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Recap: Fairness Definitions

Group
Fairness

On average, different groups 
are treated similarly.

(generally, a probabilistic 
specification)

Individual
Fairness

Similar individuals should 
be treated similarly.

(generally, a deterministic 
specification)

Counterfactual 

Fairness

Protected characteristics 

should not affect decisions 

causally.
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Recap: Group Fairness Constraints

Demographic parity

 

 Equalized odds  

ML model

  

~

~

ML model

How do we train models that satisfy group fairness?
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Three Classes of Techniques

In-training

Modify the training of the 

model to incorporate a 

fairness constraint, making 

the resulting model more fair

Pre-processing

Transform the data into 

de-biased representations, 

such that any classifier 

trained on them is fair

Post-processing

Adjust the predictions of 

pre-trained models to 

make them less unfair

4
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Post-processing Methods

Adjust the predictions of pre-trained models to make them less unfair

🟢 Works for any black-box classifier

🟢 Efficient; does not require training new models

Retraining sometimes expensive/impossible

🔴 May lack flexibility for a good fairness/accuracy tradeoff

🔴 Requires test-time access to sensitive attributes

5
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Post-processing Methods

Adjust the predictions of pre-trained models to make them less unfair

Example (Hardt et al., ‘16):
● Given a binary classifier g, where g(x) is the output probability

○ Standard setting: g(x) > 0.5 → favorable (e.g., loan granted) 
○ However, this prediction may be unfair to some groups

● Instead, calculate different classification thresholds {t0, t1} for two sensitive 
groups s=0 and s=1, based on the desired tradeoff 

● Then:
○ if s = 0, predict favorable outcome if g(x) > t0 
○ if s = 1, predict favorable outcome if g(x) > t1

6
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In-training Methods

Modify the training of the model to incorporate a fairness constraint

🟢 Highest potential for a good tradeoff as we can focus on a particular model

🟢 No need to know the sensitive attribute at test time (unlike post-processing), but 

does need it at training time

🔴 Needs access to the training pipeline

🔴 No generality; specialized solutions for a particular task / model class 

7
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In-training Methods

Modify the training of the model to incorporate a fairness constraint

Example (Zafar et al., ‘17):
● Add soft fairness constraints to loss minimization
● Relax constraints to make optimization feasible

standard classification loss

constraints for (approximate) demographic parity 8
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Pre-processing Methods (Fair Representation Learning)

Transform data x into de-biased representations z s.t. any classifier trained on z is fair

Property of the transformation: post-processing cannot increase dependence on the 
sensitive attribute – known as the data processing inequality in information theory

🟢 Agnostic to later steps; z can be used for any downstream task / model class 

       Efficient, flexible/transferable, does not need trust towards downstream users

🟢 Downstream classifier does not need to know the sensitive attribute (at neither train 

nor test time)

🔴 May overly sacrifice accuracy for fairness as it is unaware of downstream task/classifier

🔴 The learned representation does not protect against adversarial downstream parties

       We will look at three FRL examples in the rest of the lecture
9
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Fair Representation Learning (FRL): Notation

Data (x, s) ∈ Rd × {0, 1}, sampled from a joint distribution X  

Encoder f: Rd × {0, 1} → Rd’ creates representations z = f(x, s), induces joint distribution Z 
on (z, s)

Classifier g: Rd’ → {0, 1}, trained for a binary prediction task (z → y)

Adversary h: Rd’ → {0, 1}, aims to guess s from representations (z → s)
The adversary concept will be used to reason about fairness properties of z 

We further define some shorthands
● Z0 and Z1 are the conditional distributions of z where s=0 and s=1, respectively
● p0(z) := P(z | s = 0) and similarly p1(z) := P(z | s = 1) are the densities

10
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LAFTR (Madras et al., ‘18)

Jointly trains the encoder f, classifier g, and adversary h (modeled as NNs)

x
Encoder 

f(x,s) z

Classifier 
g(z)

Adversary 
h(z)s

y

s?

11

Goal: learn representations z that are predictive of y but not predictive of s
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Bounding Unfairness with the Optimal Adversary

We can use the concept of the adversary to upper bound the unfairness of any 

downstream classifier!

Ex: recall the definition of the demographic parity (DP) group-fairness constraint

We can turn this hard constraint into a soft unfairness measure of g, DP-distance

distance 0 means g satisfies demographic parity, perfect fairness

distance 1 means g is maximally unfair towards one sensitive group
12
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Let us also define the balanced accuracy of an adversary h

BA is a group-normalized accuracy (useful for imbalanced datasets)

Has values in the interval [0.5, 1]
If h always predicts sensitive group 1 → balanced accuracy 0.5
As we will see later, depending on p0 and p1, one can get balanced accuracy 1

Bounding Unfairness with the Optimal Adversary

13

Intuition: as h(z) is either 0 or 1, for each z, adversary chooses between two groups by 

deciding what behavior h should have, and “selects” p0(z) or p1(z)
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Bounding Unfairness with the Optimal Adversary

What is the optimal adversary?

Predicts the group where the likelihood of z under the corresponding conditional 

distribution (Z0 or Z1) is greater. Note that the worst case for adversary is when 

distributions are equal. Then it is impossible to get balanced accuracy above 0.5

Generally intractable for NN encoders (as we cannot exactly compute the two densities)
14
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Bounding Unfairness with the Optimal Adversary

Key result: DP-distance (unfairness) of any downstream classifier g trained on 

representations z is upper bounded by the balanced accuracy of the optimal adversary 

on representations z (Madras et al., ‘18):

        
   (Proof in this week’s exercise)

How can we use this?

15
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LAFTR: Theoretically-principled FRL 

LAFTR approximates the optimal adversary h* via some adversary h used in training

🟢 This heuristic can sometimes lead to empirically good fairness

🔴 Hard non-convex min-max optimization → usually not solved optimally

🔴 Assumes the optimal adversary is in some family H (e.g., 2x100 NNs)

=> There can be stronger adversaries than h (with higher balanced accuracy) 

We show experimental results on that later when discussing FNF

End-to-end fairness is overestimated (it really may be much less)

Can we produce provably fair representations?
16
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Background: Normalizing Flows (Rezende & Mohamed, ‘15)

Generative models that transform a known distribution q into a learned distribution p

Key steps (for a trained flow):

1. Sample x from a known distribution q (with known density q(x), e.g., Gaussian)

2. Apply an invertible function z = f(x) (flow architecture ensures invertibility)

3. Use change of variables to compute the density of the new distribution at z (not 

possible for e.g., VAEs or GANs):

17figure credit: Simon Boehm
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Fair Normalizing Flows - FNF (Balunovic et al., ‘22)

Key idea: learn two normalizing flows f0 
and f1 as encoders for Z0 and Z1, respectively

If we know the densities of the original data (conditioned on the sensitive attribute) 

q0(x) and q1(x), the normalizing flows allow us to get p0(z) and p1(z)

To get an estimate of the densities q0(x) and q1(x) of the original data, one can use 

popular density estimation methods (e.g., Gaussian Mixture Model)

18
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FNF: Provable Unfairness Upper Bound

We will compute an upper bound T on DP-distance using the inequality from before:

1. Start from n data samples {x1, …, xn}
 
(the given dataset)

2. For each sample x, compute q0(x) (or q1(x) if s=1) using the previously fitted density 

estimation model

3. Apply the encoder to get z=f0(x), and use the flows to get p0(z) and p1(z)
4. Use p0(z) and p1(z) to estimate the optimal adversary h* and then upper bound its 

balanced accuracy BA with probability 1-ε (Hoeffding’s inequality)

5. Use the inequality of (Madras et al., ‘18) above to upper bound the DP-distance of any 

downstream classifier trained on representations z with high probability

19
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FNF: Training Normalizing Flows

We are not done yet – without a training procedure that enforces fairness, our proof 

produces an upper bound that is sound but loose or even vacuous

To get tight bounds: train the flows to promote low accuracy of h*

In other words: minimize the distance of distributions Z0 and Z1

20
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FNF: Training Normalizing Flows to Minimize KL Divergence

Minimize symmetrized KL 

divergence between Z0 and Z1

Combine with standard 

classification loss, with 

tradeoff parameter γ

21

Note: we include a classifier g in training to 

maintain utility of representations – this 

does not affect the guarantees
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FNF: How Tight is the Provable Upper Bound?

Recall: for some methods like LAFTR we can find adversaries from a different model class H (than 

the ones used in training) with much higher (balanced) accuracy, which implies higher 

unfairness of representations than estimated by the method

FNF is the 1st method to offer a tight provable upper bound (with a minor accuracy drop)

22

downstream
classifier

empirical
adversaries

provable
upper bound

tight
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FNF: Summary

🟢 Provable upper bound on unfairness of any downstream classifier 

🟢 Efficient training that reduces adversary’s success => low empirical unfairness

🔴 The guarantees only hold for estimated densities q0(x) and q1(x) (not real ones)

=> Guarantees technically do not hold in practice, they only hold when:

1) We can provably bound the distance between estimated and real densities
2) The data distribution is known

In most realistic use-cases, neither of these holds – this is a major limitation

Can we produce provably fair representations with no restrictive assumptions?
23
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Fairness with Restricted Encoders - FARE (Jovanovic et al., ‘22)

24

Key idea: restrict the space of representations to a finite set 

FNF: estimate q0(x) → get p0(z) → upper bound BA(h*)

FARE: directly upper bound p0(z) → upper bound BA(h*)

As the space of z is finite we can do this tightly from given samples
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FARE: Restricted Encoders

f: Rd x {0, 1} → {z1, … ,zk} that map each x to one of k possible representations zi (cells)

Transform and upper bound the balanced accuracy (to get an unfairness upper bound):

Expectation of a 
discrete RV

Definition of 
optimal adversary

2x Bayes’ rule

25

Bayes’ rule that we use:
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FARE: Provable Upper Bound

We can upper bound this expression in three steps with a finite dataset, using 

Clopper-Pearson binomial CI (Steps 1, 2) and Hoeffding’s inequality (Step 3):

 

(Step 1) Bounding base rates: α0 < u0 
and α1 < u1 (with error εb) using the training set

(Step 2) Bounding per-cell balanced accuracy: ci ≤ ti (with error εc) using the validation set

(Step 3) Bounding the final sum: ∑P(z = zi)·ti  ≤ S (with error εs) using the test set

Union bound: total error is ε = εb + εc + εs

26
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FARE: Training Restricted Encoders

The upper bound holds for any restricted encoder 

However, as before, the bound is useful only if in practice we can train restricted 

encoders that allow for good empirical fairness/accuracy tradeoffs and tight bounds 

● Possible issue: expressivity of the representation space

One instantiation: fairness-aware decision trees

All datapoints in the same leaf are mapped to zi
 

(median of all such datapoints)

🟢 Discreteness by design, explicit control of 

proof-influencing parameters (e.g., #cells)

27
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Recap: Decision Trees

Standard tree construction procedure used for binary classification tasks x → y:

● Start from the full training set Droot of examples in the root node 

● In each node, the current set D is split according to feature j and threshold v into

             DL = {(x, y) ∈ D | xj ≤ v} (left child)     and    DR = D \ DL (right child) 

to minimize a criterion such as Gini impurity (weighted by |DL| and |DR|):

where py is the ratio of examples in D with y=1

● At test time: x → leaf t, predict majority class of Dt
● Goal: make the distribution of y in each leaf 

highly unbalanced → helps classification

28
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FARE: Decision Tree Modifications

We modify the procedure in two ways to make the tree fairness-aware:

(1) Fairness-aware criterion – instead of Giniy(D) use the following:

● Makes the distribution of y in each leaf highly unbalanced (as before)

● Makes the distribution of s in each leaf uniform (to prevent the adversary 

from distinguishing s); parameter γ controls the accuracy/fairness tradeoff

(2) Fairness-aware categorical splits – generalization of the Breiman shortcut for 

efficient heuristic treatment of categorical variables (see the paper)

29
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FARE: Results

🟢 Similar empirical accuracy/fairness tradeoff as prior methods

🟢 Provable unfairness upper bound with no restrictive assumptions

30
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Future Work

● Other classes of restricted encoders?

● Investigate the new 3-way accuracy/fairness/bound tightness tradeoff?

● Can we adapt this to other domains (e.g., images, text, graphs)? (LCIFR → LASSI)

● FRL Benchmark: literature is out of sync in terms of evaluation procedures

1) Common usage of old, small-scale datasets with known issues

2) No agreement on a set of fairness constraints or the procedure for training 

downstream classifiers (which can greatly affect results)

3) No single source of truth for state-of-the-art methods (common in other fields, 

e.g., RobustBench for adversarial robustness)

31
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Lecture Summary

Method Class Encoder Type Assumptions

LAFTR Theoretically-principled 
FRL (no guarantees)

Neural Networks /

FNF
Provable FRL

Normalizing Flows
Density Estimation 
with Guarantees

FARE
Provable FRL

Restricted 
Encoders

/

Ensuring group fairness: pre-processing (FRL) vs in-training vs post-processing methods

Three methods for group-fair representation learning:

32

❌

❌

http://www.sri.inf.ethz.ch/

