
Exercise 06 - Solution
Randomized Smoothing

Reliable and Trustworthy Artificial Intelligence
ETH Zurich

Problem 1. In this problem, we want to prove the following theorem:

Theorem 1 (From [CohenRK19]). Let f : Rd → Y be any deterministic or random
function. Let ε ∼ N (0, σ2I). Let g(x) = argmaxc P(f(x + ε) = c). Suppose that for a
specific x ∈ Rd, there exist cA ∈ Y and pA, pB ∈ [0, 1] such that:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c 6=cA

P(f(x+ ε) = c) (1)

Then g(x+ δ) = cA for all ‖δ‖2 < R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)). (2)

The proof is broken down into four steps, corresponding to the following tasks.

1. We decompose the input space into two half spaces, A and B, such that the
probabilities for the samples from the non-displaced gaussian X ∼ N (x, σ2I) to
lie in A or B are pA and pB respectively. This induces a linear separation between
the two gaussians (the worst case).

2. We use Lemma 1 (stated below) to relate the probabilities of the displaced gaussian
Y ∼ N (x + δ, σ2I) to observe class cA or cB to the probabilities that Y ∈ A or
Y ∈ B respectively.

3. Then we show how these probabilities relate to δ and σ.

4. Finally, we obtain a condition on ‖δ‖ such that the classification is robust for all
δ satisfying ‖δ‖ < R.
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Lemma 1 (Special case of Neyman-Pearson). Let X ∼ N (µ, σ2I), Y ∼ N (µ +
δ, σ2I), f : Rd → Y a deterministic or random function and c ∈ Y. Then:

1. If S =
{
z ∈ Rd : δTz ≤ t

}
for some t and P(f(X) = c) ≥ P(X ∈ S), then

P(f(Y ) = c) ≥ P(Y ∈ S)

2. If S =
{
z ∈ Rd : δTz ≥ t

}
for some t and P(f(X) = c) ≤ P(X ∈ S), then

P(f(Y ) = c) ≤ P(Y ∈ S).

To this end, solve the following tasks:

1. Show that P(X ∈ A) = pA and P(X ∈ B) = pB, where X := x+ ε ∼ N (x, σ2I)
and

A := {z ∈ Rd : δT (z − x) ≤ σ‖δ‖Φ−1(pA)}
B := {z ∈ Rd : δT (z − x) ≥ σ‖δ‖Φ−1(1− pB)}.

Hint: Let x ∼ N (µx, σ
2
x) and y ∼ N (µy, σ

2
y). Then x + y ∼ N (µx + µy, σ

2
x + σ2

y)
and cx ∼ N (cµx, c

2σ2
x).

2. Use Lemma 1, the results from sub-task 1 and the assumptions of the theorem to
show

P(f(Y ) = cA) ≥ P(Y ∈ A) and P(f(Y ) = cB) ≤ P(Y ∈ B),

where Y := (x+ δ + ε) ∼ N (x+ δ, σ2I).

3. Show that P(Y ∈ A) = Φ
(

Φ−1(pA)− ‖δ‖σ
)

and P(Y ∈ B) = Φ
(

Φ−1(pB) + ‖δ‖
σ

)
.

Hint: Let z ∼ N (0, σ2). Then (z + µ) ∼ N (µ, σ2).

4. Find the condition for δ such that P(Y ∈ A) > P(Y ∈ B) holds.

Solution 1. 1. We start by applying the definitions and obtain

P(X ∈ A) = P(δT (X − x) ≤ σ‖δ‖Φ−1(pA)).

Next we replace X − x ∼ N (0, σ2I) by Z ∼ N (0, σ2I) and get

P(X ∈ A) = P(δTZ ≤ σ‖δ‖Φ−1(pA)).

Here, δTZ =
∑

i δizi where zi ∼ N (0, σ2). Using the standard rule for multiplying
the normally distributed gaussian variable zi by a constant δi, we get δizi ∼
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N (0, δ2
i σ

2). By applying the sum rule to δizi we get
∑

i δizi ∼ N (0, σ2
∑

i δ
2
i ).

Further, with N (0, σ2) = σN (0, 1) and
∑

i δ
2
i = ‖δ‖2 we get

P(X ∈ A) = P(σ‖δ‖z ≤ σ‖δ‖Φ−1(pA)) (z ∼ N (0, 1))

= P(z ≤ Φ−1(pA))

= Φ(Φ−1(pA))

= pA.

Similarly for P(X ∈ B):

P(X ∈ B) = P(δT (X − x) ≥ σ‖δ‖Φ−1(1− pB))

= P(δTZ ≥ σ‖δ‖Φ−1(1− pB))

= P(σ‖δ‖z ≥ σ‖δ‖Φ−1(1− pB))

= P(z ≥ Φ−1(1− pB))

= P(z ≥ −Φ−1(pB)) Φ−1(1− x) = −Φ−1(x)

= P(−z ≤ Φ−1(pB))

= P(z ≤ Φ−1(pB)) z is symmetric around 0

= Φ(Φ−1(pB))

= pB.

2. Using the definitions for X and Y together with (Eq. (1)), we see that

P(f(X) = cA) ≥ pA and P(f(X) = cB) ≤ pB.

Applying Lemma 1 directly yields

P(f(Y ) = cA) ≥ P(Y ∈ A),

P(f(Y ) = cB) ≤ P(Y ∈ B).

3. The calculation is similar to the one executed in sub-task 1:

P(Y ∈ A) = P(δT (Y − x) ≤ σ‖δ‖Φ−1(pA)).

Here we replace Y − x ∼ N (δ, σ2I) by Z + δ, where Z ∼ N (0, σ2I). Thus
δT (Y − x) = δTZ + ‖δ‖2:

P(Y ∈ A) = P(δTZ + ‖δ‖2 ≤ σ‖δ‖Φ−1(pA))

= P(δTZ ≤ σ‖δ‖Φ−1(pA)− ‖δ‖2).
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Following the same steps for the term δTZ as in sub-task 1, we get

P(Y ∈ A) = P(σ‖δ‖z ≤ σ‖δ‖Φ−1(pA)− ‖δ‖2) (z ∼ N (0, 1))

= P
(
z ≤ Φ−1(pA)− ‖δ‖

σ

)
= Φ

(
Φ−1(pA)− ‖δ‖

σ

)
.

Similarly for P(Y ∈ B) = Φ
(

Φ−1(pB) + ‖δ‖
σ

)
.

4. Finally, algebra shows that P(Y ∈ A) > P(Y ∈ B) if and only if:

P(Y ∈ A) > P(Y ∈ B)

⇐⇒ Φ

(
Φ−1(pA)− ‖δ‖

σ

)
> Φ

(
Φ−1(pB) +

‖δ‖
σ

)
⇐⇒ Φ−1(pA)− ‖δ‖

σ
> Φ−1(pB) +

‖δ‖
σ

⇐⇒ Φ−1(pA) > Φ−1(pB) +
2‖δ‖
σ

⇐⇒ ‖δ‖ < σ

2
(Φ−1(pA)− Φ−1(pB))

which recovers the theorem statement.
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Problem 2. Randomized smoothing currently is usually formulated for the `1 or `2-
norm. However, well-known equalities can be used to bound norms other than the one
guaranteed by the method used; for an example see [salman] which uses the l2-norm to
obtain `∞-bounds. In the following we will show different useful inequalities. Show the
inequality and provide the tightest value of c you can find. (You don’t need to prove the
tightness, although you easily can through an example). Hint: To obtain the tightest
bounds you might need to use an additional theorem such as the subadditivity of the
square root function or the Cauchy-Schwartz inequality. As a reminder:

‖x‖1 =
d∑
i=1

|xi| ‖x‖2 =

√√√√ d∑
i=1

|xi|2 ‖x‖∞ = max
i∈{1,...,d}

|xi| for x ∈ Rd

1. Show ‖x‖∞ ≤ c1‖x‖1.

2. Show ‖x‖1 ≤ c2‖x‖∞.

3. Show ‖x‖∞ ≤ c3‖x‖2.

4. Show ‖x‖2 ≤ c4‖x‖∞.

5. Show ‖x‖2 ≤ c5‖x‖1.

6. Show ‖x‖1 ≤ c6‖x‖2.

7. Let Bpε := {x ∈ Rd | ‖x‖p ≤ ε} denote the lp-norm ball of size e. Order
B1

1,B2
1,B∞1 ,B1

d,B2√
d

with respect to the inclusion relation ⊆.

Solution 2.

1. ‖x‖∞ = maxi∈{1,...,d} |xi| ≤
∑d

i=1 |xi| = ‖x‖1.
Thus c1 = 1.
Example for tightness: ‖( 1

0 )‖∞ = 1 = ‖( 1
0 )‖1.

2. ‖x‖1 =
∑d

i=1 |xi| ≤
∑d

i=1 maxi∈{1,...,d} |xi| = d ·maxi∈{1,...,d} |xi| = d‖x‖∞.
Thus c2 = d.
Example for tightness: ‖( 1

1 )‖1 = 2 = 2 · 1 = 2 · ‖( 1
1 )‖∞.
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3. Let i ∈ argmaxi∈{1,...,d} |xi|2. Then

‖x‖2∞ = |xi|2 ≤ |xi|2 +

d∑
j=1
j 6=i

|xj |2 =

d∑
j=1

|xj |2 = ‖x‖22.

The taking the square root yields ‖x‖∞ ≤ ‖x‖2.
Thus c3 = 1.
Example for tightness: ‖( 1

0 )‖∞ = 1 = ‖( 1
0 )‖2.

4. ‖x‖22 =
∑d

i=1 |xi|2 ≤ d · maxi∈{1,...,d} |xi|2 = d‖x‖2∞. Taking the square root of

both sides we obtain ‖x‖2 ≤
√
d‖x‖∞.

Thus c4 =
√
d.

Example for tightness: ‖( 1
1 )‖2 =

√
2 =
√

2 · 1 =
√

2 · ‖( 1
1 )‖∞.

5. ‖x‖2 =
√∑d

i=1 |xi|2 ≤
∑d

i=1

√
|xi|2 =

∑d
i=1 |xi| = ‖x‖1 where the inequality

holds due to the subadditivity of
√
· as

x1 + x2 ≤ x1 + 2
√
x1x2 + x2 = (

√
x1 +

√
x2)2 =⇒

√
x1 + x2 ≤

√
x1 +

√
x2

which by induction holds for arbitrarily many xi ≥ 0.
Thus c5 = 1.
Example for tightness: ‖( 1

0 )‖2 = 1 = ‖( 1
0 )‖1.

6. Let z ∈ Rd; zi = sgn(xi). ‖x‖1 =
∑d

i=1 xizi = 〈x, z〉 ≤ ‖x‖2‖z‖2 =
√
d‖x‖2.

Where the inequality holds due to the Cauchy-Schwarz inequality:
|〈a, b〉|2 ≤ 〈a,a〉〈b, b〉, which implies |〈a, b〉| ≤ ‖a‖2‖b‖2
Thus c6 =

√
d.

Example for tightness: ‖( 1
1 )‖1 = 2 =

√
2 ·
√

2 =
√

2 · ‖( 1
1 )‖2.

7. Claim B∞ε ⊆ B2
ε·
√
d
.

We can show the claim by taking the result from sub-task 4 and rearrange it to
show 1√

d
‖x‖2 ≤ ‖x‖∞. and we know that ∀x ∈ B∞ε . ‖x‖ ≤ ε. Combining these

two insights we obtain:

∀x ∈ B∞ε . ‖x‖∞ ≤ ε

=⇒ ∀x ∈ B∞ε .
1√
d
‖x‖2 ≤ ‖x‖∞ ≤ ε

=⇒ ∀x ∈ B∞ε . ‖x‖2 ≤ ε ·
√
d

Note: It is crucial here to use the result of sub-task 4 (‖x‖2 ≤
√
d‖x‖∞) rather

than the more intuitive seeming result from sub-task 3 (‖x‖∞ ≤ ‖x‖2) as these
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Figure 1: Boundaries of different normballs.

are statements about individual vectors. So for example ‖x‖∞ ≤ ‖x‖2 does not
imply B∞1 ⊆ B2

1 as ‖( 1
1 )‖∞ = 1 ≤

√
2 = ‖( 1

1 )‖2.

Similarly we can show B1
ε ⊆ B2

ε by sub-task 5, B2
ε ⊆ B∞ε by sub-task 3, B∞ε ⊆ B1

ε·d
by sub-task 2 and B2

ε ⊆ B1
ε·
√
d

by sub-task 6.

We thus obtain B1
1 ⊆ B2

1 ⊆ B∞1 ⊆ B2√
d
⊆ B1

d. Figure 1 shows this for d = 2.

Take-away message: If we prove a classifier to be safe for a l2-radius of ε that
implies it is safe for a l∞ radius of ε√

d
.
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The following optional task goes into the details of the proof. It is indented to deepen
the understanding of Randomized Smoothing and provide further background for those
wanting to work on it. It is not examinable.

Problem (opt.) 3. In this task we will prove Lemma 1. Let

g(x;µ, σ2I) :=
1√

(2πσ2)d
exp

(
− 1

2σ2
(x− µ)T (x− µ)

)
denote the Gaussian probability density function (for mean µ and co-variance matrix
σ2I) evaluate at x. For convenience we write gX(x) := g(x;µX , σ

2
XI) for Gaussian

Random Variables X ∼ N (µX , σ
2
XI). Further, we let AC denote the complement of a

set A over Rd, AC := Rd \A. Then we can trivially decompose

Rd = A ∪AC . (3)

1. Compute and simplify m(z) := gY (z)
gX(z) .

2. Show that for any t there exists a t′ > 0 such that
{
z ∈ Rd : δTz ≤ t

}
= {z ∈ Rd :

m(z) ≤ t′}.

3. Given S := {z ∈ Rd : m(z) ≤ t′} show that

(∫
SC

gY (z)dz −
∫
S
gY (z)dz

)
≥ t′

(∫
SC

gX(z)dz −
∫
S
gX(z)dz

)
.

Extend this to
(∫
SC [f(z) = c] · gY (z)dz −

∫
S [f(z) 6= c] · gY (z)dz

)
≥ t′

(∫
SC [f(z) = c] · gX(z)dz −

∫
S [f(z) 6= c] · gX(z)dz

)
.

4. Let f : Rd → Y be a classifier (function) and c ∈ Y a class. Show that for
S := {z ∈ Rd : m(z) ≤ t′} for a given t′ > 0 and P(f(X) = c) ≥ P(X ∈ S), then
P(f(Y ) = c) ≥ P(Y ∈ S). Hint: Show that P(f(Y ) = c)− P(Y ∈ S) ≤ 0 and use
the results from the previous tasks.

5. Putting the previous tasks together gives you the proof for the first part of Lemma 1.
What changes are required for the second part?

Solution 3.

1. Without loss of generality we can assume µ = 0, to simplify the notation.
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m(z) :=
gY (z)

gX(z)

=

1√
(2πσ2)d

exp
(
− 1

2σ2 (z − (µ+ δ))T (z − (µ+ δ))
)

1√
(2πσ2)d

exp
(
− 1

2σ2 (z − µ)T (z − µ)
)

=
exp

(
− 1

2σ2 (z − δ)T (z − δ)
)

exp
(
− 1

2σ2zTz
)

= exp

(
− 1

2σ2

(
(z − δ)T (z − δ)− zTz

))
= exp

(
− 1

2σ2

(
zTz − 2zTδ + δTδ − zTz

))
= exp

(
− 1

2σ2

(
−2zTδ + δTδ

))
= exp

(
1

σ2
zTδ − δ

Tδ

2σ2

)
(4)

2. We define a := 1
σ2 and b :=

−(δT δ)
2σ2 and thus can rewrite Eq. (4) as exp

(
aδT z + b

)
.

Thus if we know δTz ≤ t we can write m(z) = exp
(
aδTz + b

)
≤ exp (at+ b) =: t′.

Thus we obtain t′ = exp (at+ b).

3. By definition of m(z) and S we know that gY (z) ≤ t′gX(z) ∀z ∈ S and there-
fore

∫
S gY (z)dz ≤ t′

∫
S gX(z)dz. Similarly gY (z) > t′gX(z) ∀z ∈ SC and thus∫

SC
gY (z)dz > t′

∫
SC
gX(z)dz. Combining both facts accounting for the sign the

statement follows immediately.

By denoting F := {z ∈ Rd : [f(z) = c]} we can analogously conclude∫
S

[f(z) = c] · gY (z) =

∫
S∩F

gY (z)dz

≤t′
∫
S∩F

gX(z)dz

=

∫
S

[f(z) = c] · gX(z)dz.

Likewise we can show
∫
S [f(z) 6= c] ·gY (z)dz > t′

∫
S [f(z) 6= c] ·gX(z)dz and finally
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(∫
SC

[f(z) = c] · gY (z)dz −
∫
S

[f(z) 6= c] · gY (z)dz

)
≥t′
(∫

SC

[f(z) = c] · gX(z)dz −
∫
S

[f(z) 6= c] · gX(z)dz

)
.

4.

P(f(Y ) = c)− P(Y ∈ S)

definition
=

∫
Rd

[f(z) = c] · gY (z)dz −
∫
S
gY (z)dz

by Eq. (3)
=

[∫
SC

[f(z) = c] · gY (z)dz +

∫
S

[f(z) = c] · gY (z)dz

]
−
∫
S
gY (z)dz

=

[∫
SC

[f(z) = c] · gY (z)dz +

∫
S

[f(z) = c] · gY (z)dz

]
−
[∫

S
[f(z) = c] · gY (z)dz +

∫
S

[f(z) 6= c] · gY (z)dz

]
=

∫
SC

[f(z) = c] · gY (z)dz −
∫
S

[f(z) 6= c] · gY (z)dz

sub-task 3
≥ t′

[∫
SC

[f(z) = c] · gX(z)dz −
∫
S

[f(z) 6= c] · gX(z)dz

]
add 0
= t′

[ ∫
SC

[f(z) = c] · gX(z)dz −
∫
S

[f(z) 6= c] · gX(z)dz

+

∫
S

[f(z) = c] · gX(z)dz −
∫
S

[f(z) = c] · gX(z)dz

]
= t′

[∫
Rd

[f(z) = c] · gX(z)dz −
∫
S
gX(z)dz

]
definition

= t′ [P(f(X) = c)− P(X ∈ S)]

assumption
≥ 0

5. The generalization for the second part is straight-forward and only requires to
change the direction of some inequalities.
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