
Reliable and Trustworthy Artificial Intelligence

Martin Vechev

ETH Zurich

Fall 2022

http://www.sri.inf.ethz.ch

Lecture 4: Differentiable refinement of DeepPoly, Branch and Bound

1

http://www.srl.inf.ethz.ch/

Lecture Outline (Part I)

• Arbitrary input norms for DeepPoly

• Differentiable version of the DeepPoly refinement

2

Lecture Outline (Part I)

• Arbitrary input norms for DeepPoly

• Differentiable version of the DeepPoly refinement

3

𝑥5

𝑥7

𝑥6

−0.5

1

1
𝑥3

𝑥4

max(0, 𝑥3)

max(0, 𝑥4)

0

0

𝑥1

𝑥2

1

−1

1

1

𝑥1 ≥ −1,
𝑥1 ≤ 1,

𝑙1 = −1,
𝑢1 = 1

𝑥2 ≥ −1,
𝑥2 ≤ 1,

𝑙2 = −1,
𝑢2 = 1

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,

𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,

𝑙4 = −2,
𝑢4 = 2

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ −0.5,
𝑥7 ≤ 𝑥1 + 1.5,

𝑙7 = −0.5,
𝒖𝟕 = 𝟐.5

Reminder: backsubstitution

4

𝑥7 ≤ 0.5𝑥3 + 0.5𝑥4 + 1.5

𝑥7 ≤ 0.5 𝑥1 + 𝑥2 + 0.5 𝑥1 − 𝑥2 + 1.5

𝑥7 ≤ 𝑥1 + 1.5

𝑥7 ≤ 2.5

Finding the maximum of the expression 𝑥1 + 1.5 was direct as we were dealing with a very specific

input region, each neuron in [-1,1], but there could be more complex input regions with multiple x’s.

How can we deal with any norm?

We obtained 2.5 via

backsubstitution

Holder inequality (special case)

For vectors 𝑥 and 𝑦, where
1

𝑝
+

1

𝑞
= 1

𝑥 ∗ 𝑦
1

≤ 𝑥
𝑞

𝑦
𝑝

For the special case where 𝑝 = ∞ we have that 𝑞 = 1 and the above holds.

Let us now use this inequality to obtain lower/upper bounds for more general input regions.

5

Note: 𝑝, 𝑞 need not be integers

𝐦𝐚𝐱 𝑎𝑥0 + 𝑐

𝑥0 ∈ 𝑥 ∈ 𝐷 𝑥 − 𝑥′
𝑝

≤ 𝜖}

= 𝐦𝐚𝐱 𝑎(𝑥′ + 𝜂) + 𝑐

𝜂
𝑝

≤ 𝜖

= 𝐦𝐚𝐱 𝑎𝜂 + 𝑎𝑥′ + 𝑐

𝜂
𝑝

≤ 𝜖

≤ 𝐦𝐚𝐱 |𝑎𝜂| + 𝑎𝑥′ + 𝑐

𝜂
𝑝

≤ 𝜖

= 𝐦𝐚𝐱 𝑎𝜂
1

+ 𝑎𝑥′ + 𝑐

𝜂
𝑝

≤ 𝜖

≤ 𝐦𝐚𝐱 𝑎
𝑞

𝜂
𝑝

+ 𝑎𝑥′ + 𝑐

𝜂
𝑝

≤ 𝜖

= 𝑎
𝑞

𝜖 + 𝑎𝑥′ + 𝑐

via syntactic re-write

via expanding brackets

via 𝑎𝜂 ≤ |𝑎𝜂|

via 𝑎𝜂 = 𝑎𝜂
1

via Holder inequality

via 𝐦𝐚𝐱 𝑥 ∗ 𝑦 = 𝑥 ∗ 𝜖
where 𝑥 ≥ 0 , 𝑦 ∈ [0, 𝜖]

6

We also need to have a way to compute the minimum of an expression, for instance, when we try to prove

the final property or the lower bounds. The derivation is similar to the maximum.

7

𝐦𝐢𝐧 𝑎𝑥0 + 𝑐

𝑥0 ∈ 𝑥 ∈ 𝐷 𝑥 − 𝑥′
𝑝

≤ 𝜖}

= 𝐦𝐢𝐧 𝑎(𝑥′ + 𝜂) + 𝑐

𝜂
𝑝

≤ 𝜖

= 𝐦𝐢𝐧 𝑎𝜂 + 𝑎𝑥′ + 𝑐

𝜂
𝑝

≤ 𝜖

≥ 𝐦𝐢𝐧 −|𝑎𝜂| + 𝑎𝑥′ + 𝑐

𝜂
𝑝

≤ 𝜖

= 𝐦𝐢𝐧 − 𝑎𝜂
1

+ 𝑎𝑥′ + 𝑐

𝜂
𝑝

≤ 𝜖

≥ 𝐦𝐢𝐧 − 𝑎
𝑞

𝜂
𝑝

+ 𝑎𝑥′ + 𝑐

𝜂
𝑝

≤ 𝜖

= − 𝑎
𝑞

𝜖 + 𝑎𝑥′ + 𝑐

via syntactic re-write

via expanding brackets

via 𝑎𝜂 ≥ −|𝑎𝜂|

via 𝑎𝜂 = 𝑎𝜂
1

via Holder inequality

via 𝐦𝐢𝐧 −𝑥 ∗ 𝑦 = −𝑥 ∗ 𝜖
where 𝑥 ≥ 0 , 𝑦 ∈ [0, 𝜖]

8

We need to find an upper bound to the expression:

Here we have that 𝒙′ = (𝑥1 , 𝑥2) = (0,0), 𝜖 = 1 , 𝒂 = (1,0), 𝑐 = 1.5, 𝑞 = 1

Hence the expression:

becomes:

so the upper bound is 2.5

𝑥1 + 1.5

Back to our example

𝒂
𝑞

𝜖 + 𝒂𝒙′𝑻 + 𝑐

(1,0)
1

∗ 1 + (1,0) ∗ (0,0)𝑇+1.5 = 2.5

1

𝑝
+

1

𝑞
= 1

In the special case where we have the l-inf norm, that is 𝑝 = ∞ then 𝑞 = 1

9

Lecture Outline (Part I)

• Arbitrary input norms for DeepPoly

• Differentiable version of the DeepPoly refinement

10

Standard Backsubstitution

x1 x3 x5 x7 x9 x11

x2 x4 x6 x8 x10 x12

[-1,1]

[-1,1]
-1

-1

-1

1 1

1

11

11

1

0

0 0 0

0 -0.5 3

max(0, x8)max(0, x4)

max(0, x7)max(0, x3)

x3 ≥ x1+x2

x3 ≤ x1+x2

l3 = -2
u3 = 2

x4 ≥ x1- x2

x4 ≤ x1- x2

l4 = -2
u4 = 2

x5 ≥ 0
x5 ≤ 0.5 x3+1

l5 = 0
u5 = 2

x7 ≥ x5+x6- 0.5
x7 ≤ x5+x6- 0.5

l7 = -0.5
u7 = 2.5

x8 ≥ x5- x6

x8 ≤ x5- x6

l8 = -2
u8 = 2

x10 ≥ 0
x10 ≤ 0.5 x8+1

l10 = 0
u10 = 2

x9 ≥ x7

x9 ≤ 5/6 x7+5/12
l9 = 0

u9 = 2.5

x11 ≥ x10- x9+3
x11 ≤ x10- x9+3

l11 = 0.5
u11 = 4.5

x12 ≥ x10

x12 ≤ x10

l12 = 0
u12 = 2

x6 ≥ 0
x6 ≤ 0.5 x4+1

l6 = 0
u6 = 2

11

Standard Backsubstitution

x7 x9

x11

x8 x10

-1

1

0

-0.5

3

max(0, x8)

max(0, x7)

x10 ≥ 0
x10 ≤ 0.5 x8+1

l10 = 0
u10 = 2

x9 ≥ x7

x9 ≤ 5/6 x7+5/12
l9 = 0

u9 = 2.5 x11 ≥ x10- x9+3
x11 ≤ x10- x9+3

l11 = 0.5
u11 = 4.5

x11 ≤ x10- x9+3

Substitute
x9 ≥ x7

Substitute
x10 ≤ 0.5 x8+1

pos. coeff. ⇒ upper bound neg. coeff. ⇒ lower bound

x11 ≤ x10- x9+3
≤ 0.5 x8- x7+4

Depending on sign, we
substitute lower or

upper bound

12

Standard Backsubstitution

x1 x3 x5 x7 x9

x11

x2 x4 x6 x8 x10

[-1,1]

[-1,1]
-1

1

-1

1 1
-1

1

11

1

0 0

0 -0.5

3

max(0, x8)max(0, x4)

max(0, x7)max(0, x3)

x3 ≥ x1+x2

x3 ≤ x1+x2

l3 = -2
u3 = 2

x4 ≥ x1- x2

x4 ≤ x1- x2

l4 = -2
u4 = 2

x5 ≥ 0
x5 ≤ 0.5 x3+1

l5 = 0
u5 = 2

x7 ≥ x5+x6- 0.5
x7 ≤ x5+x6- 0.5

l7 = -0.5
u7 = 2.5

x8 ≥ x5- x6

x8 ≤ x5- x6

l8 = -2
u8 = 2

x10 ≥ 0
x10 ≤ 0.5 x8+1

l10 = 0
u10 = 2

x6 ≥ 0
x6 ≤ 0.5 x4+1

l6 = 0
u6 = 2

x11 ≤ x10- x9+3
≤ 0.5 x8- x7+4

≤ -0.5 x5- 1.5x6+ 4.5
≤ 4.5

x9 ≥ x7

x9 ≤ 5/6 x7+5/12
l9 = 0

u9 = 2.5

Both x5 and x6 are
substituted with lower
bound 0 (negative sign)

13

Standard Backsubstitution

x1 x3 x5 x7 x9

x11

x2 x4 x6 x8 x10

[-1,1]

[-1,1]
-1

1

-1

1 1
-1

1

11

1

0 0

0 -0.5

3

max(0, x8)max(0, x4)

max(0, x7)max(0, x3)

x3 ≥ x1+x2

x3 ≤ x1+x2

l3 = -2
u3 = 2

x4 ≥ x1- x2

x4 ≤ x1- x2

l4 = -2
u4 = 2

x5 ≥ 0
x5 ≤ 0.5 x3+1

l5 = 0
u5 = 2

x7 ≥ x5+x6- 0.5
x7 ≤ x5+x6- 0.5

l7 = -0.5
u7 = 2.5

x8 ≥ x5- x6

x8 ≤ x5- x6

l8 = -2
u8 = 2

x10 ≥ 0
x10 ≤ 0.5 x8+1

l10 = 0
u10 = 2

x6 ≥ 0
x6 ≤ 0.5 x4+1

l6 = 0
u6 = 2

x11 ≤ x10- x9+3
≤ 0.5 x8- x7+4

≤ -0.5 x5- 1.5x6+ 4.5
≤ 4.5

x9 ≥ x7

x9 ≤ 5/6 x7+5/12
l9 = 0

u9 = 2.5

Now, we will split ReLU to
increase precision for x11

14

Bunel et al., "Branch and bound for piecewise linear neural network verification", Journal of Machine Learning Research, 2020

Branch-and-Bound (BaB)
[Bunel et al. 2020]

Branch-and-Bound

x ≤ 0How to enforce with
backsubstitution?

x > 0

15

Replace ReLU with linear function

x7 x9

max(0, x7)

x7 ≤ 0
⇒ x9= 0

x7 x9

max(0, x7)

x7 > 0
⇒ x9= x7

x11 ≤ x10- x9+3
≤ 0.5 x8- x7+4

≤ -0.5 x5- 1.5x6+ 4.5
≤ 4.5

x11 ≤ x10- x9+3
≤0.5 x8+4

≤ 0.5 x5 -0.5x6+ 4
≤ 0.25 x3+ 4.5

≤ 0.25 x1+0.25 x2+ 4.5
≤ 5

x11 ≤ x10- x9+3
≤ 0.5 x8- x7+4

≤ -0.5 x5- 1.5x6+ 4.5
≤ 4.5

x7 x9

max(0, x7)

x9 ≥ 0
x9 ≤ 0
l9 = 0
u9 = 0

x9 ≥ x7

x9 ≤ x7

l9 = 0
u9 = 2.5

x9 ≥ x7

x9 ≤ 5/6 x7+5/12
l9 = 0

u9 = 2.5
Split on x7

x9 = x7x9 = 0

16

Naive splitting is not strictly better!

x7 x9

max(0, x7)

x7 ≤ 0
⇒ x9= 0

x7 x9

max(0, x7)

x7 > 0
⇒ x9= x7

x11 ≤ x10- x9+3
≤ 0.5 x8- x7+4

≤ -0.5 x5- 1.5x6+ 4.5
≤ 4.5

x11 ≤ x10- x9+3
≤0.5 x8+4

≤ 0.5 x5 -0.5x6+ 4
≤ 0.25 x3+ 4.5

≤ 0.25 x1+0.25 x2+ 4.5
≤ 5

x11 ≤ x10- x9+3
≤ 0.5 x8- x7+4

≤ -0.5 x5- 1.5x6+ 4.5
≤ 4.5

x7 x9

max(0, x7)

Not enough
Bounds actually worse

in this example

x9 ≥ 0
x9 ≤ 0
l9 = 0
u9 = 0

x9 ≥ x7

x9 ≤ x7

l9 = 0
u9 = 2.5

x9 ≥ x7

x9 ≤ 5/6 x7+5/12
l9 = 0

u9 = 2.5
Split on x7

x9 = x7x9 = 0

17

Naive splitting is not strictly better!

Original approximation

New approximation

New approximation is non-
comparable: it removes
certain region and introduces
other (red) region, top.

18

Naive Splitting Wanted

Strictly better
approximation

How to enforce
constraints on input?

19

Enforce Constraints with KKT Condition

Intuition:
If the constraint 𝑔 𝑥 ≤ 0 is violated for a fixed 𝑥, we have

thus “incentivising” the choice of a different 𝑥.

*KKT for Karush–Kuhn–Tucker

𝑔 𝑥 > 0 ⇒ 𝑓 𝑥 − 𝛽 ∗ 𝑔 𝑥 → −∞ for 𝛽 → ∞

20

21

Enforce Split Constraints with KKT

22

Positive Split on x7

x1 x3 x5 x7 x9 x11

x2 x4 x6 x8 x10 x12

[-1,1]

[-1,1]
-1

-1

-1

1 1

1

11

11

1

0

0 0 0

0 -0.5 3

max(0, x8)max(0, x4)

max(0, x7)max(0, x3)

x3 ≥ x1+x2

x3 ≤ x1+x2

l3 = -2
u3 = 2

x4 ≥ x1- x2

x4 ≤ x1- x2

l4 = -2
u4 = 2

x5 ≥ 0
x5 ≤ 0.5 x3+1

l5 = 0
u5 = 2

x7 ≥ x5+x6- 0.5
x7 ≤ x5+x6- 0.5

l7 = 0
u7 = 2.5

x8 ≥ x5- x6

x8 ≤ x5- x6

l8 = -2
u8 = 2

x10 ≥ 0
x10 ≤ 0.5 x8+1

l10 = 0
u10 = 2

x9 ≥ x7

x9 ≤ x7

l9 = 0
u9 = 2.5

x11 ≥ x10- x9+3
x11 ≤ x10- x9+3

l11 = 0.5
u11 = 4.5

x12 ≥ x10

x12 ≤ x10

l12 = 0
u12 = 2

-x7 ≤ 0
⇔ x7 > 0
⇒ x9= x7

x6 ≥ 0
x6 ≤ 0.5 x4+1

l6 = 0
u6 = 2

23

Backsubstitution with Split

x7 x9

x11

x8 x10

-1

1

0

-0.5

3

max(0, x8)

max(0, x7)

x10 ≥ 0
x10 ≤ 0.5 x8+1

l10 = 0
u10 = 2

x9 ≥ x7

x9 ≤ x7

l9 = 0
u9 = 2.5

x11 ≤ x10- x9+3

Substitute
x9 ≥ x7

Enforce
x7>0

Substitute
x10 ≤ 0.5 x8+1

pos. coeff. ⇒ upper bound neg. coeff. ⇒ lower bound

maxx x11 (s.t. x7 >0) ≤ maxx x10- x9+3 (s.t. x7 >0)
≤ maxx 0.5 x8- x7+4 (s.t. x7 >0)

≤ maxx minβ≥0 0.5 x8- x7+4 + βx7

x7 > 0
⇒ x9= x7

x11 ≥ x10- x9+3
x11 ≤ x10- x9+3

l11 = 0.5
u11 = 4.5

KKT

We hide maxx for

readability

Positive Split on x7

x1 x3 x5 x7 x9

x11

x2 x4 x6 x8 x10

[-1,1]

[-1,1]
-1

1

-1

1 1
-1

1

11

1

0 0

0 -0.5

3

max(0, x8)max(0, x4)

max(0, x7)max(0, x3)

x3 ≥ x1+x2

x3 ≤ x1+x2

l3 = -2
u3 = 2

x4 ≥ x1- x2

x4 ≤ x1- x2

l4 = -2
u4 = 2

x5 ≥ 0
x5 ≤ 0.5 x3+1

l5 = 0
u5 = 2

x7 ≥ x5+x6- 0.5
x7 ≤ x5+x6- 0.5

l7 = 0
u7 = 2.5

x8 ≥ x5- x6

x8 ≤ x5- x6

l8 = -2
u8 = 2

x10 ≥ 0
x10 ≤ 0.5 x8+1

l10 = 0
u10 = 2

x9 ≥ x7

x9 ≤ x7

l9 = 0
u9 = 2.5

x7 > 0
⇒ x9= x7

x11 ≤ x10- x9+3
≤ minβ0.5 x8- x7+4+βx7

≤ minβ (β-0.5) x5+(β- 1.5)x6+ 4.5 - 0.5β

minβ (β-0.5) x5+(β- 1.5)x6+ 4.5 - 0.5β
≤ minβ 4.5 - 0.5β

= 4.25

β ≤ 0.5

x6 ≥ 0
x6 ≤ 0.5 x4+1

l6 = 0
u6 = 2

24

25

Positive Split on x7

x1 x3 x5 x7 x9

x11

x2 x4 x6 x8 x10

[-1,1]

[-1,1]
-1

1

-1

1 1
-1

1

11

1

0 0

0 -0.5

3

max(0, x8)max(0, x4)

max(0, x7)max(0, x3)

x3 ≥ x1+x2

x3 ≤ x1+x2

l3 = -2
u3 = 2

x4 ≥ x1- x2

x4 ≤ x1- x2

l4 = -2
u4 = 2

x5 ≥ 0
x5 ≤ 0.5 x3+1

l5 = 0
u5 = 2

x7 ≥ x5+x6- 0.5
x7 ≤ x5+x6- 0.5

l7 = 0
u7 = 2.5

x8 ≥ x5- x6

x8 ≤ x5- x6

l8 = -2
u8 = 2

x10 ≥ 0
x10 ≤ 0.5 x8+1

l10 = 0
u10 = 2

x9 ≥ x7

x9 ≤ x7

l9 = 0
u9 = 2.5

x7 > 0
⇒ x9= x7

x11 ≤ x10- x9+3
≤ minβ0.5 x8- x7+4+βx7

≤ minβ (β-0.5) x5+(β- 1.5)x6+ 4.5 - 0.5β

minβ (β-0.5) x5+(β- 1.5)x6+ 4.5 - 0.5β
≤ minβ 4.5 - 0.5β

= 4.25

β ≤ 0.5

minβ (β-0.5) x5+(β- 1.5)x6+ 4.5 - 0.5β
≤ minβ (0.5 β - 0.25) x3+4 + 0.5β

≤ minβ (0.5 β - 0.25) (x1+x2)+4 + 0.5β
≤ minβ 3.5 + 1.5β

= 4.25

1.5 ≥ β ≥ 0.5

x6 ≥ 0
x6 ≤ 0.5 x4+1

l6 = 0
u6 = 2

25

Next, lets see how we simplify this
expression in more detail

maxxminβ (0.5 β - 0.25) (x1+x2) + 4 + 0.5β

≤ minβ maxx (0.5 β - 0.25) (x1+x2) + 4 + 0.5β

= minβ maxx (0.5 β - 0.25, 0.5 β - 0.25) (x1, x2 + 4 + 0.5β

≤ minβ ||(0.5 β - 0.25, 0.5 β - 0.25)||1 * 1 + 4 + 0.5β

= minβ 1 β - 0.5 + 4 + 0.5β

= minβ 3.5 + 1.5β

= 4.25

via 1.5 ≥ β ≥ 0.5

via weak duality

via Holder 𝑞 = 1

with β = 0.5

Here solved symbolically, typically using gradient descent

via rewrite

) 𝑇

26

27

Positive Split on x7

x1 x3 x5 x7 x9

x11

x2 x4 x6 x8 x10

[-1,1]

[-1,1]
-1

1

-1

1 1
-1

1

11

1

0 0

0 -0.5

3

max(0, x8)max(0, x4)

max(0, x7)max(0, x3)

x3 ≥ x1+x2

x3 ≤ x1+x2

l3 = -2
u3 = 2

x4 ≥ x1- x2

x4 ≤ x1- x2

l4 = -2
u4 = 2

x5 ≥ 0
x5 ≤ 0.5 x3+1

l5 = 0
u5 = 2

x7 ≥ x5+x6- 0.5
x7 ≤ x5+x6- 0.5

l7 = 0
u7 = 2.5

x8 ≥ x5- x6

x8 ≤ x5- x6

l8 = -2
u8 = 2

x10 ≥ 0
x10 ≤ 0.5 x8+1

l10 = 0
u10 = 2

x9 ≥ x7

x9 ≤ x7

l9 = 0
u9 = 2.5

x7 > 0
⇒ x9= x7

x11 ≤ x10- x9+3
≤ minβ0.5 x8- x7+4+βx7

≤ minβ (β-0.5) x5+(β- 1.5)x6+ 4.5 - 0.5β

minβ (β-0.5) x5+(β- 1.5)x6+ 4.5 - 0.5β
≤ minβ 4.5 - 0.5β

= 4.25

β ≤ 0.5

minβ (β-0.5) x5+(β- 1.5)x6+ 4.5 - 0.5β
≤ minβ (0.5 β - 0.25) x3+4 + 0.5β

≤ minβ (0.5 β - 0.25) (x1+x2)+4 + 0.5β
≤ minβ 3.5 + 1.5β

= 4.25

1.5 ≥ β ≥ 0.5

x6 ≥ 0
x6 ≤ 0.5 x4+1

l6 = 0
u6 = 2 minβ (β-0.5) x5+(β- 1.5)x6+ 4.5 - 0.5β

≤ minβ (0.5 β - 0.25) x3+(0.5 β - 0.75) x4+2.5 + 1.5β
≤ minβ (β - 1) x1- 0.5 x2+2.5 + 1.5β

≤ minβ 2 + 2.5β
= 5.75

β ≥ 1.5

Numerical Optimization
Explicit case distinction only for symbolic solve

Actually, we pick numeric value for βi ⇒ standard backsubstitution

minβ (β-0.5) x5+(β- 1.5)x6+ 4.5 - 0.5β
≤ minβ 4.5 - 0.5β

β ≤ 0.5

minβ (β-0.5) x5+(β- 1.5)x6+ 4.5 - 0.5β
≤ minβ 3.5 + 1.5β

1.5 ≥ β ≥ 0.5

minβ (β-0.5) x5+(β- 1.5)x6+ 4.5 - 0.5β
≤ minβ 2 + 2.5β

β ≥ 1.5

Symbolic (Instructive, not actually what runs) Numerical (what runs)

-0.5x5-1.5x6+ 4.5
⇒ UB = 4.5 - 0.5β0 = 4.5

Initialize: β0 := 0

∇βUB = - 0.5 ⇒ β1 := 0.75

0.25x5- 0.75x6+ 4.5 - 0.375
⇒ UB = 3.5 + 1.5β1 = 4.625

∇βUB = 1.5 ⇒ β2 := 0.375

-0.125x5- 1.125x6+ 4.5 - 0.1875
⇒ UB = 4.5 - 0.5β2 = 4.3125

step size: 1.5

step size: 0.25

∇βUB = - 0.5 ⇒ β3 := 0.5

- x6+ 4.5 - 0.25
⇒ UB = 4.5 - 0.5β3 = 4.25

step size: 0.25

βi are concrete numerical
values, not variables

28

29

Negative Split on x7

x1 x3 x5 x7 x9 x11

x2 x4 x6 x8 x10 x12

[-1,1]

[-1,1]
-1

-1

-1

1 1

1

11

11

1

0

0 0 0

0 -0.5 3

max(0, x8)max(0, x4)

max(0, x7)max(0, x3)

x3 ≥ x1+x2

x3 ≤ x1+x2

l3 = -2
u3 = 2

x4 ≥ x1- x2

x4 ≤ x1- x2

l4 = -2
u4 = 2

x6 ≥ 0
x6 ≤ 0.5 x4+1

l6 = 0
u6 = 2

x5 ≥ 0
x5 ≤ 0.5 x3+1

l5 = 0
u5 = 2

x7 ≥ x5+x6- 0.5
x7 ≤ x5+x6- 0.5

l7 = -0.5
u7 = 0

x8 ≥ x5- x6

x8 ≤ x5- x6

l8 = -2
u8 = 2

x10 ≥ 0
x10 ≤ 0.5 x8+1

l10 = 0
u10 = 2

x9 ≥ 0
x9 ≤ 0
l9 = 0
u9 = 0

x11 ≥ x10- x9+3
x11 ≤ x10- x9+3

l11 = 0.5
u11 = 4.5

x12 ≥ x10

x12 ≤ x10

l12 = 0
u12 = 2

x7 ≤ 0
⇒ x9= 0

30

Negative Split on x7

x1 x3 x5 x7 x9

x11

x2 x4 x6 x8 x10

[-1,1]

[-1,1]
-1

1

-1

1 1
-1

1

11

1

0 0

0 -0.5

3

max(0, x8)max(0, x4)

max(0, x7)max(0, x3)

x3 ≥ x1+x2

x3 ≤ x1+x2

l3 = -2
u3 = 2

x4 ≥ x1- x2

x4 ≤ x1- x2

l4 = -2
u4 = 2

x5 ≥ 0
x5 ≤ 0.5 x3+1

l5 = 0
u5 = 2

x7 ≥ x5+x6- 0.5
x7 ≤ x5+x6- 0.5

l7 = -0.5
u7 = 0

x8 ≥ x5- x6

x8 ≤ x5- x6

l8 = -2
u8 = 2

x10 ≥ 0
x10 ≤ 0.5 x8+1

l10 = 0
u10 = 2

x11 ≤ x10- x9+3
≤ minβ0.5 x8+4 -βx7

≤ minβ (0.5-β) x5+(-β - 0.5) x6+ 4 + 0.5β

minβ (0.5-β) x5+(-β - 0.5) x6+ 4 + 0.5β
≤ minβ (0.5-β) x5 + 4 + 0.5β

≤ minβ (0.25- 0.5β) x3+ 4.5 - 0.5β
≤ minβ (0.25- 0.5β) (x1+x2)+ 4.5 - 0.5β

= 4.25

β ≤ 0.5

minβ (0.5-β) x5+(-β - 0.5) x6+ 4 + 0.5β
≤ minβ 4 + 0.5β

= 4.25

β ≥ 0.5
x6 ≥ 0

x6 ≤ 0.5 x4+1
l6 = 0
u6 = 2

x9 ≥ 0
x9 ≤ 0
l9 = 0
u9 = 0

x7 ≤ 0
⇒ x9= 0

Comparison of Tightness

No Split Naive Split Full Split

x11 ≤ 4.5 x11 ≤ 5.0 x11 ≤ 4.5 x11 ≤ 4.25 x11 ≤ 4.25

x11 ≤ 4.5 x11 ≤ 5.0 x11 ≤ 4.25

31

Note: for verification, we need to consider the worst-case over all splits. This implicitly means that for upper bounds,
we need to consider the max over all splits, and for lower bounds we need to consider the min over all splits.

32

Verification as Optimization

Given a neural network y = N(x) and target label t, we can show correctness for some input region

by proving:

yi - yt < 0 ∀ i ≠ t

We can encode this as an extra layer:

x1 x3 x5 x7 y1

y1-y2

x2 x4 x6 x8 y2

[-1,1]

[-1,1]
-1

-1

-1

1 1
1

1

11

1

0 0

0 -0.5

max(0, x8)max(0, x4)

max(0, x7)max(0, x3)

33

Efficient Optimization

We start backsubstitution with a linear expression, e.g. yi - yt to determine whether yi < yt

Backsubstitution (a is function of ꞵ)

Weak Duality

Hölder’s inequality for
with

Now, we use standard gradient descent to optimise β, doing every backsubstitution for
a concrete numerical value.

34

End-to-end branch and bound verification

● Initialize queue with full verification problem (no splits)

● While queue is not empty and not timed out do:

○ Get subproblem from queue

○ Compute bound of interest

○ If not verified, pick neuron to split according to heuristic

○ Add both new subproblems to queue

Lecture Summary (Part I)

• Handling arbitrary input norms for convex relaxations

• A method to refine the results of DeepPoly by
combining with KKT (obtaining a differentiable
version, not possible with standard LP).

35

Questions after lecture
Can we split on x7, get 2 upper bounds from both splits (+ and -) and instead of max, propagate further and then take max later?

Once you split on x7, you do not explicitly merge (max or min). You just have 2 separate optimization problems and you solve them. If
one of them is not verified, we consider the entire problem not verified (so in a sense we are performing an implicit min.). Now, as
long as there is a non-verified instance, we will refine that non-verified instance by splitting.

How many optimization problems do we get in the worst case given a decision to split N neurons?

In the worst-case it is 2^N (exponential), but in practice we can rule out many branches early on as the corresponding instances are
verified.

If we split on all neurons, that is for N neurons we have 2^N instances, and solve each KKT instance exactly, is this method
complete?

Yes, as strong duality holds, see section 5.2.3 here: https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

In a complete split, can we solve KKT exactly?

Yes, subject to finding a learning rate for gradient descent.

How does completeness arise in practice?

In practice, If a particular split is verified, we stop further splitting, and if it doesn’t, we keep splitting up to a time out. So we usually
time out long before we split all neurons.

Can p and q be non-integers?

Yes, now its clarified in slide 5 36

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

37

Name Network Type # Parms # Neurons Input Dim Domain

Carvana UNet Complex U-Net 150k - 330 k 275k - 373k 5828 BaB* with DeepPoly

VGGNet 16 Conv + ReLU + MaxPool 138M 13.6 M 164k Box + DeepPoly

Cifar Biasfield Conv + ReLU 363k 45k 16 BaB* with DeepPoly

Large ResNet ResNet (Conv + ReLU) 1.3M - 7.9M 55k - 286k 3k-9k BaB* with DeepPoly

Collins Rul CNN Conv + ReLU 60k - 262k 5.5k - 28k 400-800 BaB* with DeepPoly

oval21 Conv + ReLU 54k - 214k 3.1k - 6.2k 3072 BaB* with DeepPoly

ResNet A/B ResNet (Conv + ReLU) 354k 11k 3072 BaB* with DeepPoly

MNIST FC FC + ReLU 270k - 530k 512 - 1536 784
BaB* with DeepPoly +

MILP refinement

C
N

N
 /

 R
e

s
N

e
t

F
C

C
o

m
p

le
x

Note: Before using more expensive methods, we always try cheaper methods. We try Box, Box(intermediate) +
DeepPoly (final bounds), full DeepPoly, DeepPoly with slope optimization, BaB with DeepPoly in this order.

* BaB is implemented via KKT

Scale of deterministic verification: VNNCOMP’22

