
Exercise 08 - Solution
Differential Privacy

Reliable and Trustworthy Artificial Intelligence
ETH Zurich

Problem 1 (Singleton Sets). Let M : A → B be a randomized mechanism with discrete
outputs (i.e., the output set B is countable). Prove that in this case, the standard
definition of ϵ-differential privacy, given by

∀(a, a′) ∈ Neigh. ∀S ⊆ B. Pr[M(a) ∈ S] ≤ eϵ Pr[M(a′) ∈ S] (1)

is equivalent to:

∀(a, a′) ∈ Neigh. ∀b ∈ B. Pr[M(a) = b] ≤ eϵ Pr[M(a′) = b]. (2)

Intuitively, this means that it is sufficient to only consider singleton attack sets S := {b}
when reasoning about differential privacy.

Solution 1.

First, note that Eq. (1) trivially implies Eq. (2), because if the inequality holds for all
sets S, it also holds for all singleton sets S := {b}.

Second, we prove that Eq. (2) implies Eq. (1). Assume Eq. (2) holds. Then, for any
neighboring a, a′ and any discrete set S ⊆ B, it is

Pr[M(a) ∈ S] =
∑
b∈S

Pr[M(a) = b]
(2)

≤
(∑

b∈S
eϵ Pr[M(a′) = b]

)
= eϵ Pr[M(a′) ∈ S],

which proves Eq. (1).

Problem 2 (Private Web Statistics). A browser company wants to collect statistics
from its m users as follows: for a given list of n websites, they want to determine how
often, on average, a single user visits these websites during a specific time period.
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In a federated setting, this can be achieved as follows: First, the browser of the i-th user
locally collects a statistics vector ci ∈ Rn

≥0, where cij is the number of times this user

visited the j-th website. Then, the company collects the vectors ci for all users.

In order to protect the users’ privacy, we want to hide the full statistics vector of an
individual user. That is, we consider the DP neighborhood which allows exchanging, for
a single user i, the vector ci by an arbitrary vector in Rn

≥0.

The following theorem may be useful to solve the subtasks below.

Theorem 1 (Parallel Composition). Assume the input database is partitioned into k
subsets, where each subset contains the data of a distinct set of users. Further, let Neigh
be a neighborhood which only allows changing the data in at most one of these user sets.
Formally, let A be partitioned into A1, . . . ,Ak and let Neigh be such that

∀(a, a′) ∈ Neigh. ∃i. ∀j ̸= i. aj = a′j ,

where aj and a′j represent the databases in the j-th partition Aj.

Also, for i ∈ {1, . . . , k}, let Mi : Ai → Bi be a (ϵi, δi)-DP mechanism. Then, their
composition M(a) := (M1(a1), . . . ,Mk(ak)) is (maxi ϵi, maxi δi)-DP.

1. To achieve DP, the company suggests introducing noise at the browsers. That is,
the i-th user adds Laplace noise to ci before sending di to the company:

di ← ci + (Lap(0, σ), . . . ,Lap(0, σ))

Prove that irrespective of σ, this approach cannot satisfy ϵ-DP for any ϵ.

Hint: The entries in ci are unbounded.

2. To address the problem, the company suggests clipping the counts at an upper
bound b ∈ R≥0 and instead compute

di ← min(ci, b) + (Lap(0, σ), . . . ,Lap(0, σ)),

where min is applied element-wise.

How should the company select σ in order for the resulting collection of vectors
d1, . . . ,dm to be ϵ-DP for any ϵ? Provide a formula for σ and prove that the
resulting mechanism is ϵ-DP.

3. The company computes the average visit counts as a = 1
m

∑m
i=1 d

i.

a) Assume a is published. Which level of DP does a achieve?
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b) By the Central Limit Theorem, any component aj converges to the true av-

erage 1
m

∑m
i=1 c

i
j . Also, the variance of aj can be approximated as 2σ2

m , which
can be used to quantify the utility of the mechanism.

Using your choice of σ, how is the utility affected by the number of users m,
the number of websites n, the bound b, and the level of privacy ϵ?

Note: The RAPPOR differential privacy mechanism [1], which is a sophisticated variant
of the technique described here, has been reported to be used to collect statistics of
Google Chrome users.

Solution 2.

1. Intuitively, this application of the Laplace mechanism does not work as ci has
unbounded sensitivity under the considered neighborhood.

Formally, let σ and ϵ be arbitrary, and assume w.l.o.g. n = 1. Assume for the sake
of contradiction that the mechanism satisfies ϵ-DP. Let ci be arbitrary.

By ϵ-DP, for p being the probability density function (PDF), it must be for all c′i

in the neighborhood of ci:

p(ci + Lap(0, σ) = 0) ≤ eϵp(c′i + Lap(0, σ) = 0)
Lap PDF⇐⇒ exp

(
−|ci|+ |c′i|

σ

)
≤ eϵ

As this holds for any ci, it must hold for ci = 0, which implies

exp

(
|c′i|
σ

)
≤ eϵ ⇐⇒ |c′i| ≤ σϵ

However, this inequality does not hold for any c′i > σϵ, even though such c′i are
in the neighborhood of ci = 0.

2. First, we compute the L1 sensitivity ∆1 of min(ci, b). Any component may deviate
by at most b within the neighborhood, because the components are bounded within
the interval [0, b]. Hence, it is ∆1 = ∥(b, . . . , b)∥1 =

∑n
i=1 |b| = nb.

Now, we can select σ = ∆1/ϵ = nb/ϵ. By the theorem discussed in the lecture, the
Laplace mechanism used to compute di is ϵ-DP for all i. Note that the considered
neighborhood only changes the data of at most one user i. Hence, by Theorem 1
(parallel composition), the whole collection d1, . . . ,dm is ϵ-DP.

Note: The form of the neighborhood is critical here. If we allowed exchanging the
data of multiple users, the collection d1, . . . ,dm is not necessarily ϵ-DP any more.

3



By the regular composition theorem discussed in the lecture, the collection can be
proven mϵ-DP in this case, which is however a very weak guarantee for large m.

3. a) As DP is maintained under post-processing, the result is still ϵ-DP.

b) The variance for σ = nb/ϵ is 2σ2

m = 2n2b2

ϵ2m
. As expected, more privacy (lower ϵ)

increases the variance (lower utility). Similarly, more websites or a higher
bound decrease the utility, because they require introducing more noise. In
contrast, the more users contribute to the statistics, the better the utility.

Problem 3 (DP for Robustness). Let f be a classifier and define the randomized clas-
sifier f̃ as f̃(a) := f(a+ η), where η is some random noise.

1. Assume f̃ is ϵ-DP for some ϵ ∈ R and some symmetric neighborhood Neigh. Fur-
ther, assume that f̃ satisfies the following separation condition for some a and c:

∀c′ ̸= c. Pr[f̃(a) = c] > e2ϵ Pr[f̃(a) = c′] (3)

Next, let the classifier g be constructed by applying randomized smoothing to f
(i.e., g(a) := argmaxj(Pr[f̃(a) = j])). Prove that g is robust to perturbations in
the neighborhood Neigh. Formally, prove:

∀a′ s.t. (a, a′) ∈ Neigh. g(a′) = c

2. Assume f̃ is (ϵ, δ)-DP for some ϵ, δ ∈ R and some symmetric neighborhood Neigh.
How does the separation condition in Eq. (3) need to be adapted such that we can
again prove robustness, analogously as in the previous subtask?

Hint: Extend Eq. (3) by an additive term.

Solution 3.

1. To demonstrate robustness, we need to show that for any a′ in the neighborhood
of a, it is Pr[f̃(a′) = c] > Pr[f̃(a′) = c′] for every class c′ ̸= c.

Let a′ be any input in the neighborhood and c′ ̸= c be arbitrary. It is:

Pr[f̃(a′) = c] ≥ e−ϵ Pr[f̃(a) = c] (ϵ-DP, symm. Neigh)

> e−ϵe2ϵ Pr[f̃(a) = c′] (3)

≥ e−ϵe2ϵe−ϵ Pr[f̃(a′) = c′] (ϵ-DP, symm. Neigh)

= Pr[f̃(a′) = c′]
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2. We introduce an additive term Z (whose form is to be determined) in Eq. (3) and
perform the following analogous derivation:

Pr[f̃(a′) = c] ≥ e−ϵ(Pr[f̃(a) = c]− δ) ((ϵ, δ)-DP, symm. Neigh)

> e−ϵ(e2ϵ Pr[f̃(a) = c′] + Z − δ) ((3) with Z)

= eϵ Pr[f̃(a) = c′] + e−ϵZ − e−ϵδ

≥ eϵe−ϵ(Pr[f̃(a′) = c′]− δ) + e−ϵZ − e−ϵδ ((ϵ, δ)-DP, symm. Neigh)

= Pr[f̃(a′) = c′] + e−ϵZ − e−ϵδ − δ

The last term is equal to the desired probability Pr[f̃(a′) = c′] if we set Z s.t.

e−ϵZ − e−ϵδ − δ = 0

e−ϵZ = e−ϵδ + δ

Z = (eϵ + 1)δ
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