
Reliable and Trustworthy Artificial Intelligence

Martin Vechev

ETH Zurich

Fall 2022

http://www.sri.inf.ethz.ch

Lecture 1 [Part II]: Adversarial Attacks and Defenses

http://www.srl.inf.ethz.ch/

Today

• Examples of attacks

• Adversarial attacks

• Adversarial defenses

2

Explaining and Harnessing Adversarial
Examples, ICLR ‘15

Adversarial Examples

Tape pieces make network
predict a 45mph sign

Robust Physical-World Attacks on Deep
Learning Visual Classification, CVPR’18

Noisy attack: vision system thinks we now have a gibbon…

Self-driving car: in each picture one of
the 3 networks makes a mistake…

DeepXplore: Automated Whitebox Testing of Deep Learning Systems,
SOSP’17 3

Adversarial Geometric Perturbations

𝐼𝑜

7

𝐼 = 𝑟𝑜𝑡𝑎𝑡𝑒(𝐼𝑜,-35)

3

4

Lujo Bauer

Real glasses

=

John Malkovich

100% success

Real World Impersonation/Dodging Attacks

5

Adversarial Examples in Reinforcement Learning

Adversarial Attacks on Neural Network Policies, Huang et.al, 2017

An agent (Deep Q Network) plays the game by selecting actions from a given
state (image) that the game produces.

An attacker can perturb the image slightly so that the DQN agent chooses the
wrong action: here, it wrongly picks noop (do nothing) in the right image,
instead of moving the paddle down (left image).

6

Adversarial Examples in NLP

Adversarial Examples for Evaluating Reading Comprehension Systems, EMNLP’17

The Ensemble model is fooled by the addition of an adversarial distracting sentence in blue.

7

Adversarial Examples in Audio Processing:
Speech to Text

Audio Adversarial Examples: Targeted Attacks on Speech-to-Text, ICML 2018 workshop

Adding small noise to the input audio makes the network transcribe any arbitrary phrase

An attack on DeepSpeech:

8

Explaining and Harnessing Adversarial Examples, ICLR’15

57.7% panda 93.3% gibbon“noise”

sign(𝛻𝑥loss𝑠 𝑥)

𝜖

Adversarial Attack

9

Targeted Attack – aims to misclassify the input (e.g., image) to
a specific label (e.g. panda to gibbon)

Untargeted Attack – aims to misclassify the input to any wrong
label (e.g. panda to any other animal)

Formulated as a slightly different optimization problem

Targeted vs. Untargeted Attacks

10

Input:

 neural network 𝒇:𝑿 → 𝑪

 input 𝒙 ∈ 𝑿

 target label 𝒕 ∈ 𝑪, such that 𝒇 𝒙 ≠ 𝒕

Output:

 A perturbation 𝜼 such that 𝒇 𝒙 + 𝜼 = 𝒕

Adversarial example
𝑥′ = 𝑥 + 𝜂

Targeted Attack: Problem Statement

11

Input:

 neural network 𝒇:𝑿 → 𝑪

 input 𝒙 ∈ 𝑿

Output:

 A perturbation 𝜼 such that 𝒇 𝒙 + 𝜼 ≠ 𝒇 𝒙

Adversarial example
𝑥′ = 𝑥 + 𝜂

Untargeted Attack: Problem Statement

12

Types of Attacks
White box attacker: the attacker knows the model, the parameters,
and the architecture

Black box attacker: the attacker knows the architecture (e.g., the
layers) but not its parameters (e.g., weights)

Note: it was found adversarial examples are transferrable, hence
given the same training data as the original network, an attacker can
train their own mirror network of the black box original network and
then attack the mirror network with white-box techniques. If attack
on mirror network succeeds, it will likely succeed on the original.

We will look at white box attacks
13

Targeted Fast Gradient Sign Method

1. Compute perturbation:
𝜂 = 𝜖 ⋅ sign(𝛻𝑥loss𝑡 𝑥), where

𝛻𝑥 loss𝑡 =
𝜕loss𝑡

𝜕𝑥1
, … ,

𝜕loss𝑡

𝜕𝑥𝑛
sign(𝑔) = ൞

−1, if 𝑔 < 0
0, if 𝑔 = 0
1, if 𝑔 > 0

2. Perturb the input:

𝑥′ = 𝑥 − 𝜂

3. Check if:

𝑓 𝑥′ = 𝑡

• Here, each 𝑥𝑖 is a pixel

• 𝜖 is a very small constant (e.g., 0.007)

• As FGSM is 1-step, 𝑥′ is guaranteed to stay inside the
box [𝑥 - 𝜖, 𝑥 + 𝜖], so no need to project.

• 𝑡 is the target, bad label

• loss𝑡 is the loss w.r.t target label

• FGSM was designed to be fast, not optimal

(may not compute minimal perturbation) 14

Untargeted version of FGSM

1. Compute perturbation:
𝜂 = 𝜖 ⋅ sign(𝛻𝑥loss𝑠 𝑥)

2. Perturb the input:

𝑥′ = 𝑥 + 𝜂

3. Check if:

𝑓 𝑥′ 𝑠

• With untargeted FGSM, we do not know what
the target (bad) label is that we want.

• We just want some label different than the
correct label s.

• So we try to “get away” from the correct label
by maximizing the value of the loss

15

Explaining and Harnessing Adversarial Examples, ICLR’15

Image x,
label: panda

New image,
label: gibbon

“noise”

sign(𝛻𝑥loss𝑝𝑎𝑛𝑑𝑎 𝑥)

𝜖

FGSM

16

Importance of Small Perturbations

Original
image

Slightly
Perturbed

Image

Too
Perturbed

Image

We need some notion of distance….

17

Norm: Notion of Distance

Similarity of 𝒙 ∼ 𝒙′ is usually captured by an 𝑙𝑝 norm:

𝒙 ∼ 𝒙′ iff 𝒙 − 𝒙′ 𝒑 < 𝝐,

where 𝒙 − 𝒙′ 𝒑 = |𝒙𝟏 − 𝒙′𝟏|
𝒑 +⋯+ |𝒙𝒏 − 𝒙′𝒏|

𝒑
𝟏

𝒑

𝑙0 (when 00 = 0 and we get rid of 1/p root) captures the number of changed pixels.

𝑙2 captures the Euclidian distance between 𝑥 and 𝑥′. It can remain small if there are many
small changes to many pixels.

𝑙∞ captures maximum noise (change) added to any coordinate. It is the maximum of the
absolute values of the entries:

𝒙 − 𝒙′
∞
= 𝒎𝒂𝒙 |𝒙𝟏 − 𝒙′𝟏|, … , |𝒙𝒏 − 𝒙′𝒏|

This is the most common norm used for adversarial example generation and it is argued that
it most naturally captures human vision.

To derive the max equation, see:
https://math.stackexchange.com/questions/3099179/proving-the-infinity-norm-is-equal-to-the-maximum-value-of-the-vector&sa=D&source=hangouts&ust=1600861806197000&usg=AFQjCNFLvo4hpAfiNBK06EwAZVFkuRiDNw

18

Input:

 neural network 𝒇:𝑿 → 𝑪

 input 𝒙 ∈ 𝑿

 target label 𝒕 ∈ 𝑪, such that 𝒇 𝒙 ≠ 𝒕

Output:

 A perturbation 𝜼 such that 𝒇 𝒙 + 𝜼 = 𝒕

 𝜼 𝒑 is minimized

Targeted Attack with Small Changes

19

The problem of generating small perturbations can be phrased as

an optimization problem:

find 𝜼

minimize 𝜼
𝑝

such that 𝑓 𝒙 + 𝜼 = 𝑡
𝒙 + 𝜼 ∈ 0,1 𝑛

𝑝 ∈ {0, 2,∞}

Key insight: Relaxation of the hard constraint

Optimization Problem

This is a hard discrete
constraint which is
difficult to optimize for
with gradient methods.

Note: 𝜼 can have negative
components.

Carlini et al., Towards Evaluating the Robustness of Neural Networks, 2017 20

Two steps:

Step 1: Define an objective function 𝒐𝒃𝒋𝒕 such that:

if 𝒐𝒃𝒋𝒕 𝒙 + 𝜼 ≤ 𝟎 then 𝒇 𝒙 + 𝜼 = 𝒕

Step 2: Solve the following optimization problem:

Optimization Problem

find 𝜼
minimize 𝜼 𝑝 + 𝑐 ⋅ 𝒐𝒃𝒋𝒕(𝒙 + 𝜼)

such that 𝒙 + 𝜼 ∈ 𝟎, 𝟏 𝒏

21

Two steps:

Step 1: Define an objective function 𝒐𝒃𝒋𝒕 such that:

if 𝒐𝒃𝒋𝒕 𝒙 + 𝜼 ≤ 𝟎 then 𝒇 𝒙 + 𝜼 = 𝒕

What are examples of functions for 𝒐𝒃𝒋 with the property of Step 1?

Optimization Problem

𝒐𝒃𝒋𝒕 𝒙′ = losst 𝒙′ − 1
Lets take cross
entropy loss for loss𝑡

Choice I:

𝒐𝒃𝒋𝒕 𝒙′ = max(0, 0.5 − 𝐩𝐟 𝒙′ t)

Choice II:
𝐩𝐟 𝒙′ t returns the probability of
class 𝒕 for input 𝒙′on network f

22

Choice I: 𝒐𝒃𝒋 𝒙 = losst 𝒙 − 1

𝒐𝒃𝒋𝒕 𝒙 = losst 𝒙 − 1

= −𝐥𝐨𝐠𝟐(𝐩 𝑡) − 1

Plug in cross entropy loss for loss𝑡
with logarithm base 2

Here, we use 𝐩 𝑡 as a shortcut for
𝐩𝐟 𝒙 t so to avoid clutter

Choice I:

𝐩 𝑡

𝒐𝒃𝒋 𝒙

What we see here is that if the 𝒐𝒃𝒋𝒕
function is 0 or negative, then the
probability 𝐩 𝑡 is 0.5 (50%) .

But if 𝐩 𝑡 is 0.5 for the input 𝒙, then
𝒇 will return 𝑡 as a classification
for 𝒙 because this is the highest
probability class. Hence, the desired
property of Step 1 holds.

23

Choice II: max(0, 0.5 − 𝐩𝐟 𝒙 t)

𝒐𝒃𝒋𝒕 𝒙 = max(0, 0.5 − 𝐩 𝑡)

Choice II:

𝒐𝒃𝒋 𝒙′

What we see here is that the 𝒐𝒃𝒋𝒕
function is always 0 or greater.

It is only 0 when 𝐩 𝑡 is 0.5 for the
input 𝒙.

Again, then 𝒇 will return 𝑡 as a
classification for 𝒙 because this is the
highest probability class.

Hence, the desired property holds for
Step 1.

𝐩 𝑡

𝒐𝒃𝒋 𝒙

Again we use 𝐩 𝑡 as a shortcut for
𝐩𝐟 𝒙 t so to avoid clutter

24

Two steps:

Step 1: Define an objective function 𝒐𝒃𝒋𝒕 such that:

if 𝒐𝒃𝒋𝒕 𝒙 + 𝜼 ≤ 𝟎 then 𝒇 𝒙 + 𝜼 = 𝒕

Step 2: Solve the following optimization problem:

Optimization Problem

find 𝜼
minimize 𝜼 𝑝 + 𝑐 ⋅ 𝑜𝑏𝑗𝒕(𝒙 + 𝜼)

such that 𝒙 + 𝜼 ∈ 𝟎, 𝟏 𝒏

25

Two steps:

Step 1: Define an objective function 𝒐𝒃𝒋𝒕 such that:

if 𝒐𝒃𝒋𝒕 𝒙 + 𝜼 ≤ 𝟎 then 𝒇 𝒙 + 𝜼 = 𝒕

Step 2: Solve the following optimization problem:

Optimization Problem

find 𝜼
minimize 𝜼 ∞ + 𝑐 ⋅ 𝑜𝑏𝑗𝒕(𝒙 + 𝜼)
such that 𝒙 + 𝜼 ∈ 𝟎, 𝟏 𝒏

This is a problem for
optimization

26

Two steps:

Step 1: Define an objective function 𝒐𝒃𝒋𝒕 such that:

if 𝒐𝒃𝒋𝒕 𝒙 + 𝜼 ≤ 𝟎 then 𝒇 𝒙 + 𝜼 = 𝒕

Step 2: Solve the following optimization problem:

find 𝜂
minimize 𝜼 ∞ + 𝑐 ⋅ 𝑜𝑏𝑗𝒕(𝒙 + 𝜼)
such that 𝒙 + 𝜼 ∈ 𝟎, 𝟏 𝒏

Hard Box Constraint

Optimization Problem

27

find 𝜼
minimize 𝜼 𝑝 + 𝑐 ⋅ 𝑜𝑏𝑗𝒕(𝒙 + 𝜼)

such that 𝒙 + 𝜼 ∈ 𝟎, 𝟏 𝒏

Dealing with Constraints

Projected gradient descent (PGD)
“Fit” all coordinates to be within the box

LBFGS-B optimizer:

pass each 𝜼𝒊
∈ [−𝒙𝒊, 1 − 𝒙𝒊]

separately to the optimizer.

“-B” stands for box constraints

Given 𝒙 is constant, this is the same as enforcing 𝜼𝒊∈ [−𝒙𝒊, 1 − 𝒙𝒊] for every

𝜼𝒊 . We can then use either of these two methods:

𝒑𝒓𝒐𝒋𝒆𝒄𝒕 (𝜼1, … , 𝜼𝑛) = 𝑐𝑙𝑖𝑝1 𝜼1 , … , 𝑐𝑙𝑖𝑝𝑛 𝜼𝑛

𝑐𝑙𝑖𝑝𝑖 𝜼𝒊 =

−𝒙𝒊 if 𝜼𝒊 < −𝒙𝒊

𝜼𝒊, if 𝜼𝒊 ∈ [−𝒙𝒊, 1 − 𝒙𝒊]

1 − 𝒙𝒊, if 𝜼𝒊 > 1 − 𝒙𝒊

Used by Carlini & Wagner

Note: if we also want 𝜼 ∞ < 𝑒 then we can also add the box constraints 𝜼
𝒊
∈ [−𝑒, 𝑒] 28

Target label

In
it

ia
ll

ab
el

With this approach we get

What we see is that on the
MNIST (digit recognition)
data set it is not difficult to
get a realistic looking
image that fools the neural
network classifier…

29

• So far, we looked at FGSM as well as an attack to minimize the
distance to the original input (e.g., image, audio)

• Now, we illustrate another attack, a variant of FGSM applied
iteratively with projection.

• The attack uses Projected Gradient Descent (PGD) and is
referred to as a PGD attack.

• This is a commonly used attack for adversarial training:
training the network to be robust.

Another attack…often used during training

30

Given a dataset of points (x, y) where label is:

0 if x2+y2<16

1 otherwise

train a neural network to classify the points correctly

Illustrating the PGD attack

31

Illustrating the PGD attack

https://www.wolframalpha.com/input/?i=plot+x%5E2+%2B+y%5E2+%3C+16

0
0

0
0

0
0

0
0

1

1

1

1

1

1

32

https://www.wolframalpha.com/input/?i=plot+x%5e2+%2B+y%5e2+%3c+16

After training we get the classifier:

Dark blue – neural network
predicts 1 (property does not
hold)

Light blue – neural network
predicts 0 (property holds)

Red dots – those where property
actually holds

White dots – those where
property actually does not hold

33

Goal:

Find adversarial input in

Linf ball around:

xorig = (-2.2, -2.2)
(red point)

with ε=0.4

Lets pick a point…

34

Initialize PGD with:

x = (-1.8, -2.6)

Note: this is just for the
example to illustrate
projection. In practice, one
picks a point at random in
the box

Lets Zoom in a bit…

x

xorig

35

NN(x) = [0.5973, 0.4027]

Loss(x) = 0.5153

𝛁x Loss(x) = [-0.852, -1.373]

x’ = x + 0.1 * sign(𝛁x Loss(x))
= [-1.9, -2.7] (yellow point)

Up-to-here, its just standard
untargeted FGSM attack but with
smaller step-size of 0.1 than ε
which is 0.4.

But now we also project:

x’’ = project(x’, xorig, ε)
= [-1.9, -2.6] (purple point)

x

x’

x’’

PGD Iteration 1

Change Δ
xorig

36

x’’ from before now named x:

NN(x) = [0.5455, 0.4545]
(so point x = (-1.9, -2.6) is
not yet a counter example

Loss(x) = 0.6060

𝛁x Loss(x) =[-0.9621, -1.5493]

x’ = x + 0.1 * sign(𝛁x Loss(x))
= [-2, -2.7]

x’’ = project(x’ ,xorig, ε)
= [-2, -2.6]

x

x’

x’’

PGD Iteration 2

Change Δ

xorig

37

NN(x) = [0.4927, 0.5073]

found adversarial example
x = [-2, -2.6]

Neural network predicts 1,
although (-2)2 + (-2.6)2 < 16
so it should have been
classified as 0

x

PGD Iteration 3

xorig

38

• The goal of the PGD attack is to find a point in the region which
maximizes the loss (it may still classify to the same label as xorig)

• For our example, we started at the corner. Typically one starts the
search with a random point inside the box.

• One stops PGD after a pre-defined number of iterations (e.g., 10).

• In our example, we always stepped outside the box to illustrate
projection, and then projected to the box. It is possible to never step
outside the box and thus projection will have no effect.

• It is possible the final produced example is inside the box, and not on
the boundary. However, when we project, if outside the box, we will
end up on the boundary.

• In this example, loss is likely to be highest somewhere around the big
orange point (typically far from the decision boundary). Of course,
when we are searching, we don’t know the actual decision
boundary.

• One can implement PGD in two ways:
• a) by projecting current point x’ to the ε-box around xorig as

well as [0,1] for each dimension, or
• b) by projecting the change Δ to [-ε, +ε] as well as to the

constraints needed so each element in the resulting point is
between [0,1]

• Step size (here 0.1) is typically smaller than ε (used in FGSM)

x

Some notes on PGD

• Projection is linear-time in the dimension for
𝐿∞ and 𝐿2 norms.

• An open problem: finding efficient projections
for various convex regions that are more
expressive than boxes (e.g., convex polyhedral
restrictions).

xorig

39

Attack Type Region Optimization Outcome

FGSM
(targeted, untargeted)

Change 𝜼 fixed to [-ε, +ε]. Take exactly one ε-sized step Produced example will
be on boundary of
region.

PGD
(typically untargeted,
but can be targeted)

Can be instantiated with any
region one can project to.

Take many steps. Uses
projection to stay inside region.
For special case of 𝑙∞ , step size
smaller than ε.

Result will be inside
region. Tries to maximize
loss.

C&W
(presented as
targeted)

No real restriction, except
image has to be in [0,1] (like all
other methods). This restricts
the region for the change 𝜼: 𝜼
has to be bounded s.t. original
image + 𝜼 stays in [0,1].

Aims to produce a change 𝜼
with small 𝑙∞. Takes many steps,
using LBFGS-B to ensure 𝜼 stays
in bounds.

Result will be inside
[0,1], with a hopefully
small 𝑙∞ distance from
original image.

Summary of Adversarial Attacks

40

Can we Avoid Adversarial Examples?

Many works have tried to, but follow-up works showed that all fail

The main successful defenses in practice now incorporate

adversarial examples during training

Some pretty good experimental defenses exist

41

Adversarial Accuracy vs. Test Accuracy

Adversarial accuracy refers to a metric on the test set where for each
data point we check if the network classifies the point correctly and the
network is robust in a region around that point.

Example [𝒍∞ ball]: Let 𝜖 =0.3 , and let the test set 𝑇 contain 100
examples. For each example 𝑑𝑖 ∈ 𝑇, lets check if in the 𝑙∞ region of size
≤ 0.3 around 𝑑𝑖, we find an (adversarial) example with a different
classification than 𝑑𝑖 . For that purpose we typically use a PGD attack.
Now suppose, 95 of the 100 examples classify correctly and for 15 of
these 95, we find an adversarial example. Then, our adversarial

accuracy will be
80

100
= 80% and our test accuracy will be

95

100
= 95%.

Adversarial accuracy and Test accuracy can be at odds: it is possible to
raise the adversarial accuracy which tends to lower test accuracy. This
trade off is being actively investigated.

42

Defense as Optimization Problem

find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [𝐦𝐚𝐱 𝐿 𝜃, 𝑥′, 𝑦]x, y ~𝐷
𝑥′ ∈ 𝑆(𝑥)

D is the underlying distribution

𝐄 is typically estimated with the empirical risk

𝑆 𝑥 denotes the perturbation region around point 𝑥, that is, we want all points
in 𝑆 𝑥 to classify the same as x . We can pick 𝑆 𝑥 to be:

𝑆 𝑥 = 𝒙′ 𝒙 − 𝒙′
∞
< 𝝐}

x, y ~𝐷

Inner
maximization

problem

Outer
minimization

problem

find 𝒙′ that achieves
high loss

find 𝜽 that minimizes
the high loss, aiming to train
a robust classifier

Madry et.al, 2017 43

PGD Defense in Practice

𝜃′ = 𝜃 -
1

|𝐵𝑚𝑎𝑥|
σ 𝑥𝑚𝑎𝑥,𝑦 ∈𝐵𝑚𝑎𝑥

𝛻𝜃 𝐿(𝜃, 𝑥𝑚𝑎𝑥 , 𝑦)

Step 1: select a mini-batch 𝐵 of examples from dataset D.

Step 2: compute 𝐵𝑚𝑎𝑥 by applying PGD attack (actually computes an approximation) as
follows to every point (𝑥, 𝑦) ∈ 𝐵:

Step 3: solve outer problem:

Step 4: goto Step 1. Various stopping criteria, including reaching a certain number of
epochs.

*The conversion of the original min-max problem to the 4 steps above is based on Danskin’s theorem

𝑥𝑚𝑎𝑥 = 𝐚𝐫𝐠𝐦𝐚𝐱 𝐿 𝜃, 𝑥′, 𝑦
𝑥′ ∈ 𝑆(𝑥)

Note: 𝑥𝑚𝑎𝑥 need not be adversarial
example; it just aims to maximize 𝐿

44

Points to Consider when Defending
Model capacity matters: larger networks are more defendable and less easy to be
attacked with transferrable examples. Training smaller nets with PGD has negative
effects on accuracy.

Training with adversarial examples from PGD attacks (many steps and project)
tends to perform better than training with adversarial examples from FGSM
attacks (one step, no projection).

Even on larger networks, defenses can negatively affect accuracy (e.g. CIFAR).
More research is needed here. By this we mean that after the network is trained,
we test its accuracy on the test set. And there, it is more robust yet more points
classify incorrectly.

“No free lunch in adversarial robustness”, Tsipras et. al. 2018 : If we want robust model, decrease in standard accuracy is inevitable!

“Adversarially Robust Generalization Requires More Data “, Schmidt et. al. 2018 : Provides lower bound on number of samples needed to
achieve adversarial robustness

“Theoretically Principled Trade-off between Robustness and Accuracy”, Zhang et.al., 2019 : Improves slightly on PGD defense; also combines
with standard (e.g., cross-entropy) loss.

Fast is better than free: Revisiting adversarial training, Wong et.al., 2020 : FGSM with random initialization can work as well as PGD

45

Lecture Summary

Deep Learning is susceptible to
adversarial examples
Deep Learning is susceptible to
adversarial examples

Generating Adversarial examples
(an optimization problem)

• FGSM: targeted and untargeted
• C&W (minimize perturbation)
• PGD

Defending against Adversarial examples
(an optimization problem)

We looked at a way to (experimentally) defend the
network by training with adversarial examples,
specifically the PGD defense. This results in a min-
max nested optimization problem.

Adversarial training can lower standard accuracy.
Remains a question of research interest, how to
avoid this from happening

Applicability

Many of the techniques shown today are
applicable to domains beyond images, but
also models for natural language, code,
audio processing, financial data and many
more.

46

