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Individual Fairness – Connecting the Dots

We will learn how to train models that provably satisfy individual fairness by 
combining many techniques we have seen so far:

- Robustness certification
- MILP
- Convex relaxations
- Randomized smoothing

- Training neural networks with logic

Moreover, we will also leverage other recent advances in machine learning:

- Representation learning

- Generative modeling



Recap: What Does It Mean to Be Fair?

Group fairness

On average, different groups are 
treated similarly.

(generally, a probabilistic 
specification)

Individual fairness

Similar individuals should be 
treated similarly.

(generally, a deterministic 
specification)

Counterfactual fairness

Protected characteristics should 
not affect decisions causally.



Recap: Individual Fairness

Definition (Individual Fairness): A model 𝑀:𝑅! → 𝑅" is individually fair if for two 
data points 𝑥 and 𝑥′ that are similar to each other (according to some input 
similarity notion 𝜙) it produces similar outputs 𝑀 𝑥 and 𝑀(𝑥#) (according to 
some output similarity notion 𝜇).

Examples

- Lipschitz mapping: A mapping 𝑀 ∶ 𝑅! → 𝑅" satisfies the (𝜇, 𝜙)-Lipschitz 
property if for every 𝑥, 𝑥# ∈ 𝑋 we have 𝜇 𝑀 𝑥 ,𝑀 𝑥# ≤ 𝜙 𝑥, 𝑥# .

- Binary similarity metrics: For binary input and output similarity metrics, i.e., 
𝜙:𝑅!×𝑅! → 0, 1 and 𝜇: 𝑅"×𝑅" → {0, 1}, we can reformulate individual 
fairness for the points 𝑥 and 𝑥#as 𝜙 𝑥, 𝑥# ⇒ 𝜇 𝑀 𝑥 ,𝑀 𝑥# .



Why Individual Fairness?

Machine learning models have been shown to classify pairs of similar individuals 
playing the same sport differently (Stock and Cisse, ECCV’18).



Why Individual Fairness?

Unfortunately, a model that satisfies group fairness does not necessarily satisfy 
individual fairness.

Example

𝑀 satisfies demographic parity: 𝑃 𝑀 ⋅ = 1 𝑎 = 0) = 𝑃 𝑀 ⋅ = 1 𝑎 = 1) = !
"
.

However, for the similarity metric 𝜙 𝑥, 𝑎 , 𝑥#, 𝑎# = 1 ⟺ 𝑥 = 𝑥′, the individuals 
{0,2} and {1,3} are treated differently even though they are similar.

ID 𝑎 (e.g., gender) 𝑥 (e.g., income) 𝑀([𝑥, 𝑎]) (e.g., loan decision)

0 0 0 1

1 0 1 0

2 1 0 0

3 1 1 1



Problems with Individual Fairness

How can we define a suitable similarity metric (requires significant domain 
expertise and human insight)?

- Define a metric, e.g., norm, in the feature space (Dwork et al., 2012).

- Learn a metric from data (Mukherjee et al., ICML’20). 

- Learn from human feedback (Dorner et al., NLP’23).

How can we train/modify a model such that it satisfies individual fairness without 
compromising downstream accuracy?

- Pre-processing: Debias the data, such that standard training yields a fair model.

- In-processing: Change the training pipeline to learn a fair model on biased data.

- Post-processing: Modify model predictions during inference time.

How can we guarantee that the model is actually individually fair?



Individual Fairness as a Robustness Problem

Consider the Lipschitz formulation of individual fairness with the Lipschitz constant 𝐿 > 0, given by

𝜇 𝑀 𝑥 ,𝑀 𝑥! ≤ 𝐿 𝜙 𝑥, 𝑥! .

Moreover, consider 𝜙 𝑥, 𝑥! ≔ 𝑥 − 𝑥′ "𝑆 𝑥 − 𝑥′ , with a symmetric positive definite covariance matrix 𝑆
(Mukherjee et al., ICML’19).

Finally, let 𝑀 be a classifier and 𝜇 𝑀 𝑥 ,𝑀 𝑥! ≔ [𝑀 𝑥 ≠ 𝑀 𝑥! ].
Then, using the Mahalanobis norm ||𝑥||# ≔ 𝑥"𝑆𝑥, we need to show that

𝑀 𝑥 ≠ 𝑀 𝑥! ≤ 𝐿||𝑥 − 𝑥!||#$ ∀𝑥!

⟺
||𝑥 − 𝑥!||#$ <

1
𝐿
⇒ 𝑀 𝑥 = 𝑀 𝑥! ∀𝑥′

⟺
𝑀 𝑥 = 𝑀 𝑥 + 𝛿 ∀𝛿 𝑤𝑖𝑡ℎ ||𝛿||#$ <

1
𝐿

⟺
𝑀 𝑥 = 𝑀 𝑥 + 𝛿 ∀𝛿 𝑤𝑖𝑡ℎ ||𝛿||# <

1
√𝐿



Individual Fairness as a Robustness Problem

Finally, we observe that 𝑀 𝑥 = 𝑀 𝑥 + 𝛿 , ∀𝛿 𝑤𝑖𝑡ℎ ||𝛿||$ ≤
%
√'

is the same as 
saying that 𝑀 needs to be robust to adversarial perturbations of magnitudes up to 
%
√'

with respect to the || ⋅ ||$ norm.

As a result, we just have to choose a suitable class of similarity metrics that allow 
us to perform standard robustness certification, e.g., norms (Yeom & Fredrikson, 
IJCAI’20) or logical constraints (Ruoss et al., NeurIPS’20).

Key Insight: We can reformulate individual fairness as a local robustness problem, 
allowing the transfer of many established techniques.



A Real-World Scenario

Consider a manager overseeing different teams, all using the same data to build 
predictive models for different products (Cisse & Koyejo, 2019). The manager 
seeks to ensure both fairness and accuracy across the products.

However, each team is solving a different prediction task. Moreover, there is no 
company policy on fairness, thus no shared guidelines.

- Team alpha is fully focused on accuracy, but is oblivious about fairness issues.

- Teams beta, nu, and gamma are all interested in fairness. Each team is excited to 
implement this but each team has selected different fairness definitions.

- Team zeta would like to improve the fairness of their predictions, but has no 
idea how to incorporate or measure fairness.

- The manager wants to independently verify that all released products are fair.



A Real-World Scenario

Consider a manager overseeing different teams, all using the same data to build 
predictive models for different products (Cisse & Koyejo, 2019). The manager 
seeks to ensure both fairness and accuracy across the products.

Challenges

- Some teams do not have the expertise (or interest) to design fairer models.

- Different teams use different definitions of fairness.

- Incorporating fairness can have different impacts on the performance of the 
models across the products.

- Auditing all the predictive models for fairness can be challenging when each 
team has its own recipe.



Fair Representation Learning to the Rescue

Fair representation learning (Zemel et al., ICML’13; McNamara et al., AIES’19) 
partitions the process of training fair models into three parties:

Data Regulator

Determines fairness criteria and data source(s), audits results.

Data Producer

Computes the fair representation given data regulator criteria.

Data Consumer

Trains the ML model given the sanitized data.



Fair Representation Learning to the Rescue

In the fair representation learning setting, the model 𝑀:𝑅! → 𝑅" is composed of 
two parts:

- an encoder 𝑓(: 𝑅! → 𝑅), provided by the data producer 

- a predictor ℎ*: 𝑅) → 𝑅", provided by the data consumer

with R) denoting the latent space. The model is thus defined as 𝑀 = ℎ* ∘ 𝑓(.

This induces modularity: The data consumer can train its model without worrying 
about fairness if the representation provided by the producer is fair.

⇒ The data consumer can be ignorant of the fairness concerns in the system!



Fair Representation Learning

Pros

- Often more efficient than alternatives (especially with re-use)

- Can be employed when the data user is untrusted or apathetic about fairness

- Inherits good properties from representation learning (e.g., transfer learning)

- Audits can be more efficient (especially when only auditing the representation)

Cons

- Less precise control of the fairness/performance tradeoff (than joint training)

- May lead to fairness overconfidence (data consumer acts adversarially)

- Startup costs can be high (representation learning can be expensive)





Fair Representation Learning with Guarantees

Can we augment the fair representation learning framework in a minimally 
invasive way to obtain provable certificates of individual fairness?

We want to maintain the modularity, i.e., the data consumer should not have to 
care about fairness and should be able to use standard training techniques that 
achieve good performance on downstream tasks.

Moreover, the data regulator should be able to formally verify that individual 
fairness holds across the entire model pipeline.



LCIFR to the Rescue

Learning certified individually fair representations (Ruoss et al., 2020) is a 
framework that:

- allows the data consumer to be oblivious of fairness

- allows the data consumer to use standard training techniques

- allows the data producer to be oblivious of the downstream task

- allows the data regulator to define similarity via interpretable logical constraints

- allows the data regulator to certify the fairness of the end-to-end model



LCIFR: The Data Regulator

We consider binary input and output similarity measures 𝜙:𝑅!×𝑅! → 0, 1 and 
𝜇: 𝑅"×𝑅" → 0, 1 , that can be expressed in a rich logical fragment, i.e., anything 
that DL2 (Fischer et al., ICML’19) and MILP (Tjeng et al., ICLR’19) can handle.

By working with declarative constraints, data regulators can express interpretable, 
domain-specific notions of similarity.

Example

𝜙 𝑥, 𝑥# ≔ H
+ ∈-./01"2+3.4 ∖ 2.30, 10!702

𝑥+ = 𝑥+# H
8 ∈9:;02+3.4

𝑥8 − 𝑥8# ≤ 𝛼

Importantly, logical constraints also capture categorical features exactly (unlike, 
e.g., ℓ<-norms), which are prevalent in fairness datasets.



LCIFR: The Data Regulator

The binary input similarity metric induces a set 𝑆= 𝑥 ≔ 𝑥# ∈ 𝑅9 𝜙(𝑥, 𝑥#)} of 
all individuals similar to 𝑥. The data regulator wants to certify for individual 𝑥 in 
the test dataset, 

∀𝑥# ∈ 𝑆= 𝑥 ⟹ 𝜇 𝑀 𝑥 ,𝑀 𝑥# .

If we consider classification with 𝜇 𝑀 𝑥 ,𝑀 𝑥# ⟺𝑀 𝑥 = 𝑀 𝑥# , we thus 
want to maximize the number of data points 𝑥 from the test set for which we can 
certify that the set of all similar individuals 𝑆= 𝑥 is classified the same.

How can we achieve this in the fair representation learning setting?



LCIFR: The Data Producer

The data producer:

- trains the encoder 𝑓( ∶ 𝑅! → 𝑅) to map all similar points close together in 
latent space, i.e., ∀𝑥# ∈ 𝑆= 𝑥 ⟹ 𝑓( 𝑥 − 𝑓( 𝑥# > ≤ 𝛿 using DL2’s 
translation of logical constraints to a differentiable loss function

- encodes 𝑆= 𝑥 and 𝑓( as mixed-integer linear programs (MILP) to compute 𝜖
such that 𝑓( 𝑆= 𝑋 ⊆ 𝑧# 𝑧 − 𝑧# > ≤ 𝜖} for 𝑧 ≔ 𝑓((𝑥)



LCIFR: The Data Consumer

The data consumer:

- obtains 𝑧 and 𝜖 from the data producer (but not the original data 𝑥) and uses 
local robustness training to make the classifier ℎ* ∶ 𝑅) → 𝑅" robust against 𝑙>-
perturbations of magnitude 𝜖 around 𝑧

- uses neural network robustness verifier to certify 𝜖-robustness for 𝑧



LCIFR: The Optimization Problems

Data Producer

We want to translate the encoder constraint 𝜙 𝑥, 𝑥′ ⟹ 𝑓( 𝑥 − 𝑓( 𝑥# > ≤ 𝛿
into a differentiable loss function 𝐿 𝜙 such that 𝐿 𝜙 𝑥, 𝑥# = 0 if and only if the 
implication is satisfied (using DL2).

Denoting 𝜔 𝑥, 𝑥# ≔ 𝑓( 𝑥 − 𝑓( 𝑥# > ≤ 𝛿, we have 

𝐿 𝜙 ⇒ 𝜔 = 𝐿 ¬𝜙 ∨ 𝜔 = 𝐿 ¬𝜙 ⋅ 𝐿 𝜔 .

Moreover, we have 

𝐿 𝜔 𝑥, 𝑥# = 𝐿 𝑓( 𝑥 − 𝑓( 𝑥# > ≤ 𝛿 = max{ 𝑓( 𝑥 − 𝑓( 𝑥# > − 𝛿, 0}.



LCIFR: The Optimization Problems

Data Producer

Using this differentiable loss, the data producer can now approximate the problem 
of finding an encoder 𝑓( that maximizes the probability that 𝜙 ⇒ 𝜔 via the 
following min-max optimization problem:

First, we find a counterexample

𝑥∗ = arg min
@!∈$"(@)

𝐿 ¬(𝜙 ⇒ 𝜔) (𝑥, 𝑥#)

Then, we find the parameters 𝜃 that minimize the constraint loss at 𝑥∗

arg min
(

𝐸@∼D[𝐿 𝜙 ⇒ 𝜔 (𝑥, 𝑥∗)]



LCIFR: The Optimization Problems

Data Producer
To ensure the modularity between the data producer and consumer, the latent 
representation needs to remain informative for downstream applications.

To that end, the data producer additionally trains a classifier q: RE → 𝑅" that tries 
to predict the target label 𝑦 from the latent representation 𝑧 = 𝑓((𝑥).

Thus, the data producer jointly trains the encoder 𝑓( and classifier 𝑞 to minimize 
the combined objective

arg min
F#,G

𝐸@,H[𝐿- 𝑞 𝑓( 𝑥 , 𝑦 + 𝛾𝐿I(𝑥, 𝑓( 𝑥 )]

where LJ is a classification loss (e.g., cross-entropy or a task-agnostic transfer loss), 
𝐿I is the fairness loss obtained via DL2, and 𝛾 balances the two objectives.



LCIFR: The Optimization Problems

Data Consumer

Assuming that the encoder 𝑓( has been trained to maintain predictive utility and 
satisfy the fairness constraint, the data consumer only needs to ensure local 
robustness of the classifier h* to achieve individual fairness.

This can be achieved via standard min-max optimization

arg min
*

𝐸K∼D$[ maxL∈[±O]
𝐿-(ℎ* 𝑧 + 𝜋 , 𝑦)]

where 𝐷K is the latent distribution obtained by sampling from 𝐷 and applying the 
encoder 𝑓(.



LCIFR: The Open Problems

We can learn certified individually fair representations for low-dimensional data.

However, real-world models operate on high-dimensional inputs (e.g., images). For 
such data, input similarity cannot be measured in terms of the features (e.g., by 
comparing pixels), meaning that we cannot apply our logical constraints.

Moreover, standard neural network verifiers do not scale to real-world models.

Challenges

- designing a suitable input similarity metric for high-dimensional data

- scaling fairness certification to real-world models



LASSI to the Rescue

Latent space smoothing for individually fair representations (Peychev et al., 
ECCV’22) is a framework that extends LCIFR to the high-dimensional setting.

Concretely, it allows the data regulator to formulate constraints such as

For a given person, all people differing only in their hair color

should receive the same classification output.



Generative Modeling

We leverage generative models to define the set of similar individuals in the latent 
space of the model by varying a continuous attribute of the image.

We consider generative models consisting of an encoder 𝐸: RQ → 𝑅G and a 
decoder 𝐷: RR → 𝑅! with 𝑧S = 𝐸 𝑥 .

Then, the data regulator defines the set of similar individuals for point 𝑥 in the 
latent space of the generative model using the attribute vector 𝑎<.40:

𝑆 𝑥 ≔ 𝑧S + 𝑡 ⋅ 𝑎<.40 𝑡 ∈ [−𝜖, 𝜖]}

Varying the “pale skin” attribute. Varying the “blond hair” attribute.



Generative Modeling

How can we compute meaningful attribute vectors, such as 𝑎<.40?

For example, compute the average latent vectors 𝑧S,<.40 and 𝑧S,¬<.40 and use 
their difference, i.e., 𝑎<.40 ≔ 𝑧S,<.40 − 𝑧S,¬<.40 (Kingma & Dhariwal, 2018).

Note that LASSI is independent of the actual computation of the attribute vector.



Recap: Randomized Smoothing

Unlike MILP, randomized smoothing (Cohen et al., ICML’19) can compute local 
robustness guarantees for any type of classifier 𝐶: 𝑅) → 𝑌, regardless of its 
complexity and scale.

To that end, we construct a smoothed classifier l𝐶: 𝑅) → 𝑌, which returns the most 
probable classification for and input 𝑟 ∈ 𝑅) when perturbed by random noise 
from 𝑁 0, 𝜎2UV 𝐼 .

Moreover, using a sampling-based approach, we can establish a local robustness 
guarantee of the form ∀𝛿 ∈ 𝑅) such that ||𝛿||V < 𝑑2U we have l𝐶 𝑟 + 𝛿 = l𝐶 𝑟
with probability 1 − 𝛼2U, where 𝛼2U can be made arbitrarily small.

TL;DR 
Randomized smoothing yields l𝐶 that will classify all points in the ℓV-ball radius 𝑑2U
around 𝑟 the same with high probability.



Center Smoothing

Center smoothing (Kumar & Goldstein, NeurIPS’21) extends randomized 
smoothing to the multidimensional regression setting.

Concretely, for a function 𝑅: 𝑅G → 𝑅), center smoothing uses sampling and 
approximation to compute a smooth version s𝑅: 𝑅G → 𝑅) that maps 𝑧 ∈ 𝑅G to the 
center point 𝑟3U ≔ s𝑅 𝑧 of a minimum enclosing ball containing at least half of the 
points 𝑟+ ∼ 𝑅(𝑧 + 𝑁 0, 𝜎3UV 𝐼 ) for 𝑖 ∈ {1, … ,𝑚}.

Then, for 𝜖 > 0 and ∀𝑧# ∈ 𝑅G such that ||𝑧 − 𝑧#||V ≤ 𝜖, we have || s𝑅 𝑧 −
s𝑅 𝑧# ||V ≤ 𝑑3U with probability at least 1 − 𝛼3U.

TL;DR

Center smoothing computes a sound upper bound 𝑑3U on the ℓV-ball of the 
function outputs of s𝑅 for all points in the ℓV-ball of radius 𝜖 around 𝑧.



LASSI: Putting the Pieces Together

The data producer uses center smoothing to compute a representation that 
provably maps all similar points close together with high probability.

The data consumer uses randomized smoothing to certify that all points within a 
certain radius get classified the same with high probability.

Theorem: The end-to-end certificate of individual fairness holds with probability 
1 − 𝛼2U − 𝛼3U (union bound).



Problems with LASSI

The validity of our fairness certificate depends heavily on the generative model.

Concretely, the similarity sets 𝑆 𝑥 may not be exhaustive enough as there can be 
latent points outside 𝑆 𝑥 that correspond to input points that would be perceived 
as similar to 𝑥 by a human observer. Thus, we may certify a model to be fair 
without considering all relevant similar individuals.

In general, it is hard to obtain formal guarantees for the generative model that 
transfer to the real world (there is no ground truth data).

Initial experiments on procedurally generated datasets indicate that the 
certificates may transfer to the real world.



Lecture Summary

- We learned how to enforce fairness in a modular manner via fair representation 
learning.

- We learned how to augment fair representation learning with provable 
certificates of individual fairness by combining DL2 and MILP.

- We learned how to augment fair representation learning with provable 
certificates of individual fairness for high-dimensional data by combining 
generative modeling and randomized smoothing.


