
Exercise 02
Adversarial Examples, Defenses and Box Verification

Reliable and Trustworthy Artificial Intelligence
ETH Zurich

Problem 1 (Projection onto `p-balls). The Euclidean projection z ∈ Rn of a point
y ∈ Rn onto the ε-sized `p-ball around x ∈ Rn is defined as (note the `2 and `p norms):

z = arg min
x′ s.t. ‖x′−x‖p≤ ε

‖x′ − y‖2 (1)

In general, this is a hard problem and exact closed-form solutions are only known for
few p. In this task, we investigate this problem for different p.

a) Consider p = ∞. Derive a closed-form formula for projection onto the ε-sized
`∞-ball around x ∈ Rn.

b) Consider p = 2.

(i) Derive a closed-form formula for the projection z ∈ Rn of a point y ∈ Rn
onto the ε-sized `2-ball around x ∈ Rn.

(ii) Prove that for n = 2, your closed-form solution is correct, i.e., show that there
exists no q 6= z in the ε-sized `2-ball around x that is closer to y than z.

Hint: Assume for the sake of contradiction that there exists such a point q.
Use the triangle inequality.

c) Consider a general p ≥ 1. Instead of finding an exact solution, we are only looking
for an approximate projection.

(i) Assume ‖x− y‖p > ε. Like for p = 2, we can try to move y closer to x along
a direct line by shifting the former along the vector y − x rescaled according
to p. Use this idea to derive a closed-form formula for approximate projection,
where the result z is guaranteed to lie in the ε-sized `p-ball around x (but is
not necessarily the closest point).

1

Figure 1: Geometric interpretation for solution 1.

(ii) Construct a concrete counter-example for n = 2 showing that for p = 1, your
formula is only approximate and does not solve (1).

Note: For general p, we can alternatively try to solve (1) using expensive iterative
gradient-based optimization algorithms.

Solution 1.

a) To project onto the ε-sized `∞-ball around x, we clamp y coordinate-wise:

∀i. zi = max(min(yi, xi + ε), xi − ε).

b) (i) The closed-form solution is

z = x+
y − x

max(1, ‖y − x‖2/ε)
. (2)

(ii) Proof: We distinguish two cases.

Case 1. ‖y − x‖2 ≤ ε. The solution z = y is correct since the constraint
‖z − x‖2 ≤ ε holds and ‖x′ − y‖2 is minimized for x′ = y.

Case 2. ‖y − x‖2 > ε. In this case, (2) induces that:

‖x− z‖2 = ε (3)

Assume there exists a point q 6= z that is closer to y than z and lies in the
ε-sized `2-ball around x, as visualized in Fig. 1, left. Formally, for d(a, b) =

2

‖a− b‖2 being the `2-distance between a and b:

d(q,y) < d(z,y) ∧ d(x, q) ≤ ε (4)

The triangle inequality in 2 dimensions states

d(x, q) + d(q,y) ≥ d(x,y)
(∗)
= d(x, z) + d(z,y)

where in (∗) we used the fact that x, z, y lie along a line in two dimensions
according to (2) (see the triangle xqy in Fig. 1, left). We can instantiate the
inequalities from (4) and obtain

ε+ d(z,y) > d(x, z) + d(z,y)

ε > d(x, z),

which is a contradiction to (3).

c) (i) Analogously to p = 2, we can compute

z = x+
y − x

max(1, ‖y − x‖p/ε).
(5)

Note that it is ‖z − x‖p ≤ ε.

(ii) For example, consider ε = 1, x = (0, 0)> and y = (1, 2)> as visualized in
Fig. 1, right. The approximate projection according to (5) is z = (1/3, 2/3)>.
However, this is not the closest point in the `1-ball around x according to the
`2-norm: In particular, the point z′ = (0, 1)> (see Fig. 1, right) has distance
d(y, z′) =

√
2 ≈ 1.414, which is less than d(y, z) =

√
4/9 + 16/9 ≈ 1.491.

Problem 2. In the lecture, we discussed the Carlini-Wagner optimization problem [1]:

find η

minimize ‖η‖p + c · obj(x+ η) (6)

such that x+ η ∈ [0, 1]n

Directly optimizing this objective with gradient-based methods can be problematic in
the case of p = ∞. In this task, we will investigate this and discuss a surrogate term
for ‖ · ‖∞. In the following, assume that x,η ∈ Rn. We define h(η) = ‖η‖∞ and
gτ (η) :=

∑n−1
i=0 max(ηi − τ, 0) for τ ∈ R.

a) Calculate the partial derivatives ∂
∂ηi

h(η) and ∂
∂ηi

gτ (η).

3

b) Instantiate the above derivatives with τ = 0.9 and τ = 2.0 for

η = (1.00005, 1.00004, 1.00003, 1.00002, 0.001, 0.001)>.

c) Assume we are minimizing h(η) using gradient descent with step size γ = 0.01.
How many iterations are required until h(η) < 0.01? What is the problem?

d) When combining h(η) with the objective function to obtain the full optimization
problem in (6), optimizing the latter using gradient descent may actually result in
an infinite number of iterations. Explain why this can happen.

e) To circumvent the above problems, we can use gτ as a surrogate for h. How does
gτ improve the situation?

Note: For the reasons discussed above, the authors of [1] suggest to use gτ instead of h,
where τ is lowered repeatedly during optimization whenever maxi(ηi) ≤ τ in order to
produce a solution η with small `∞-norm.

Solution 2.

a)

∂

∂ηi
h(η) =

{
sign(ηi) if i ∈ argmaxk(|ηk|)
0 else

∂

∂ηi
g(η) =

{
1 if ηi > τ

0 else

Note that for ∂
∂ηi

h(η), there could be multiple maxima ηk. Mathematically, the
derivative is not defined in this case. However, in automatic differentiation engines
such as PyTorch, the derivative is 1 for all maxima. For this exercise, either
definition is fine.

b) Instantiating the above derivatives for the given η, we obtain:

∇ηh(η) = (1, 0, 0, 0, 0, 0)T

∇ηg0.9(η) = (1, 1, 1, 1, 0, 0)T

∇ηg2.0(η) = (0, 0, 0, 0, 0, 0)T .

c) Recall that gradient descent with step size γ repeatedly updates

ηt+1 ← ηt − γ · ∇ηh(ηt).

4

The first four iterations are as follows.

η0 = (1.00005, 1.00004, 1.00003, 1.00002, 0.001, 0.001)>

η1 = (0.99005, 1.00004, 1.00003, 1.00002, 0.001, 0.001)>

η2 = (0.99005, 0.99004, 1.00003, 1.00002, 0.001, 0.001)>

η3 = (0.99005, 0.99004, 0.99003, 1.00002, 0.001, 0.001)>

η4 = (0.99005, 0.99004, 0.99003, 0.99002, 0.001, 0.001)>

In each iteration, only the coordinate with the maximum value is updated. Hence,
we require 400 iterations until all coordinates are less than 0.01. As demonstrated
in this example, one problem with optimizing the `∞ norm using gradient descent
is slow convergence.

d) As the gradient ∇ηh(η) is zero everywhere except at the coordinate i with the
maximum value, the complete objective function is not penalized for increasing
any non-maximum coordinate j 6= i.

For example, consider x = (0, 0)> and η = (1, 0.9)>. Assume the objective func-
tion has derivative ∇ηobj(x + η) = (0,−1)>, meaning that its output can be
lowered by increasing the last coordinate. Hence, for c = 1, the gradient of the full
objective becomes

∇η (h(η) + obj(x+ η)) = (1, 0)> + (0,−1)> = (1,−1)>.

Note how the gradient of h(η) does not penalize for increasing the last coordinate.
With a step size of γ = 0.1, the gradient step updates η0 = η to η1 = (0.9, 1)>.
In the next step, by symmetric reasoning, the optimizer may oscillate back to
η2 = (1, 0.9)> = η0 and never terminate.

e) Using gτ (η), we can mitigate the problems above for a well-chosen τ . In the
example of subtask (c), using g0.9 will update multiple coordinates at the same
time and hence lead to much faster convergence. In the example of subtask (d),
picking a sufficiently large τ ensures that the overall objective is penalized for
increasing the non-maximum coordinate, thereby breaking the cycle.

Note 1: Our surrogate function gτ (η) only works in the case where we know the
entries of η to be positive. More generally, we would instead use the function
g∗τ (η) :=

∑n−1
i=0 max(|ηi| − τ, 0). However, for optimizing η ∈ [0, 1]n, this does not

matter.

Note 2: From a theoretical point of view, this approach provides no guarantees.
The authors of [1] observed that using gτ improves convergence in practice. for
the reasons intuitively presented here.

5

Problem 3 (Coding). In the ZIP file provided on the course webpage, you can find a
python skeleton task3.ipynb along with a pre-trained MNIST classifier model.

Note: The skeleton is based on the PyTorch1 framework. We strongly recommend that
you familiarize yourself with PyTorch now, because the course project will rely heavily
on PyTorch. This exercise allows you to gain some initial experience with PyTorch.

Re-using your code from last week, implement the (untargeted) PGD attack ([2]) dis-
cussed in the lecture (pgd). Here, k is the number of FGSM iterations with eps step
step size. Each FGSM iteration is projected back to the eps-sized `∞-ball around x.
Your implementation should clamp the adversarial example back to the image domain.

Solution 3. See task3 sol.ipynb in the provided ZIP file.

Problem 4 (Coding). In this task, you are going to implement adversarial training with
PGD (originally introduced in [2]) and an alternative defense.

a) Complete the provided code skeleton in task4.py to train the network model
with PGD defense. That is, for data distribution D (the MNIST dataset in our
case) and network parameters θ, optimize the following objective:

min
θ

E(x,y)∼D

[
max

x′∈Bε(x)
L(θ, x′, y)

]
. (7)

Here, Bε(x) := {x′ | ‖x− x′‖∞ ≤ ε} denotes the ε-sized `∞-ball around x. L is the
usual classification loss L(θ, x′, y) := H(y, fθ(x

′)), where fθ = (softmax ◦ model)
denotes the output distribution of the neural network, and H the cross entropy2

between distributions (being a discrete value, we treat y as a one-hot distribution).
In PyTorch, you can use nn.CrossEntropyLoss3 to implement L.

Use PGD to solve the inner optimization problem with ε = 0.1, k = 7 steps, and
εstep = 2.5 εk . You can reuse your implementation of untargeted PGD from the
previous exercise, or create a more efficient (batched) version better suited for
training.

Compare the accuracy results with and without PGD training.

b) The TRADES [3] algorithm minimizes the following objective (see [3] for details):

1https://pytorch.org
2https://en.wikipedia.org/wiki/Cross_entropy
3https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

6

https://pytorch.org
https://en.wikipedia.org/wiki/Cross_entropy
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

min
θ

E(x,y)∼D
[
L(θ, x, y)︸ ︷︷ ︸
for accuracy

+λ max
x′∈Bε(x)

L(θ, x′, fθ(x))︸ ︷︷ ︸
regularization for robustness

]
. (8)

Extend your implementation in train.py to the TRADES defense. Again, the
inner optimization problem is solved using PGD. Use λ = 1.0 and the same pa-
rameters as in the previous task. Compare your results with the previous task.

Note: Here, L(θ, x′, fθ(x)) still denotes the cross entropy loss.

Solution 4. See task4 sol.py.

Defense Clean Accuracy Adversarial Accuracy

None 0.98 0.29
PGD 0.98 0.90
TRADES 0.98 0.89

Table 1: Test set accuracy.

The accuracy obtained with the default parameters and 50 (instead of 10) epochs is
shown in table 1. Without any defense, the adversarial accuracy drops significantly,
while it remains high with a defense. Note that the PGD defense outperformed TRADES
here (higher adversarial accuracy at the same clean accuracy)—MNIST is a very “easy”
task where adversarial training does not impact the clean accuracy too much. Note that
the model and hyper-parameters used here are far from optimal.

References

[1] Nicholas Carlini and David A. Wagner. “Towards Evaluating the Robustness of
Neural Networks”. In: 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 2017, pp. 39–57.
doi: 10.1109/SP.2017.49. url: https://arxiv.org/abs/1608.04644.

[2] Aleksander Madry et al. “Towards deep learning models resistant to adversarial
attacks”. In: arXiv preprint arXiv:1706.06083 (2017).

[3] Hongyang Zhang et al. “Theoretically Principled Trade-off between Robustness and
Accuracy”. In: ICML. Vol. 97. Proceedings of Machine Learning Research. PMLR,
2019, pp. 7472–7482.

7

https://doi.org/10.1109/SP.2017.49
https://arxiv.org/abs/1608.04644

