Consider discrete samples x coming from a probability
distribution q(x) where each component takes a value from a finite set {1, 2, . . . , di}. This
implies a finite X = {x1, . . . , xm}. As before, our goal is to find bijections f0 : X → Z
and f1 : X → Z that minimize the statistical distance of the latent distributions, i.e.,
minimize the adversary advantage. For simplicity, you can assume Z = {1, . . . ,m}.

1. Describe the procedure used to construct the optimal f0 and f1.

2. Provide a proof that this procedure minimizes the balanced accuracy of the optimal
adversary.

3. Are such f0 and f1 always the best choice in practice? If not, why?

Solution 3.
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1. Intuitively, the optimal solution w.r.t. fairness is obtained by ”pairing up” in-
puts with similar probabilities in q0 and q1, i.e., mapping them to the same la-
tent representation z. More precisely, we can let i1, i2, ..., im and j1, ..., jm denote
the permutations of {1, 2, ...,m} such that q0(xi1) ≤ q0(xi2) ≤ ... ≤ q0(xim) and
q1(xj1) ≤ q1(xj2) ≤ ... ≤ q1(xjm). Then we can set f0(xik) = f1(xjk) = k for every
k ∈ {1, 2, ...,m}.

2. We will use the following definition of the balanced accuracy shown in the lecture:

BAZ0,Z1(h) =
1

2

∫
Z

(
p0(z)(1− h(z)) + p1(z)h(z)

)
dz.

Replacing the integral with a sum (as Z = {1, . . . ,m}) and plugging in the defini-
tion of the optimal adversary h?(z) = 1{p1(z) ≥ p0(z)} we obtain:

BAZ0,Z1(h?) =
1

2

m∑
k=1

max(p0(k), p1(k)). (1)

In the remainder of the proof we will use the following simple identity that holds
for any a, b, c ∈ R:

a ≥ b =⇒ max(a, c) ≥ max(b, c). (2)

It is easy to check that this holds for all positions of c, i.e., c ≥ a, c ∈ [b, a), and
c < b.

Assume WLOG that ∀k ∈ {1, . . . ,m} we set f0(xik) = k. Now assume that for
some x, x′ we set f1(x) = k and f1(x

′) = k′, where k < k′ and thus q0(xik) ≤
q0(xik′ ) but q1(x) > q1(x

′). Let S = max(q0(xik), q1(x)) + max(q0(xik′ ), q1(x
′))

denote the sum of the terms in eq. (1) corresponding to k and k′. Similarly, let
S′ = max(q0(xik), q1(x

′)) + max(q0(xik′ ), q1(x)) denote the sum of the same terms
if we swapped the mappings f1(x) and f1(x

′).

Now, fixing q0(xik) and q0(xik′ ), we consider two cases regarding the position of
q1(x) and q1(x

′).

a) q1(x) ≥ q0(xik′ ): In this case we have S = q1(x) + max(q0(xik′ ), q1(x
′)) and

S′ = max(q0(xik), q1(x
′)) + q1(x). Applying eq. (2) with a = q0(xik′ ), b =

q0(xik), c = q1(x
′) shows that S ≥ S′.

b) q1(x) < q0(xik′ ): In this case we have S = max(q0(xik), q1(x)) + q0(xik′ )
and S′ = max(q0(xik), q1(x

′)) + q0(xik′ ). Again, applying eq. (2) with a =
q1(x), b = q1(x

′), c = q0(xik) shows that S ≥ S′.

In all cases S ≥ S′, meaning that if we swap the mappings f1(x) and f1(x
′), the

balanced accuracy of the optimal adversary eq. (1) can never increase. As our
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goal is to find mappings that minimize eq. (1), we can swap such pairs as long as
they exist, and eventually we will arrive at the solution described above, where the
mappings are sorted by q0 and q1.

3. No, as in practice we are not simply interested in maximizing fairness, but achieving
some tradeoff between accuracy and fairness. The proposed sort may completely
sacrifice the utility of representations for a given task, if points with different target
labels get mapped to the same representation often. One possible solution could
be to split inputs according to the target label y and do the matching from above
on two groups independently. We could further combine this with the original
solution to achieve a desired tradeoff.
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