
Reliable and Trustworthy Artificial Intelligence

Martin Vechev

ETH Zurich

Fall 2022

Lecture 10 (Part II): Combining Logic and Deep Learning

http://www.sri.inf.ethz.ch

1

http://www.sri.inf.ethz.ch/

Now: Logic and Deep Learning

Can we query the network with questions beyond adversarial
examples?

Can we enforce properties that the network should satisfy?

What are the guarantees of such methods?

Lecture is based on:

DL2: Training and Querying Neural Networks with Logic, ICML 2019

2

Combining Logic and Deep Learning
As Deep Learning makes more and more decisions (e.g: bank credit, job applications,

university admissions, political elections), it becomes critical to understand how these

decisions can be influenced and understood.

Rejected for
credit by NN

Query

Deep Learning
Query Engine

Neural Network NN

What should the applicant change
to receive a bank credit?

• income
• residence
• conditions
• job
• …

To be in the > 84%
probability of receiving
credit, increase income
by at least 5K and be
employed for at least 3
more months…

3

Combining Logic and Deep Learning
Adversarial examples are in fact just a special case of a query…

deer

Query

Deep Learning
Query Engine

Neural Network NN

image i

Find an image i which gets

classified to 9 (truck) where the

image i is within some distance

of the image deer.

classified as
truck by NN!

4

Combining Logic and Deep Learning
Adversarial examples are in fact just a special case of a query…

deer

Query

Deep Learning
Query Engine

Neural Network NN

image i

classified as
truck by NN!

Hmm, but this involves logical

constraints and a neural network!

How can we unify these?

5

Combining Logic and Deep Learning

We can also train neural networks to satisfy a logical property

In fact, this can help accuracy as we can label part of the data and specify

properties on the remaining, unlabeled data.

Dataset of
images

Logical Property 𝜙

Deep Learning
+ Logic Training

Network  𝜙

Network
Topology

weights 

6

Part I:

Querying the Network

7

We introduce a standard logic with:

 no quantifiers: no , 

  ,  , , ,  ,  , <, >, 

 functions f: ℝm  ℝn

 terms: variables, constants: represent vectors of reals

 terms: function application

 terms: arithmetic expressions over terms (e.g., +)

Lets first define the logic

Comparison operations on vectors are done point-wise.

If a and b are vectors of dimension 2, then a = b is written as a[0] = b[0]  a[1] = b[1] 8

𝐜𝐥𝐚𝐬𝐬 NN i = 9  i − deer ∞ < 25  i − deer ∞ > 5

Lets expand this a bit

The logic used in our example query

9

The logic used in our example query

𝐜𝐥𝐚𝐬𝐬 NN i = 9  i − deer ∞ < 25  i − deer ∞ > 5

ሥ
j=1, j≠9

k

NN i j < NN i 9  i − deer ∞ < 25  i − deer ∞ > 5

Syntactic sugar

This is the actual formula being used after expanding the
syntactic sugar.

Here, k is the number of labels.

10

Here we have 2 functions: NN and the norm ∞.

Function NN returns a probability distribution over labels.

We have 4 constants: 9, 5, 25 and deer (real-valued vector)

We have 1 free variable i

Goal: find a value for i that satisfies the constraint above

𝜙 

ሥ
j=1, j≠9

k

NN i j < NN i 9  i − deer ∞ < 25  i − deer ∞ > 5

The logic used in our example query

11

𝜙 

ሥ
j=1, j≠9

k

NN i j < NN i 9  i − deer ∞ < 25  i − deer ∞ > 5

One approach to finding the value of i is to invoke standard a
constraint solver (e.g., SMT solver which generalize SAT to

richer theories). Unfortunately, unless the network NN is really
small, these solvers simply time out (one of the problem is the
non-linear constraints that the network exhibits). Thus, we
need another approach.

How do we solve this problem?

12

𝜙 

ሥ
j=1, j≠9

k

NN i j < NN i 9  i − deer ∞ < 25  i − deer ∞ > 5

Instead, the idea is to introduce a particular
translation T of logical formulas into a differentiable
loss function T(𝜙) to be solved with (mostly
standard) optimization, where the translation T has a
certain property.

Solve as optimization

13

Theorem: ∀x, T(𝜙)(x) = 0 if and only if x satisfies 𝜙

Wanted Property of Translation

What this theorem says is that: if we can find a solution x
where the loss function of 𝜙 is 0, then that solution x is a
satisfiable assignment to 𝜙, that is, it is a solution to our

original problem. It also states that if x satisfies 𝜙 then the
loss function at x is 0

14

Optimize to find a solution

Given this theorem, our goal is to find an assignment
x = i such that T(𝜙)(i) is 0.

We can use standard gradient-based optimization to
minimize the function T(𝜙). There can potentially be
many solutions which set the function to 0.

Theorem: ∀x, T(𝜙)(x) = 0 if and only if x satisfies 𝜙

15

Two comments on the translation:

• Translation is recursive: translating a term defined in a way which refers to how the
constituents of the term are translated.

• The resulting loss function is non-negative

Translation: Formula to Loss

t1  t2 max(0, t1 - t2)

t1  t2 [t1 = t2]

t1 = t2 T(t1  t2  t2  t1)

t1 < t2 T(t1  t2  t1  t2)

   T()  T()

   T() + T()

16

Intuition: example

   T()  T()

what this says is:

if one of the terms is 0, then the entire translated
expression will be 0 (that is, the formula is satisfied).

17

Example: a satisfying formula

x  2  x  5 max 0, 2 − x + max 0, x − 5

Logical formula: Translated Loss:

Satisfying assignments:

Any value between 2 and 5, inclusive

The function is 0 when x is between 2 and 5.
We need to find one such assignment.

x

18

Example: an unsatisfiable formula

x  4  x  3 max 0, 4 − x + max(0, x − 3)

Logical formula: Translated Loss:

Satisfying assignments:

There are no satisfying assignments

The function is never 0
19

Something more fun: Octagon

x - y  3 
y  8 
y  2 
x + y  13 
x + y  5 
x  1 
x – y  -5 
x  7

See plot here:
https://www.desmos.com/calculator/kw38cpoirk

Formula is
SAT here

max(0, x-y-3) +

max(0, y-8) +

max(0, 2-y) +

max(0, x+y-13) +

max(0, 5-x-y) +

max(0, 1-x) +

max(0, -5-x+y) +

max(0, x-7)

Translate

20

https://www.desmos.com/calculator/kw38cpoirk

Plot with Mathematica

We can visually see that for values of x between 1
and 7 and of y between 2 and 8, the loss is 0

Plot3D
[Max[0, 2 - y] + Max[0, -3 + x - y] + Max[0, -8 + y] + Max[0, -13 + x + y] + Max[0, 5 - x - y] + Max[0, 1 - x] +
Max[0, -5 - x + y] + Max[0, x - 7], {x, 0, 10}, {y, 0, 14}]

Formula is
SAT here

xx

y

xy

loss

21

Back to Neural Nets

22

ሥ
j=1, j≠9

k

NN i j < NN i 9  i − deer ∞ < 25  i − deer ∞ > 5

NN(i) 1 < NN(i) 9 

NN(i) 2 < NN(i) 9 

NN(i) 3 < NN(i) 9 

NN(i) 4 < NN(i) 9 

NN(i) 5 < NN(i) 9 

NN(i) 6 < NN(i) 9 

NN(i) 7 < NN(i) 9 

NN(i) 8 < NN(i) 9 

𝐢 − 𝒅𝒆𝒆𝒓 ∞ < 𝟐𝟓 

𝒊 − 𝒅𝒆𝒆𝒓 ∞ > 𝟓

max(0, NN(i) 1 − NN(i) 9) + [NN(i)[1] = NN(i)[9]]

+ max(0, i − deer ∞ − 25) + [i − deer ∞ = 25]

+ max(0, 5 − i − deer ∞) + [i − deer ∞ = 5]

Original Formula 𝜙 Translated Loss T(𝜙)

+ max(0, NN(i) 2 − NN(i) 9) + [NN(i)[2] = NN(i)[9]]

+ max(0, NN(i) 3 − NN(i) 9) + [NN(i)[3] = NN(i)[9]]

+ max(0, NN(i) 4 − NN(i) 9) + [NN(i)[4] = NN(i)[9]]

+ max(0, NN(i) 5 − NN(i) 9) + [NN(i)[5] = NN(i)[9]]

+ max(0, NN(i) 6 − NN(i) 9) + [NN(i)[6] = NN(i)[9]]

+ max(0, NN(i) 7 − NN(i) 9) + [NN(i)[7] = NN(i)[9]]

+ max(0, NN(i) 8 − NN(i) 9) + [NN(i)[8] = NN(i)[9]]

*Note: box constraints can be tricky to optimize with gradient
descend, so may need to take out convex constraints before

translation and project or use LBFGS-B for box ones.
23

Training the Network with Logic
(aka: Generalized Adversarial Training beyond Robustness)

Dataset of
images

Logical Property 𝜙
(e.g., fairness, next lecture)

Deep Learning
+ Logic Training

Network  𝜙

Neural Network
Topology

weights 

Principles:

• We still use the same logic as before

• We still ``compile’’ property 𝜙 into a loss as before

• We need a way to define the optimization problem now

24

Problem Statement

find 𝜃
maximize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [∀𝒛 . 𝜙 𝒛, 𝑠, 𝜃]𝑠~𝐷

What this says is: we want to find such parameters/weights
𝜃 for the network, so the expected value of the property
increases.

Note that we even allow restricted quantified formulas here.

25

Rephrasing : Step I

find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [𝐦𝐚𝐱 𝜙 𝒛, 𝑠, 𝜃]𝑠~𝐷

What this says is: we want to find such parameters/weights 𝜃 for the neural

network, so that the maximum violation of the property 𝜙 is minimized.

This is essentially: generalized adversarial training beyond robustness

find such 𝒛 where
violation is maximized

𝒛

became minimization

26

Rephrasing: Step II

find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [T(𝜙) 𝑏𝑧, 𝑠, 𝜃]

and bz = argmin(T(¬𝜙) 𝑧, 𝑠, 𝜃)

𝑠~𝐷

The translation leads to a differentiable function which we can
optimize. Intuitively, we are trying to get a bad violation of the
formula and then to find a network that minimizes its effect.

minimize the expected value of a
‘bad’ counter-example

𝑧

find a ‘bad’ counter example

27

Solving the inner minimization problem

In principle, we can use a standard optimizer to solve for the inner minimization

problem. However, variable 𝑧 can participate in all kinds of constraints in 𝜙. Even if its

just norm constraints that 𝑧 participates in, SGD-style optimizers can have a hard time.

Thus, we focus on a restricted fragment where 𝑧 participates in constraints that restrict

𝑧 to be a convex set where we have an efficient algorithm for projection (a closed form

solution). Note that in general, projection onto arbitrary convex sets is hard. 28

find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [T(𝜙) 𝑏𝑧, 𝑠, 𝜃]

and bz = argmin(T(¬𝜙) 𝑧, 𝑠, 𝜃)

𝑠~𝐷

𝑧

Example: Generating the Loss

𝜙 𝑧, 𝑥, 𝜃 = 𝑥 − 𝑧 ∞ ≤ 𝜖 ⇒ 𝑁𝑁𝜃 𝑧 [3] > 𝛿

𝜙 𝑧, 𝑥, 𝜃 = ¬ 𝑥 − 𝑧 ∞ ≤ 𝜖  𝑁𝑁𝜃 𝑧 [3] > 𝛿

¬𝜙 𝑧, 𝑥, 𝜃 = 𝑥 − 𝑧 ∞ ≤ 𝜖  𝑁𝑁𝜃 𝑧 [3] ≤ 𝛿

𝑙𝑜𝑠𝑠 𝑧, 𝑥, 𝜃 = max 0, 𝑥 − 𝑧 ∞− 𝜖 +max(0, 𝑁𝑁𝜃 𝑧 [3] − 𝛿)

expansion of ⇒

negation ¬

translation to loss

difficult to solve: minimization over arbitrary constraints

we want to enforce
the constraint
∀𝑧. 𝜙 𝑧, 𝑥, 𝜃

29

A possible solution to minimizing the loss

𝑙𝑜𝑠𝑠 𝑧, 𝑥, 𝜃 = max 0, 𝑥 − 𝑧 ∞− 𝜖 +max(0, 𝑁𝑁𝜃 𝑧 [3] − 𝛿)

this part aims to restrict 𝑧 to be in
the 𝐿∞ ball around 𝑥 of size 𝜖

𝑙𝑜𝑠𝑠 𝑧, 𝑥, 𝜃 = max(0, 𝑁𝑁𝜃 𝑧 [3] − 𝛿)

split the problem

𝐚𝐫𝐠𝐦𝐢𝐧
𝑧

𝐚𝐫𝐠𝐦𝐢𝐧
𝑧

𝐿∞ (𝑥, 𝜖)

Solve with Projected Gradient Descent (PGD) while projecting 𝑧 onto the 𝐿∞ ball

𝐿∞ ball around 𝑥 of size 𝜖

Note: in general, efficient projections (closed form solutions) on convex sets is a hard problem. Such

algorithms exist for 𝐿1 , 𝐿2 , 𝐿∞ and some others. Because of this, in practice, the logic is restricted to

having z participate only in constraints where efficient projections are possible. 30

Lecture (Part II) Summary

Combine Deep Learning with Logic Logic to loss

Query

Deep Learning
Query Engine

find 𝜃
maximize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [∀𝒛 . 𝜙 𝒛, 𝑠, 𝜃]
𝑠~𝐷

Training with logic as maximization

t1  t2 max(0, t1 - t2)

t1  t2 [t1 = t2]

t1 = t2 T(t1  t2  t2  t1)

t1 < t2 T(t1  t2  t1  t2)

  T()  T()

   T() + T()

31

