
Reliable and Trustworthy Artificial Intelligence

http://www.sri.inf.ethz.ch

Lecture 3: MILP and DeepPoly for Certification

Martin Vechev
ETH Zurich

Fall 2022

http://www.srl.inf.ethz.ch/

Lecture Outline

• Complete verification with classic MILP (Mixed Integer Linear

Program), incorporating Box constraints.

• Advanced convex relaxation: DeepPoly.

Lecture Outline

• Complete verification with classic MILP (Mixed Integer

Linear Program), incorporating Box constraints.

• Advanced convex relaxation: DeepPoly.

Let us incorporate MILP (Mixed Integer Linear Program) solvers in order to verify

robustness. For ReLU networks, MILP is complete. However, this comes at the cost that

MILP is at least NP-complete (cannot be solved in polynomial time in any known

manner).

We will first define the standard MILP problem. Then, we will use the Box bounds to

constrain MILP. So, Box will help MILP be faster by doing less work (MILP still remains

complete).

Complete method: MILP

General MILP

𝒎𝒊𝒏 𝒄𝟏𝒙𝟏 + 𝒄𝟐𝒙𝟐 +⋯+ 𝒄𝒏𝒙𝒏

• 𝒄𝒊, 𝒂𝒊𝒋, 𝒃𝒊 ∈ 𝑹

• some 𝒙𝒋 ‘s can be integers (or even binary), hence Mixed-Integer problem

𝒂𝟏𝟏𝒙𝟏 +⋯+ 𝒂𝟏𝒏𝒙𝒏 ≤ 𝒃𝟏
….

𝒂𝒎𝟏𝒙𝟏 +⋯+ 𝒂𝒎𝒏𝒙𝒏 ≤ 𝒃𝒎

objective

constraints

𝒙𝒋 ∈ 𝒁 𝒙𝒊 ∈ 𝑹
some 𝒙𝒋 are integer

some 𝒙𝒊 are real

MILP + Box Bounds

𝒎𝒊𝒏 𝒄𝟏𝒙𝟏 + 𝒄𝟐𝒙𝟐 +⋯+ 𝒄𝒏𝒙𝒏

• 𝒄𝒊, 𝒂𝒊𝒋, 𝒃𝒊 ∈ 𝑹 and 𝒍, 𝒖 ∈ 𝑹𝒏

• some 𝒙𝒋 ‘s can be integers (or even binary), hence Mixed-Integer problem

• state-of-the-art solvers (e.g., Gurobi) benefit from bounds on 𝒙𝒊 ’s

𝒂𝟏𝟏𝒙𝟏 +⋯+ 𝒂𝟏𝒏𝒙𝒏 ≤ 𝒃𝟏
….

𝒂𝒎𝟏𝒙𝟏 +⋯+ 𝒂𝒎𝒏𝒙𝒏 ≤ 𝒃𝒎

𝒍𝒊 ≤ 𝒙𝒊 ≤ 𝒖𝒊 𝟏 ≤ 𝒊 ≤ 𝒏 bounds on continuous 𝒙𝒊

objective

constraints

Encoding introduced in: Evaluating Robustness of Neural Networks with Mixed Integer Programming, ICLR 2019 (see Appendix)
https://openreview.net/pdf?id=HyGIdiRqtm

𝒙𝒋 ∈ 𝒁 𝒙𝒊 ∈ 𝑹
some 𝒙𝒋 are integer

some 𝒙𝒊 are real

https://openreview.net/pdf?id=HyGIdiRqtm

MILP encoding of Neural Network

To encode the network as a MILP instance, we need to:

1. Encode the Affine layer

2. Encode the ReLU layer

3. Encode the pre-condition 𝝓

4. Encode the post-condition 𝝍

Encode Affine layer as MILP

This is direct as it is just a linear constraint

where 𝑾 are the weights and 𝒃 is the bias

𝒚 = 𝑾𝒙 + 𝒃

(note: convolution is also an affine transformation, can be encoded directly)

Encode ReLU layer as MILP

𝒚 ≤ 𝒙 − 𝒍 ∗ 𝟏 − 𝒂

𝒚 = 𝑹𝒆𝑳𝑼 𝒙 = 𝒎𝒂𝒙(𝟎, 𝒙)

MILP ReLU encoding is:

𝒚 ≥ 𝒙

𝒚 ≤ 𝒖 ∗ 𝒂

𝒚 ≥ 𝟎

𝒂 ∈ {𝟎, 𝟏}

This assumes we have computed lower 𝒍 and upper 𝒖 bounds for the input neuron 𝒙

(e.g., by using Box beforehand).

𝒂 is a binary integer variable

(*Intuition on next slide)

ReLU definition is:

𝒚 ≤ 𝒙 − 𝒍 ∗ 𝟏 − 𝒂

𝒚 ≥ 𝒙

𝒚 ≤ 𝒖 ∗ 𝒂

𝒚 ≥ 𝟎

𝒂 ∈ {𝟎, 𝟏}

Reminder: ReLU encoding

Encode Pre-condition 𝝓 as MILP

That is, we will introduce lower and upper bound

constraints for each input neuron 𝑥𝑖
′

L∞ ball: Ball(𝑥)𝜖 = {𝑥′ | || 𝑥 – 𝑥′ ||∞ < 𝜖 }

𝑥

Lets take 𝝓 = L∞ ball around 𝑥 as an example:

𝑥𝑖 − 𝜖 ≤ 𝑥′ ≤ 𝑥𝑖 + 𝜖

MILP encoding:

Encode Post-condition 𝝍 as MILP

We want to prove this. Hence, this

must be forming our MILP objective
𝜓 = 𝑜0 > 𝑜1

Lets take 𝝍 = label 0 is more likely than label 1 (our example network)

𝒎𝒊𝒏 𝑜0 − 𝑜1

MILP encoding:

After MILP finishes, final verification takes the computed values for 𝑜0 , 𝑜1 and checks if 𝑜0 is

indeed greater than 𝑜1 . If yes, verification succeeds, if not, verification fails.

Generic vs. Instantiated MILP

Generic MILP problem Our MILP instance

𝒎𝒊𝒏 𝑜0 − 𝑜1

Plug in the Affine and ReLU

MILP encodings as defined

𝑥𝑖 − 𝜖 ≤ 𝑥𝑖
′ ≤ 𝑥𝑖 + 𝜖

𝜙: bounds on

input neurons

𝑙𝑖 ≤ 𝑥𝑖
𝑝
≤ 𝑢𝑖

pre-computed Box bounds

on all neurons in each layer 𝑝

𝒎𝒊𝒏 𝒄𝟏𝒙𝟏 + 𝒄𝟐𝒙𝟐 +⋯+ 𝒄𝒏𝒙𝒏

𝒂𝟏𝟏𝒙𝟏 +⋯+ 𝒂𝟏𝒏𝒙𝒏 ≤ 𝒃𝟏
….

𝒂𝒎𝟏𝒙𝟏 +⋯+ 𝒂𝒎𝒏𝒙𝒏 ≤ 𝒃𝒎

𝒍𝒊 ≤ 𝒙𝒊 ≤ 𝒖𝒊 𝟏 ≤ 𝒊 ≤ 𝒏

𝒙𝒋 ∈ 𝒁
These are the 𝒂 ∈ 𝟎, 𝟏 vars

from the ReLU encoding
𝒂𝒋 ∈ {𝟎, 𝟏}

Reminder: these are the bounds with Box

𝑥1 𝑥3 𝑥5

𝑥2

𝑜0

𝑥4 𝑥6 𝑜1

1 max(0, 𝑥3) 1

−1 −1max(0, 𝑥4)

1 1

1 1

[0,0.6]

[0.1,0.7]

0 0.5

0 −0.5

[0,0.6]

[0.1,0.7]

[0.1,1.3]

[−0.7,0.5]

[0.1,1.3]

[0,0.5]

[0.6,2.3]

[−0.9,0.8]

MILP Instance for this network

𝒎𝒊𝒏 𝑜0 − 𝑜1

0 ≤ 𝑥1 ≤ 0.6
0.1 ≤ 𝑥2 ≤ 0.7

Affine

𝑥3 = 𝑥1 + 𝑥2
𝑥4 = 𝑥1 − 𝑥2

𝑜0 = 𝑥5 + 𝑥6 + 0.5
𝑜1 = 𝑥5 − 𝑥6 − 0.5

ReLU: x5 = max(0, 𝑥3)

𝑥5 ≤ 𝑥3 − 0.1 ∗ 1 − 𝑎5
𝑥5 ≥ 𝑥3

𝑥5 ≤ 1.3 ∗ 𝑎5
𝑥5 ≥ 0

𝒂𝟓, 𝒂𝟔 ∈ 𝟎, 𝟏

ReLU: x6 = max(0, 𝑥4)

𝑥6 ≤ 𝑥4 + 0.7 ∗ 1 − 𝑎6
𝑥6 ≥ 𝑥4

𝑥6 ≤ 0.5 ∗ 𝑎6
𝑥6 ≥ 0

Input bounds

0.1 ≤ 𝑥3 ≤ 1.3
−0.7 ≤ 𝑥4 ≤ 0.5
0.1 ≤ 𝑥5 ≤ 1.3
0 ≤ 𝑥6 ≤ 0.5

Pre-computed Box bounds Binary integer variables

Solving this MILP instance will lead to proving the property

Lets solve MILP to see why Box helps

(Note: MILP solvers employ elaborate algorithms, the idea here is to

show how Box can help even state-of-the-art MILP solvers)

Case 𝐚𝟓 = 𝟎

𝒎𝒊𝒏 𝑜0 − 𝑜1

Affine

𝑥3 = 𝑥1 + 𝑥2
𝑥4 = 𝑥1 − 𝑥2

𝑜0 = 𝑥5 + 𝑥6 + 0.5
𝑜1 = 𝑥5 − 𝑥6 − 0.5

ReLU: x5 = max(0, 𝑥3)

𝑥5 ≤ 𝑥3 − 0.1
𝑥5 ≥ 𝑥3

…

ReLU: x6 = max(0, 𝑥4)

This is an infeasible LP instance so MILP

does not have to consider it .

Here, Box bounds helped MILP in not

exploring further values for 𝒂𝟔. So it

saved generating two cases for𝒂𝟔.

𝑥6 ≤ 𝑥4 + 0.7 ∗ 1 − 𝑎6
𝑥6 ≥ 𝑥4

𝑥6 ≤ 0.5 ∗ 𝑎6
𝑥6 ≥ 0

0.1 ≤ 𝑥3 ≤ 1.3
−0.7 ≤ 𝑥4 ≤ 0.5
0.1 ≤ 𝑥5 ≤ 1.3
0 ≤ 𝑥6 ≤ 0.5

Pre-computed Box bounds

In practice, we directly generate this MILP

𝒎𝒊𝒏 𝑜0 − 𝑜1

0 ≤ 𝑥1 ≤ 0.6
0.1 ≤ 𝑥2 ≤ 0.7

Affine

𝑥3 = 𝑥1 + 𝑥2
𝑥4 = 𝑥1 − 𝑥2

𝑜0 = 𝑥5 + 𝑥6 + 0.5
𝑜1 = 𝑥5 − 𝑥6 − 0.5

ReLU: x5 = max(0, 𝑥3)

𝒂𝟔 ∈ 𝟎, 𝟏

ReLU: x6 = max(0, 𝑥4)

𝑥6 ≤ 𝑥4 + 0.7 ∗ 1 − 𝑎6
𝑥6 ≥ 𝑥4

𝑥6 ≤ 0.5 ∗ 𝑎6
𝑥6 ≥ 0

Input bounds

0.1 ≤ 𝑥3 ≤ 1.3
−0.7 ≤ 𝑥4 ≤ 0.5
0.1 ≤ 𝑥5 ≤ 1.3
0 ≤ 𝑥6 ≤ 0.5

Pre-computed Box bounds Binary integer variable

𝑥5 = 𝑥3
0.1 ≤ 𝑥5 ≤ 1.3

can prove
𝑥3 is positive using
Box bounds

𝒎𝒊𝒏 𝑜0 − 𝑜1

0 ≤ 𝑥1 ≤ 0.6
0.1 ≤ 𝑥2 ≤ 0.7

Affine

𝑥3 = 𝑥1 + 𝑥2
𝑥4 = 𝑥1 − 𝑥2

𝑜0 = 𝑥5 + 𝑥6 + 0.5
𝑜1 = 𝑥5 − 𝑥6 − 0.5

ReLU: x5 = max(0, 𝑥3)

𝑥5 = 𝑥3
0.1 ≤ 𝑥5 ≤ 1.3

ReLU: x6 = max(0, 𝑥4)

𝑥4 ≤ 𝑥6 ≤ 𝑥4 + 0.7
𝑥6 = 0

Input bounds

0.1 ≤ 𝑥3 ≤ 1.3
−0.7 ≤ 𝑥4 ≤ 0.5
0.1 ≤ 𝑥5 ≤ 1.3
0 ≤ 𝑥6 ≤ 0.5

Pre-computed Box bounds
𝑜0 − 𝑜1 = 2 ∗ 𝑥6 + 1
𝑜0 − 𝑜1 = 1

Here, we proved, subject

to the constraints, that the

minimum is always 1,

hence property holds.

simplifying

Case 𝒂𝟔 = 𝟎

Note: cannot just use the bounds for 𝑥5 and 𝑥6
for computing 𝑜0 − 𝑜1 : this will be too imprecise! Good to try.

𝒎𝒊𝒏 𝑜0 − 𝑜1

0 ≤ 𝑥1 ≤ 0.6
0.1 ≤ 𝑥2 ≤ 0.7

Affine

𝑥3 = 𝑥1 + 𝑥2
𝑥4 = 𝑥1 − 𝑥2

𝑜0 = 𝑥5 + 𝑥6 + 0.5
𝑜1 = 𝑥5 − 𝑥6 − 0.5

𝑥6 = 𝑥4
0 ≤ 𝑥6 ≤ 0.5

Input bounds

0.1 ≤ 𝑥3 ≤ 1.3
−0.7 ≤ 𝑥4 ≤ 0.5
0.1 ≤ 𝑥5 ≤ 1.3
0 ≤ 𝑥6 ≤ 0.5

Pre-computed Box bounds

𝑥5 = 𝑥3
0.1 ≤ 𝑥5 ≤ 1.3

𝑜0 − 𝑜1 = 2 ∗ 𝑥6 + 1

1 ≤ 𝑜0 − 𝑜1 ≤ 2

𝑚𝑖𝑛 𝑜0 − 𝑜1 = 1

simplifying

Here, we proved the property again

Case 𝒂𝟔 = 𝟏

ReLU: x5 = max(0, 𝑥3) ReLU: x6 = max(0, 𝑥4)

Lecture Outline

• Complete verification with classic MILP (Mixed Integer Linear

Program), incorporating Box constraints.

• Advanced convex relaxation: DeepPoly.

The problem with Box

Box is simple and efficient, but the problem is that it looses too

much precision, in both, the ReLU abstract transformer but also in

the affine abstract transformer.

The Polyhedral convex relaxation we study now is such that the

affine transformer will not lose precision (that is, it will be precise);

however, its ReLU transformer will again lose some precision.

DeepPoly convex relaxation: the shape
[Singh et. al, POPL’19]

Shape:
for each 𝑥𝑖 , we keep:
• An interval constraint: lower bound 𝑙𝑖 ≤ 𝑥𝑖 and upper bound 𝑥𝑖 ≤ 𝑢𝑖

• Two relational constraints: 𝑎𝑖
≤ ≤ 𝑥𝑖 and 𝑥𝑖 ≤ 𝑎𝑖

≥

where the expressions 𝑎𝑖
≤, 𝑎𝑖

≥ are of the form σ𝑗𝑤𝑗 ⋅ 𝑥𝑗 + 𝑣

• less precise than Polyhedra, restriction needed to ensure scalability

• captures affine transformations precisely

• custom transformers for ReLU, sigmoid, tanh, and maxpool activations

𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 −1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 −0.5 3

0 0 0

[−1,1]

[−1,1]

[−2,2]

[−2,2]

[0,2]

[0,2]

[−0.5,3.5]

[−2,2]

[0,3.5]

[0,2]

[−0.5,5]

[0,2]

Certification with Box fails as it cannot capture relational information

Box relaxation (scalable but imprecise)

24

𝑥2

𝜙

𝑥1

𝜓: we want to prove that 𝑥11 > 𝑥12 for all values of 𝑥1, 𝑥2 in the input set

𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 −1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 −0.5 3

0 0 0

𝑥1 ≥ −1,
𝑥1 ≤ 1,
𝑙1 = −1,
𝑢1 = 1

𝑥2 ≥ −1,
𝑥2 ≤ 1,
𝑙2 = −1,
𝑢2 = 1

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,
𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,
𝑙4 = −2,
𝑢4 = 2

25

𝑥2

𝜙

𝑥1

DeepPoly relaxation

Single-neuron transformer for 𝑥𝑗 ≔ 𝑚𝑎𝑥(0, 𝑥𝑖) that uses 𝑙𝑖 , 𝑢𝑖

ReLU activation: 𝑥𝑗 ≔ max(0, 𝑥𝑖)

Single-neuron transformer for 𝑥𝑗 ≔ 𝑚𝑎𝑥(0, 𝑥𝑖) that uses 𝑙𝑖 , 𝑢𝑖

• 𝑖𝑓 𝑢𝑖 ≤ 0: 𝑎𝑗
≤ = 𝑎𝑗

≥ = 0, 𝑙𝑗 = 𝑢𝑗 = 0

• 𝑖𝑓 𝑙𝑖 ≥ 0: 𝑎𝑗
≤ = 𝑎𝑗

≥ = 𝑥𝑖 , 𝑙𝑗 = 𝑙𝑖 , 𝑢𝑗 = 𝑢𝑖

• 𝑖𝑓 𝑙𝑖 < 0 𝑎𝑛𝑑 𝑢𝑖 > 0

ReLU activation: 𝑥𝑗 ≔ max(0, 𝑥𝑖)

(strictly negative)

(strictly positive)

(crossing ReLU)

Lets discuss the crossing ReLU activation next

ReLU activation: 𝑥𝑗 ≔ max(0, 𝑥𝑖)

Triangle [Ehlers et al. ATVA’17]

CROWN [NeurIPS’18]
DeepPoly [POPL’19]

CROWN [NeurIPS’18]
DeepPoly [POPL’19]

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

Zonotope:
Wong et al. [ICML’18]
FastLin [ICML’18]
DeepZ [NeurIPS’18]

28

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

Exact [Katz et al., CAV’17]

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

Box [Gehr el al. S&P’18]

DeepPoly ReLU Relaxaton I

𝒍𝒙 𝒖𝒙

𝒖𝒙

𝑦 = 𝜆 ∗ 𝑥 − 𝜆 ∗ 𝑙𝑥

= 𝜆 ∗ (𝑥 − 𝑙𝑥)

𝑑 = −𝜆 ∗ 𝑙𝑥

distance is:

𝑦

𝑥

𝑦 = 0

The slope is:

𝜆 =
𝑢𝑥

𝑢𝑥 − 𝑙𝑥

This line is:

This line is:
So the blue area approximating
the green line is captured by 2
inequality constraints below:

𝑦 ≤ 𝜆 ∗ 𝑥 − 𝑙𝑥

𝑦 ≥ 0

as well as the upper bound
constraint kept as part of the
previous layer:

𝑥 ≤ 𝑢𝑥

DeepPoly ReLU Relaxaton II

𝒍𝒙 𝒖𝒙

𝒖𝒙

𝑦 = 𝜆 ∗ 𝑥 − 𝜆 ∗ 𝑙𝑥

= 𝜆 ∗ (𝑥 − 𝑙𝑥) 𝑦

𝑥

𝑦 ≥ 𝑥

The slope is:

𝜆 =
𝑢𝑥

𝑢𝑥 − 𝑙𝑥

This line is:

This line is (the same as before):
So the blue area approximating
the green line is captured by 2
inequality constraints below:

𝑦 ≤ 𝜆 ∗ 𝑥 − 𝑙𝑥

𝑦 ≥ 𝑥

as well as the upper bound
constraint kept as part of the
previous layer:

𝑥 ≤ 𝑢𝑥

DeepPoly ReLU Relaxation 𝛼

𝒍𝒙 𝒖𝒙

𝒖𝒙

𝑦 = 𝜆 ∗ 𝑥 − 𝜆 ∗ 𝑙𝑥

= 𝜆 ∗ (𝑥 − 𝑙𝑥) 𝑦

𝑥

This line stays the same:

We can vary the lower bound
constraint 𝑦 ≥ 𝛼𝑥 , 𝛼 ∈ [0,1] to
get different non-comparable
relaxations.

We can even learn 𝜶 to get one
more likely to verify the property

(note: useful for the project)

𝑦 ≥ 𝑎𝑥
𝛼 ∈ [0,1]

This line is:

Let us apply ReLU relaxation I

32

𝑥3 𝑥5

𝑥4 𝑥6

max(0, 𝑥3)

max(0, 𝑥4)

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,
𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,
𝑙4 = −2,
𝑢4 = 2

𝑥5 ≤ 𝜆 ∗ 𝑥3 − 𝑙𝑥3

𝑥5 ≥ 0

𝑥5 ≤ 0.5 ∗ 𝑥3 + 2

𝑥5 ≥ 0
becomes

𝑥6 ≤ 𝜆 ∗ 𝑥4 − 𝑙𝑥4

𝑥6 ≥ 0

𝑥6 ≤ 0.5 ∗ 𝑥3 + 2

𝑥6 ≥ 0
becomes

33

𝑥3 𝑥5

𝑥4 𝑥6

max(0, 𝑥3)

max(0, 𝑥4)

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,
𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,
𝑙4 = −2,
𝑢4 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

we get these constraints after simplification

Let us apply ReLU relaxation I

𝑥5

𝑥7

𝑥6

−0.5

1

1

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ 𝑥5 + 𝑥6 − 0.5,
𝑥7 ≤ 𝑥5 + 𝑥6 − 0.5,

𝑙7 =? ,
𝑢7 =?

34

Affine transformation after ReLU

𝑥5

𝑥7

𝑥6

−0.5

1

1

Imprecise upper bound 𝑢7 by substituting 𝑢5, 𝑢6 for 𝑥5 and 𝑥6

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ 𝑥5 + 𝑥6 − 0.5,
𝑥7 ≤ 𝑥5 + 𝑥6 − 0.5,

𝑙7 = −0.5,
𝒖𝟕 = 𝟑. 𝟓

35

𝑥7 ≤ 𝑥5 + 𝑥6 − 0.5
𝑥7 ≤ 2 + 2 − 0.5
𝑥7 ≤ 3.5

Computing upper bound for neuron
𝑥7 by using upper bounds for 𝑢5 and 𝑢6:

Affine transformation after ReLU

We are trying to compute sound and precise/tight lower and upper bounds. To

do so, instead of only using the concrete l and u bounds from the previous layer,

we can use the relational constraints accumulated in the prior layers. We

accomplish this via backsubstitution.

37

𝑥5

𝑥7

𝑥6

−0.5

1

1

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ 𝑥5 + 𝑥6 − 0.5,
𝑥7 ≤ 𝑥5 + 𝑥6 − 0.5,

𝑙7 =? ,
𝒖𝟕 =?

Backsubstitution

Obtain the lower and upper
bounds for 𝑥7 using the ones
from the previous layer

38

𝑥5

𝑥7

𝑥6

−0.5

1

1

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ −0.5,
𝑥7 ≤ 0.5 ⋅ 𝑥3 + 0.5 ⋅ 𝑥4 + 1.5,

𝑙7 =? ,
𝑢7 =?

Backsubstitution

Obtain the lower and upper
bounds for 𝑥7 using the ones
from the previous layer

𝑥5

𝑥7

𝑥6

−0.5

1

1
𝑥3

𝑥4

max(0, 𝑥3)

max(0, 𝑥4)

0

0

𝑥1

𝑥2

1

−1

1

1

𝑥1 ≥ −1,
𝑥1 ≤ 1,
𝑙1 = −1,
𝑢1 = 1

𝑥2 ≥ −1,
𝑥2 ≤ 1,
𝑙2 = −1,
𝑢2 = 1

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,
𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,
𝑙4 = −2,
𝑢4 = 2

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ −0.5,
𝑥7 ≤ 0.5 ⋅ 𝑥3 + 0.5 ⋅ 𝑥4 + 1.5,

𝑙7 =? ,
𝑢7 =?

39

Keep replacing the bounds for 𝑥7 using
the ones from the previous layer:

𝑥7 ≤ 0.5𝑥3 + 0.5𝑥4 + 1.5
𝑥7 ≤ 0.5 𝑥1 + 𝑥2 + 0.5 𝑥1 − 𝑥2 + 1.5
𝑥7 ≤ 𝑥1 + 1.5
𝑥7 ≤ 2.5

Backsubstitution

𝑥5

𝑥7

𝑥6

−0.5

1

1
𝑥3

𝑥4

max(0, 𝑥3)

max(0, 𝑥4)

0

0

𝑥1

𝑥2

1

−1

1

1

𝑥1 ≥ −1,
𝑥1 ≤ 1,
𝑙1 = −1,
𝑢1 = 1

𝑥2 ≥ −1,
𝑥2 ≤ 1,
𝑙2 = −1,
𝑢2 = 1

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,
𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,
𝑙4 = −2,
𝑢4 = 2

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ −0.5,
𝑥7 ≤ 𝑥1 + 1.5,
𝑙7 = −0.5,
𝒖𝟕 = 𝟐.5

40

Backsubstitution

Reminder: in our backsubstitution, we obtained the following steps:

𝑥7 ≤ 0.5𝑥3 + 0.5𝑥4 + 1.5

𝑥7 ≤ 0.5 𝑥1 + 𝑥2 + 0.5 𝑥1 − 𝑥2 + 1.5

𝑥7 ≤ 𝑥1 + 1.5

𝑥7 ≤ 2.5

But this step was possible in general as we were dealing with a very specific

input region (where each neuron lies in an interval, in this case [-1,1]).

How can we deal with any norm? [Next lecture]

Dealing with arbitrary input regions

𝑥12 ≥ 𝑥10,
𝑥12 ≤ 𝑥10,
𝑙12 = 0,
𝑢12 = 2

𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 −1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 −0.5 3

0 0 0

𝑥1 ≥ −1,
𝑥1 ≤ 1,
𝑙1 = −1,
𝑢1 = 1

𝑥2 ≥ −1,
𝑥2 ≤ 1,
𝑙2 = −1,
𝑢2 = 1

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,
𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,
𝑙4 = −2,
𝑢4 = 2

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6
≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ 𝑥5 + 𝑥6 − 0.5,
𝑥7 ≤ 𝑥5 + 𝑥6 − 0.5,

𝑙7 = −0.5,
𝑢7 = 2.5

𝑥8 ≥ 𝑥5 − 𝑥6,
𝑥8 ≤ 𝑥5 − 𝑥6,
𝑙8 = −2,
𝑢8 = 2

𝑥9 ≥ 0,

𝑥9 ≤
5

6
⋅ 𝑥7 +

5

12
𝑙9 = 0,
𝑢9 = 2.5

𝑥10 ≥ 0,
𝑥10 ≤ 0.5 ⋅ 𝑥8 + 1,

𝑙10 = 0,
𝑢10 = 2

𝑥11 ≥ −𝑥9 + 𝑥10 + 3,
𝑥11 ≤ −𝑥9 + 𝑥10 + 3,

𝑙11 = 0.5,
𝑢11 = 5

42

𝑥2

𝜙

𝑥1

Proving the robustness property

Goal: Prove 𝑥11 − 𝑥12 > 0 for all inputs in −1,1 × [−1,1]

𝑥11 ≥ −𝑥9 + 𝑥10 + 3,
𝑥11 ≤ −𝑥9 + 𝑥10 + 3,

𝑙11 = 0.5,
𝑢11 = 5

𝑥12 ≥ 𝑥10,
𝑥12 ≤ 𝑥10,
𝑙12 = 0,
𝑢12 = 2

43

Proving the robustness property

Goal: Prove 𝑥11 − 𝑥12 > 0 for all inputs in −1,1 × [−1,1]

Computing lower bound for 𝑥11 − 𝑥12 using 𝑙11, 𝑢12 gives -1.5 which is an imprecise result

𝑥11 ≥ −𝑥9 + 𝑥10 + 3,
𝑥11 ≤ −𝑥9 + 𝑥10 + 3,

𝑙11 = 0.5,
𝑢11 = 5

𝑥12 ≥ 𝑥10,
𝑥12 ≤ 𝑥10,
𝑙12 = 0,
𝑢12 = 2

44

Proving the robustness property

Goal: Prove 𝑥11 − 𝑥12 > 0 for all inputs in −1,1 × [−1,1]

Computing lower bound for 𝑥11 − 𝑥12 using 𝑙11, 𝑢12 gives -1.5 which is an imprecise result

We now backsubstitute 𝑥11 − 𝑥12, and get 0.5, proving the property

𝑥11 ≥ −𝑥9 + 𝑥10 + 3,
𝑥11 ≤ −𝑥9 + 𝑥10 + 3,

𝑙11 = 0.5,
𝑢11 = 5

𝑥12 ≥ 𝑥10,
𝑥12 ≤ 𝑥10,
𝑙12 = 0,
𝑢12 = 2

45

DeepPoly Asymptotic Complexity

𝑛: max #neurons in a layer, 𝐿: #layers

The overall asymptotic complexity is Ο 𝑛3𝐿2 broken down as follows:

• Ο 𝑛2𝐿 : for every neuron, the complexity of doing full back
substitution.

• 𝑂 𝑛𝐿 : is the total number of neurons for which the above takes place.

Note: 𝑂(𝑛𝐿) - this is the complexity of all ReLU transformers which are
dominated by the above complexity of backsubstitution.

Note: overall complexity of Box is Ο 𝑛2𝐿 --Ο 𝑛2 for affine transformation
repeated 𝐿 times.

Summary of Lecture

• We showed how to create a MILP instance for solving the problem of (complete) neural

network certification.

• This is useful as MILP alone is prohibitively expensive. This was an example of using an

incomplete method to speed up a complete method.

• We discussed one combination of combining complete and incomplete methods. There

are other ways for both methods to benefit from each other, we mention some of these

in later lectures.

• We defined the DeepPoly convex relaxation, a more precise version of Box, also an

instance of an incomplete method.

