
Exercise 04 - Solution
DeepPoly Branch and Bound Certification

Reliable and Trustworthy Artificial Intelligence
ETH Zurich

Problem 1 (DeepPoly Branch and Bound). Consider the neural network below, taken
from this week’s lecture slides. We show the result of analysing the network using the

DeepPoly algorithm on the ℓ∞ region

∥∥∥∥[x1x2
]∥∥∥∥

∞
≤ 1 i.e. ℓ∞ ball around

[
0
0

]
with size 1.

(a) Recall from the lecture, in the original DeepPoly analysis we computed the upper
bound of x11 to be 4.5. Apply branching to the ReLU node at x8. What upper
bound for x11 do you obtain if you apply symbolic analysis on β (where β is the
KKT variable introduced by the split at x8, as in the lecture)? Is the resulting
bound more or less precise than the original bound?

1



(b) The analysis you performed in (a) was done for the input region represented by

an ℓ∞ ball of size 1 around

[
0
0

]
. Without changing the intermediate neuron lower

and upper bounds, use the Holder inequality to similarly compute an upper bound

on x11 for two additional input regions — an ℓ1 and ℓ2 balls of size 1 around

[
0
0

]
.

Is the resulting upper bound on x11 sound? How can you make it more precise?

(c) In (a) and (b), we applied symbolic analysis to obtain the upper bound on x11.
This is often infeasible in practice. Next, we find the value of β that produces the
best upper bound for x11 using numerical optimization for the original ℓ∞ input
region. Assume, β is initialized to 1.2 (for both branches). Perform one gradient
step on β with step size 0.3 on both branches. What upper bound do you obtain
for x11? Is the produced upper bound sound? How does it compare to the original
DeepPoly bound? How does it compare to the bound obtained in (a)?

Solution 1. (a) Using standard backsubstitution we get:

x11 ≤ x10 − x9 + 3 ≤ x10 − x7 + 3 (1)

Next, we need to branch on x8. To do this, we look at the two ReLU branches of
x8 — the positive branch where x8 ≥ 0 and the negative branch where x8 ≤ 0.

For the positive branch we resolve the ReLU exactly to:

x8 ≤ x10 ≤ x8. (2)

Which we can substitute back in Eq. (1):

x11 ≤ x10 − x7 + 3 ≤ x8 − x7 + 3. (3)

In addition to resolving the ReLU, we also need to add the additional positivity
constraint:

−x8 ≤ 0. (4)

Using KKT with g(x8) = −x8 and f(x8) = x8 − x7 + 3, we can incorporate the
constraint as follows :

x11 ≤ max
x

min
β≥0

x8 − x7 + 3 + βx8 ≤ min
β≥0

max
x

x8 − x7 + 3 + βx8, (5)

where last inequality comes from weak duality. For notational convenience we
shorten this to:

x11 ≤ min
β≥0

x8 − x7 + 3 + βx8. (6)

2



We can now continue the backsubstitution procedure:

x11 ≤ min
β≥0

x8 − x7 + 3 + βx8 = min
β≥0

(β + 1)x8 − x7 + 3 ≤

≤ min
β≥0

(β + 1)(x5 − x6)− (x5 + x6 − 0.5) + 3 = (7)

= min
β≥0

βx5 − (β + 2)x6 + 3.5.

As β ≥ 0, we know that the coefficient in front of x5 is non-negative and the
coefficient in front of x6 is non-positive. Therefore, we can continue the backsub-
stitution:

x11 ≤ min
β≥0

βx5 − (β + 2)x6 + 3.5 ≤ min
β≥0

β(0.5x3 + 1)− (β + 2)0 + 3.5 =

= min
β≥0

0.5βx3 + 3.5 + β ≤ min
β≥0

0.5β(x1 + x2) + 3.5 + β = (8)

= min
β≥0

0.5βx1 + 0.5βx2 + 3.5 + β.

Again, as β ≥ 0, we know the coefficients in front of x1 and x2 are non-negative,
which allows us to continue the backsubstitution:

x11 ≤ min
β≥0

0.5βx1 + 0.5βx2 + 3.5 + β ≤ min
β≥0

0.5β + 0.5β + 3.5 + β =

= min
β≥0

2β + 3.5 = 3.5 (9)

Thus, we refine our upper bound in this branch to u+11 = 3.5.

For the negative branch we resolve the ReLU exactly to:

0 ≤ x10 ≤ 0 (10)

Which we can substitute back in Eq. (1):

x11 ≤ x10 − x7 + 3 ≤ −x7 + 3. (11)

Like before, we also need to add the additional negativity constraint:

x8 ≤ 0, (12)

which we incorporate with KKT with g(x8) = x8 and f(x8) = −x7 + 3 and weak
duality. The result is as follows:

x11 ≤ max
x

min
β≥0

− x7 + 3− βx8 ≤ min
β≥0

max
x

− βx8 − x7 + 3. (13)

3



We continue with the backsubstitution:

x11 ≤ min
β≥0

− βx8 − x7 + 3 ≤ min
β≥0

− β(x5 − x6)− (x5 + x6 − 0.5) + 3 =

= min
β≥0

− (β + 1)x5 + (β − 1)x6 + 3.5 (14)

As β ≥ 0, the coefficient in front of x5 is non-positive. However, depending whether
β > 1 or not the sign in front of x6 changes.

We look first at the case when 0 ≤ β ≤ 1. In that case, the coefficient in front of
x6 is non-positive. We back-substitute, resulting in:

min
0≤β≤1

− (β + 1)x5 + (β − 1)x6 + 3.5 ≤ min
0≤β≤1

− (β + 1)0 + (β − 1)0 + 3.5 = 3.5.

(15)

Next, we look at the case when β ≥ 1. In that case, the coefficient in front of x6
is non-negative. We back-substitute, resulting in:

min
β≥1

− (β + 1)x5 + (β − 1)x6 + 3.5 ≤ min
β≥1

− (β + 1)0 + (β − 1)(0.5x4 + 1) + 3.5 =

= min
β≥1

0.5(β − 1)x4 + 2.5 + β ≤ min
β≥1

0.5(β − 1)(x1 − x2) + 2.5 + β ≤ (16)

≤ min
β≥1

0.5(β − 1) + 0.5(β − 1) + 2.5 + β = min
β≥1

2β + 1.5 = 3.5,

where transition between the second and third lines is again due to using β ≥ 1. As
min
β≥1

−(β+1)x5+(β−1)x6+3.5 ≤ 3.5 and min
0≤β≤1

−(β+1)x5+(β−1)x6+3.5 ≤ 3.5,

we get:

x11 ≤ min
β≥0

− (β + 1)x5 + (β − 1)x6 + 3.5 ≤ min(3.5, 3.5) = 3.5. (17)

Therefore, the refined upper bound in this branch is u−11 = 3.5.

The final upper bound on x11 is then given by max(u+11, u
−
11) = 3.5.

(b) As we don’t want to change the intermediate neuron bounds, the back-substitution
in both the positive branch and the two cases of the negative branch above are not
affected, except for the final backsubstitution step of x1 and x2. For the positive

4



branch, we have from Eq. (8):

x11 ≤ min
β≥0

max
x

0.5βx1 + 0.5βx2 + 3.5 + β = min
β≥0

max
x

[
0.5β
0.5β

] [
x1
x2

]T
+ 3.5 + β ≤

≤ min
β≥0

max
x

∥∥∥∥∥
[
0.5β
0.5β

] [
x1
x2

]T∥∥∥∥∥+ 3.5 + β ≤ min
β≥0

max
x

∥∥∥∥[0.5β0.5β

]∥∥∥∥
p

∥∥∥∥[x1x2
]∥∥∥∥

q

+ 3.5 + β

(18)

for any 1
p + 1

q = 1.

For the ℓ1 ball input region, we set q = 1 and p = ∞. Therefore, for the ℓ1 ball
input region:

x11 ≤ min
β≥0

max
x

∥∥∥∥[0.5β0.5β

]∥∥∥∥
∞

∥∥∥∥[x1x2
]∥∥∥∥

1

+ 3.5 + β = min
β≥0

1.5β + 3.5 = 3.5. (19)

For the ℓ2 ball input region, we set q = 2 and p = 2. Therefore, for the ℓ2 ball
input region:

x11 ≤ min
β≥0

max
x

∥∥∥∥[0.5β0.5β

]∥∥∥∥
2

∥∥∥∥[x1x2
]∥∥∥∥

2

+ 3.5 + β = min
β≥0

(0.5
√
2 + 1)β + 3.5 = 3.5.

(20)

For the negative branch and the case 0 ≤ β ≤ 1, as we don’t need to propagate
back to the input to obtain the bound, the bound remains 3.5 for all input regions.
For the negative branch and the case β ≥ 1, we have:

x11 ≤ min
β≥1

max
x

0.5(β − 1)(x1 − x2) + 2.5 + β = min
β≥1

max
x

[
0.5β
0.5β

] [
x1
x2

]T
+ 2.5 + β ≤

≤ min
β≥1

max
x

∥∥∥∥∥
[
0.5β − 0.5
−0.5β + 0.5

] [
x1
x2

]T∥∥∥∥∥+ 2.5 + β ≤ (21)

≤ min
β≥1

max
x

∥∥∥∥[ 0.5β − 0.5
−0.5β + 0.5

]∥∥∥∥
p

∥∥∥∥[x1x2
]∥∥∥∥

q

+ 2.5 + β

for any 1
p + 1

q = 1.

Therefore, for the ℓ1 ball input region:

x11 ≤ min
β≥1

max
x

∥∥∥∥[ 0.5β − 0.5
−0.5β + 0.5

]∥∥∥∥
∞

∥∥∥∥[x1x2
]∥∥∥∥

1

+ 2.5 + β =

= min
β≥1

∥0.5β − 0.5∥+ 2.5 + β = min
β≥1

1.5β + 2 = 3.5. (22)

5



and for the ℓ2 ball input region:

x11 ≤ min
β≥1

max
x

∥∥∥∥[ 0.5β − 0.5
−0.5β + 0.5

]∥∥∥∥
2

∥∥∥∥[x1x2
]∥∥∥∥

2

+ 2.5 + β =

= min
β≥1

(0.5β − 0.5)
√
2 + 2.5 + β = min

β≥1
(0.5

√
2 + 1)β + (2.5− 0.5

√
2) = 3.5.

(23)

To summarize, none of the bounds changed. As the ℓ1 and ℓ2 balls are subregions
of the ℓ∞ ball our approximation is sound but not precise (as the removed volume
didn’t improve bounds). One way to improve the precision is to apply Holder’s
inequality to all intermediate bounds in the analysis, resulting in a tighter DeepPoly
encoding of the network.

(c) As no decision in the back-substitution in the positive branch depends on the value
of β, executing the DeepPoly with β0 = 1.2 will exactly result in Eq. (9) with β
substituted with β0:

x11 ≤ 2β0 + 3.5 = 5.9 (24)

To find the optimal β, we need to compute the gradient ∇β(2β + 3.5) = 2 and
apply 1 step of SGD, resulting in:

β1 = β0 − γ∇β(2β + 3.5) = 1.2− 0.3 ∗ 2 = 0.6. (25)

As the back-substitution does not depend on the value of β for the positive branch,
we obtain the following better upper bound for x11 at β1:

x11 ≤ 2β1 + 3.5 = 4.7. (26)

The back-substitution for the initial value β0 = 1.2 ≥ 1 in the negative branch,
results, as demonstrated in (a), in Eq. (16) with β substituted with β0:

x11 ≤ 2β0 + 1.5 = 3.9 (27)

To find the optimal β, we need to compute the gradient ∇β(2β + 1.5) = 2 and
apply 1 step of SGD, resulting in:

β1 = β0 − γ∇β(2β + 1.5) = 1.2− 0.3 ∗ 2 = 0.6. (28)

As the back-substitution for β1 = 0.6 ≤ 1 in the negative branch, results, as
demonstrated in (a), in Eq. (15) with β substituted with β1:

x11 ≤ 3.5. (29)

6



The final upper bound of x11 is given by the maximum of the bounds in both
branches, which is 4.7. This bound is sound but less precise than the original
DeepPoly bound. This is because any value for β produces a valid upper bound
for x11, but our optimization in the positive branch failed to get close to the global
optimal value for β. The global optimum value was nevertheless achieved for the
negative branch.

7


