
Reliable and Trustworthy Artificial Intelligence

http://www.sri.inf.ethz.ch

Lecture 6: Randomized Smoothing for Robustness

Marc Fischer & Martin Vechev
ETH Zurich

Fall 2022

http://www.srl.inf.ethz.ch/


...

1. Infers (typically convex) shapes capturing intermediate invariants. Usually, 

relaxations are variants of Polyhedra to balance analysis scalability and precision.

2. The method is general. It can handle any safety property (not just robustness).

3. Deterministic guarantees are provided.

4. Very active research area constantly pushing the size of networks.

Key challenge: scaling to large networks

Deterministic Certification: reminder



Key idea: construct a classifier g out of an existing classifier f, in a way which

ensures that g has certain statistical robustness guarantees.

The construction does not assume knowledge of f and can scale to large

networks. The method focuses on restricted robustness-like properties, and

requires sampling at inference time, not required by convex methods. The

usual standard accuracy vs. robustness trade-off is present here as well.

Certified Adversarial Robustness via Randomized Smoothing, ICML 2019
Cohen, Rosenfeld, Kolter

Randomized Smoothing

https://arxiv.org/pdf/1902.02918.pdf

https://arxiv.org/pdf/1902.02918.pdf


Constructing classifier 𝑔

Given a base classifier 𝑓:ℝ! → 𝒴,
construct a smoothed classifier 𝑔 as follows:

𝑔 𝑥 := argmax!∈𝒴 ℙ$(𝑓(𝑥 + 𝜖) = 𝑐)

where 𝜖 ∼ 𝒩(0, 𝜎!𝟏)

𝜎 controls the amount of noise Isotropic Gaussian: restricted co-variance 
matrix (joint distribution product of 

independent Gaussians).



Reminder: Gaussian Noise

1d Gaussian
𝜖 ∼ 𝒩(0, 𝜎!)

2d Gaussian
𝜖 ∼ 𝒩

0
0
, 𝜎! 1 0

0 1

level-sets of the Gaussian distribution: 
lines of equal probability (density)

areas close to the center have higher 
density



Constructing classifier 𝑔 from 𝑓: an intuition

𝑓(𝑥 + 𝜖) 𝑔(𝑥)

dashed lines show level 
sets of gaussian noise

colors show different 
classifications by 𝑓

ℙ"(𝑓(𝑥 + 𝜖) = 𝑐)



Theorem: Robustness Guarantee

Suppose that: 𝜖 ∼ 𝒩(0, 𝜎!𝟏),  𝑐# ∈ 𝒴 and 𝑝#,%, 𝑝&,% ∈ 0,1 satisfy:

ℙ" 𝑓 𝑥 + 𝜖 = 𝑐# =: 𝑝# 𝑥 ≥ 𝑝#,% ≥ 𝑝&,% ≥ 𝒎𝒂𝒙 ℙ" 𝑓 𝑥 + 𝜖 = 𝑐
𝑐 ≠ 𝑐!

Then:  
𝑔 𝑥 + 𝛿 = 𝑐# for	all	∥ 𝛿 ∥𝟐 < 𝑅% where:

certification radius 𝑅%: =
(
!
(Φ)*(𝑝#,%) − Φ)*(𝑝&,%)) for sample 𝑥

andΦ)* is the inverse of the standard Gaussian CDF.

Proof sketch coming later



Suppose that: 𝜖 ∼ 𝒩(0, 𝜎!𝟏), 𝑐# ∈ 𝒴 and 𝑝#, 𝑝& ∈ 0,1 satisfy:

ℙ" 𝑓 𝑥 + 𝜖 = 𝑐# ≥ 𝑝# ≥ 𝑝& ≥ 𝒎𝒂𝒙 ℙ" 𝑓 𝑥 + 𝜖 = 𝑐
𝑐 ≠ 𝑐!

A lower bound  on the true 
highest probability 𝑝!(𝑥)

An upper bound on the true 
second-highest probability 𝑝"(𝑥)

In theory, we could potentially compute the true exact probabilities 𝑝!, 𝑝" using for

instance exact probabilistic inference solvers such as PSI [https://github.com/eth-sri/psi].

However, exact inference solvers do not scale to realistic networks and we will approximate

the probabilities (with certain statistical guarantees).

𝑐! is the most likely class dropping subscript x for readability

Theorem: Robustness Guarantee

https://github.com/eth-sri/psi


Constructing classifier 𝑔: 
illustration with lower/upper bounds

*Dashed lines are NOT radius!!

𝑓(𝑥 + 𝜖) 𝑔(𝑥)

𝑝!

𝑝"



Robustness Guarantee: intuition

If 𝑧 ~𝒩(0,1) and probability 𝑝 ∈ 0,1 , then Φ#$ 𝑝 = 𝑣 s.t. ℙ% 𝑧 ≤ 𝑣 = 𝑝

Φ#$ is monotone: higher values of 𝑝 produce higher values for Φ#$(𝑝)

Note: result of Φ#$ 𝑝 can be
negative but radius 𝑅 is always
positive due to Φ#$ being
monotone and the theorem
requiring 𝑝! ≥ 𝑝"

𝑅:=
𝜎
2 (Φ

)*(𝑝#) − Φ)*(𝑝&))



Robustness Guarantee: intuition

certification radius 𝑅:= (
!
(Φ)*(𝑝#) − Φ)*(𝑝&))

Φ)* is the inverse of the standard Gaussian CDF.

Note: Increasing the gap between 𝑝! and 𝑝" increases 𝑅.

For a given 𝜎 in 𝜖 ∼ 𝒩(0, 𝜎&𝟏), to increase radius 𝑅, we want higher 𝑝! and lower 𝑝". 

Thus, while not theoretically required it is practically important to train 𝑓 on noisy 

samples 𝑥 + 𝜖. Increasing 𝜎, and thus the level of noise, will reduce classifier accuracy.

Increasing noise perturbation 𝜎 can increase certified 𝑅 but can reduce accuracy.



Certified and Standard Accuracy

Then:  
𝑔 𝑥 + 𝛿 = 𝑐# for	all	∥ 𝛿 ∥! < 𝑅 where:

certification radius 𝑅:= (
!
(Φ)*(𝑝#) − Φ)*(𝑝&))

andΦ)* is the inverse of the standard Gaussian CDF.

Note: the certified radius 𝑅 we obtain 

may differ between different input 𝑥’s 

because the true probabilities 𝑝! and 

𝑝" and correspondingly their lower and 

upper bounds, depend on the input 𝑥.

Thus, to compute certified accuracy, we

pick a target radius 𝑇 and count the number

of points in the test set whose certified

radius 𝑅 ≥ 𝑇 and where the predicted

𝑐! matches the test set label. Standard

accuracy is instantiated with 𝑇 = 0.



Reminder
Theorem: Robustness Guarantee

Suppose that:  𝑐# ∈ 𝒴 and 𝑝#,% , 𝑝&,% ∈ 0,1 satisfy:

ℙ" 𝑓 𝑥 + 𝜖 = 𝑐# =: 𝑝# 𝑥 ≥ 𝑝#,% ≥ 𝑝&,% ≥ 𝒎𝒂𝒙 ℙ" 𝑓 𝑥 + 𝜖 = 𝑐
𝑐 ≠ 𝑐!

Then:  
𝑔 𝑥 + 𝛿 = 𝑐# for	all	∥ 𝛿 ∥𝟐 < 𝑅% where:

certification radius 𝑅%: =
(
!
(Φ)*(𝑝#,%) − Φ)*(𝑝&,%)) for sample 𝑥

andΦ)* is the inverse of the standard Gaussian CDF.



Robustness Guarantee: Proof

Proofs via multiple mathematical persepctives:

• In the exercise: via Neymann-Pearson-Lemma.

• Last slide: via Lipschitzness.

• Others exist, e.g. optimization, information theory.

Proof sketch on last slide, different proof in exercise



Key challenge: 

To compute certified accuracy of 𝑔, we need to get

the probabilities 𝑝> and 𝑝? or their bounded

versions soundly and efficiently. However, doing so

analytically is not possible due to inherent costs.

Analytical Solution possible in some settings (so, certification and inference steps are the same):
(De-)Randomized Smoothing for Decision Stump Ensembles, NeurIPS’2022
Horváth, Müller, Fischer, Vechev https://www.sri.inf.ethz.ch/publications/horvath2022derand

https://www.sri.inf.ethz.ch/publications/horvath2022derand


Efficient Certification
Assumption:	Assume 𝑝# >

*
!
and	let	𝑝& = 1 − 𝑝#.

We	observe,	that	𝑝& ≤
*
!
and	therefore	𝑝# ≥ 𝑝& .			

To	get	the	radius:

𝑅 = (
!
Φ)* 𝑝# −Φ)* 𝑝& = (

!
Φ)* 𝑝# −Φ)* 1 − 𝑝#

=  (
!
Φ)* 𝑝# +Φ)* 𝑝#

=  𝜎 Φ)* 𝑝#

Assumption	above	enables	efficient certification:	Now	only	

𝑝# must	be	obtained,	rather	than	all	𝑝+,# to	find	𝑝& .



Certification Procedure
given 𝑥 determine the output class
K𝑐! and certification radius Rfunction CERTIFY(𝑓, 𝜎, 𝑥, 𝑛', 𝑛, 𝛼):

K𝑐! ← guess_top_class(𝑓, 𝜎, 𝑥, 𝑛')
𝑝! ← lower_bound_p( K𝑐!, 𝑓, 𝜎, 𝑥, 𝑛, 𝛼)
if 𝑝! > ½:
R ← 𝜎Φ#$(𝑝!)
return K𝑐!, R
else:
return ABSTAIN



function CERTIFY(𝑓, 𝜎, 𝑥, 𝑛', 𝑛, 𝛼):
K𝑐! ← guess_top_class(𝑓, 𝜎, 𝑥, 𝑛')
𝑝! ← lower_bound_p( K𝑐!, 𝑓, 𝜎, 𝑥, 𝑛, 𝛼)
if 𝑝! > ½:
R ← 𝜎Φ#$(𝑝!)
return K𝑐!, R
else:
return ABSTAIN

Certification Procedure

use 𝑛' samples of 𝑓(𝑥 + 𝜖) to 
make a guess at the top class K𝑐!



function CERTIFY(𝑓, 𝜎, 𝑥, 𝑛', 𝑛, 𝛼):
K𝑐! ← guess_top_class(𝑓, 𝜎, 𝑥, 𝑛')
𝑝! ← lower_bound_p( K𝑐!, 𝑓, 𝜎, 𝑥, 𝑛, 𝛼)
if 𝑝! > ½:
R ← 𝜎Φ#$(𝑝!)
return K𝑐!, R
else:
return ABSTAIN

Certification Procedure

lower bound the probability for 
class  K𝑐!



𝑝! 𝑥 = ℙ( 𝑓 𝑥 + 𝜖 = 𝑐! = P
(

𝑓 𝑥 + 𝜖 = 𝑐! 𝜇𝒩 ',+!𝟏 𝜖 𝑑𝜖

≈ $
-
∑./$- [𝑓 𝑥 + 𝜖. = 𝑐!] =: X𝑝!

for samples 𝜖$, … , 𝜖- ~𝒩 0, 𝜎&𝟏

Monte Carlo Integration

Monte Carlo Integration

we don’t know whether X𝑝! is
smaller or larger than 𝑝! 𝑥

𝜇𝒩 ',+!𝟏 ⋅ denotes the probability
density function of 𝒩 0, 𝜎&𝟏

The integral computes the probability by 

integrating over the blue region – the 

region is captured by the indicator function.

𝑝# 𝑥 = ℙ"(𝑓(𝑥 + 𝜖 = 𝑐)



Monte Carlo Integration Bounds

find 𝑝! and 𝑝! such that

ℙ 𝑝! ≤ 𝑝! ≤ 𝑝! ≥ 1 − 𝛼.

Statistical Bound Several methods for this exist:
• Chebyshev’s inequality
• Central Limit Theorem
• Binomial confidence bound

(Clopper-Pearson intervals, next)

Usually such bounds take the form X𝑝! ± 𝑏
for some 𝑏 depending on the sample 
variance 𝑛 and 𝛼.

𝑝! 𝑥 = ℙ( 𝑓 𝑥 + 𝜖 = 𝑐! = P
(

𝑓 𝑥 + 𝜖 = 𝑐! 𝜇𝒩 ',+!𝟏 𝜖 𝑑𝜖

≈ $
-
∑./$- [𝑓 𝑥 + 𝜖. = 𝑐!] =: X𝑝!

for samples 𝜖$, … , 𝜖- ~𝒩 0, 𝜎&𝟏

Monte Carlo Integration
we don’t know whether X𝑝! is
smaller or larger than 𝑝! 𝑥



Binomial Proportion confidence bound

𝑝! = 0.7 and 𝛼 = 0.01, i.e., 1 per
cent failure probability using the
lower bound from the Clopper
Pearson confidence interval.

A	binomial	confidence	bound	determines	
probability	𝑝#, 𝑝#,	 such	that

ℙ 𝑝# ≤ 𝑝# ≤ 𝑝# ≥ 1 − 𝛼

for	the	unknown	success	𝑝#.
There	are	many	ways	to	compute	this	
confidence	interval,	e.g.	Clopper-Pearson
(on	the	right).

X𝑝! ≔
1
𝑛_
./$

-

𝑓 𝑥 + 𝜖. = 𝑐! =
𝑛!
𝑛

𝑛!

In	our	case	p# = 𝑝# 𝑥 = ℙ"(𝑓 𝑥 + 𝜖 = 𝑐# is	the	true	probability	we	want	
to	estimate,	but	it	is	also	the	chance	that	for	a	sample	𝜖' ∼ 𝒩 0, 𝜎!𝟏 the	
expression	[𝑓 𝑥 + 𝜖 = 𝑐# ] evaluates	to	1,	i.e.,	 𝑓 𝑥 + 𝜖 = 𝑐# ∼ 𝐵𝑒𝑟(𝑝#).
Thus	for	𝑛 samples	we	expect	𝑛# ∼ Binomial(𝑛, 𝑝#) blue	samples.



Certification Procedure

given 𝑝! we compute the radius 
R if the side-condition 𝑝! >

$
&

function CERTIFY(𝑓, 𝜎, 𝑥, 𝑛', 𝑛, 𝛼):
K𝑐! ← guess_top_class(𝑓, 𝜎, 𝑥, 𝑛')
𝑝! ← lower_bound_p( K𝑐!, 𝑓, 𝜎, 𝑥, 𝑛, 𝛼)
if 𝑝! > ½:
R ← 𝜎Φ#$(𝑝!)
return K𝑐!, R
else:
return ABSTAIN



Certification Procedure

We sample twice, first with 
𝑛', then 𝑛 >> 𝑛' samples to 
prevent selection bias when 
estimating 𝑝!

function CERTIFY(𝑓, 𝜎, 𝑥, 𝑛', 𝑛, 𝛼):
K𝑐! ← guess_top_class(𝑓, 𝜎, 𝑥, 𝑛')
𝑝! ← lower_bound_p( K𝑐!, 𝑓, 𝜎, 𝑥, 𝑛, 𝛼)
if 𝑝! > ½:
R ← 𝜎Φ#$(𝑝!)
return K𝑐!, R
else:
return ABSTAIN



Certification Procedure

If	 b𝑐#, 𝑅 is	returned	by	CERTIFY,	then	by	the	theorem,	with	probability	of	at	

least	1 − 𝛼,	𝑔 𝑥 = 𝑔 𝑥 + 𝛿 = b𝑐# for	all	𝛿 with	 𝛿 ! ≤ 𝑅.	

function CERTIFY(𝑓, 𝜎, 𝑥, 𝑛', 𝑛, 𝛼):
K𝑐! ← guess_top_class(𝑓, 𝜎, 𝑥, 𝑛')
𝑝! ← lower_bound_p( K𝑐!, 𝑓, 𝜎, 𝑥, 𝑛, 𝛼)
if 𝑝! > ½:
R ← 𝜎Φ#$(𝑝!)
return K𝑐!, R
else:
return ABSTAIN



function CERTIFY(𝑓, 𝜎, 𝑥, 𝑛', 𝑛, 𝛼):
K𝑐! ← guess_top_class(𝑓, 𝜎, 𝑥, 𝑛')
𝑝! ← lower_bound_p( K𝑐!, 𝑓, 𝜎, 𝑥, 𝑛, 𝛼)
if 𝑝! > ½:
R ← 𝜎Φ#$(𝑝!)
return K𝑐!, R
else:
return ABSTAIN

Certification Procedure

If	CERTIFY	returns	ABSTAIN,	then	there	are	3	possibilities:

1.	our	guess	of b𝑐# was	wrong,	and	we	thus	estimate	the	corresponding	𝑝#
under	0.5	(can	be	remedied	by	increasing	𝑛(),

2.	certification	is	not	efficiently	possible,	i.e.	the	true	𝑝# ≤ 0.5 (can	be	

remedied	by	training	with	noise	to	bias	it	toward	the	target	level)	or

3.	the	true	𝑝# > 0.5 but,	the	lower	bound	is	too	lose	(can	be	remedied	by	

increasing	𝑛).



function CERTIFY(𝑓, 𝜎, 𝑥, 𝑛', 𝑛, 𝛼):
K𝑐! ← guess_top_class(𝑓, 𝜎, 𝑥, 𝑛')
𝑝! ← lower_bound_p( K𝑐!, 𝑓, 𝜎, 𝑥, 𝑛, 𝛼)
if 𝑝! > ½:
R ← 𝜎Φ#$(𝑝!)
return K𝑐!, R
else:
return ABSTAIN

Certification Procedure

As Φ)* is monotone, increasing 𝑝# will increase the radius. To increase 𝑝#
we need to get the base classifier 𝑓 to classify more points as b𝑐#.



Effect of noise 𝜎 on
Certified Robustness vs. Accuracy

Each entry shows % of images in the test set (in this case ImageNet images), with provable radius ≥ 𝑟 and label as in test set.

Using 𝑛 = 100000 samples and 𝛼 = 0.001 for certification, inference (discussed next) typically uses 100 to 1000 samples.

ACR is the average certified Radius over correctly classified images. The table compares different methods for training the

base classifier 𝑓 (Gaussian is training with added Noise). The methods present trade-offs over lower and higher radii 𝑟.

Standard 
Accuracy

We see that as noise increases, the standard accuracy drops but the certified robust radius increases,

the same trade-off between accuracy and robustness we discussed before with adversarial training

and certified training.
Results from:
SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness, Jeong et al., NeurIPS’2021



Once a classifier is certified on the test set (via sampling as
discussed so far), we need to actually use this classifier at inference
time, and again we resort to sampling (with statistical guarantees).

However, here we do not need to compute the radius anymore, we
just need to find the top class, which leads to a cheaper procedure.



Inference Procedure I

The null hypothesis is: the true probability of success of a Bernoulli trial is 𝑞.

BinomPValue(𝑖, 𝑛, ≤, 𝑞): returns the p-value of the null hypothesis, evaluated on
𝑛 statistically independent samples with 𝑖 successes.

In our case, the null hypothesis: the true probability of 𝑓 returning D𝑐# is 𝑞 ≤ 0.5 .

Additional work is
needed at inference
time, which can be
expensive for high
number of samples,
typically 𝑛 is small
though

function PREDICT1(𝑓, 𝜎, 𝑥, 𝑛, 𝛼):
K𝑐!, 𝑛! ← top_class(𝑓, 𝜎, 𝑥, 𝑛)
if BinomPValue(𝑛!, 𝑛, <=, 0.5) ≤ 𝛼
return K𝑐!

else return ABSTAIN

top_class returns the top b𝑐# and the count 𝑛#



In	our	case,	the	null	hypothesis:	the	true	probability	of	𝑓 returning	D𝑐# is		𝑞 = 0.5
(meaning	the	classes	are	indistinguishable).
BinomPValue 𝑖, 𝑛, =, 𝑞 returns	the	p-value	for	this	case.

More sample efficient.

Can return top class
even if probability < ½.

function PREDICT2(𝑓, 𝜎, 𝑥, 𝑛, 𝛼):
K𝑐!, 𝑛!, X𝑐", 𝑛" ← top_two_classes(𝑓, 𝜎, 𝑥, 𝑛)
if BinomPValue(𝑛!, 𝑛! + 𝑛", =, 0.5) ≤ 𝛼
return K𝑐!

else return ABSTAIN

top_two_classes returns the top b𝑐#,q𝑐& and their counts 𝑛#, 𝑛& out of 𝑛 samples.

Inference Procedure II

see Rank verification for exponential families, Hung & Fithian 
The Annals of Statistics, 2019, https://arxiv.org/abs/1610.03944

https://arxiv.org/abs/1610.03944


We can prove that: both return D𝑐# ≠ 𝑐# with probability at most 𝛼

function PREDICT2(𝑓, 𝜎, 𝑥, 𝑛, 𝛼):
K𝑐!, 𝑛!, X𝑐", 𝑛" ← top_two_classes(𝑓, 𝜎, 𝑥, 𝑛)
if BinomPValue(𝑛!, 𝑛! + 𝑛", =, 0.5) ≤ 𝛼
return K𝑐!

else return ABSTAIN

Inference Procedure
function PREDICT1(𝑓, 𝜎, 𝑥, 𝑛, 𝛼):
K𝑐!, 𝑛! ← top_class(𝑓, 𝜎, 𝑥, 𝑛)
if BinomPValue(𝑛!, 𝑛, <=, 0.5) ≤ 𝛼
return K𝑐!

else return ABSTAIN

We accept the null hypothesis if the returned p-value is > 𝛼
We reject the null hypothesis if the returned p-value is ≤ 𝛼

If 𝛼 is small (typically 0.001) , then we may often accept the null hypothesis and
ABSTAIN, but we will be more confident in our predictions.



Extensions to Randomized Smoothing
Generalization of properties
Geometric Perturbations: Certified Defense to Image Transformations via Randomized Smoothing
Fischer, Baader, Vechev; NeurIPS’2020 https://arxiv.org/abs/2002.12463

Convex Inputs; various norms: Randomized Smoothing of All Shapes and Sizes
Yang et al., ICML’2020 https://arxiv.org/abs/2002.08118

Private and Reliable Neural Network Inference, Jovanović, Fischer, Steffen, Vechev
CCS’2022 (next week) https://files.sri.inf.ethz.ch/website/papers/ccs22-phoenix.pdf

Combining with Fully Homomorphic Encryption 

Specialization of models and distribution (allowing determinism)

Better Base models

Restrict model: (De-)Randomized Smoothing for Decision Stump Ensembles
Horváth, Müller, Fischer, Vechev; NeurIPS’2022 https://arxiv.org/abs/2205.13909

Restrict perturbation: Improved, Deterministic Smoothing for l1 Certified Robustness
Alexander Levine, Soheil Feizi; ICML’2021 https://arxiv.org/abs/2103.10834

Use ensembles: Boosting Randomized Smoothing with Variance Reduced Classifiers
Horváth, Müller, Fischer, Vechev; ICLR’2022 (Spotlight) https://arxiv.org/abs/2106.06946

Use SOTA diffusion models: (Certified!!) Adversarial Robustness for Free!
Carlini et al.; arXiv’2022 https://arxiv.org/abs/2206.10550

Better training: SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness
Jeong et al.; NeurIPS’2021 https://arxiv.org/abs/2111.09277

https://arxiv.org/abs/2002.12463
https://arxiv.org/abs/2002.08118
https://files.sri.inf.ethz.ch/website/papers/ccs22-phoenix.pdf
https://arxiv.org/abs/2205.13909
https://arxiv.org/abs/2103.10834
https://arxiv.org/abs/2106.06946
https://arxiv.org/abs/2206.10550
https://arxiv.org/abs/2111.09277


Summary of Randomized Smoothing
• We introduced randomized smoothing, a method which constructs robust classifiers

by introducing Gaussian noise which induces a robustness radius. A benefit of
smoothing is that it scales to large networks.

• Smoothing relaxes the standard deterministic guarantees into statistical guarantees
on the robustness of the classifier.

• To obtain higher certified radius, one may need many samples. It also requires
sampling at inference time which convex methods do not. The classic trade-off of
accuracy vs. robustness is also present here and is controlled by the amount of noise.

• Both finding specific instantiations of smoothing and generalizing it is an active area
of research.



Certification: comparing methods

Robustness 
Certificate

Adaption to new 
model class 𝑓

Adaption to new 
Specification

Suitable for neural 
network scale

Deterministic Vertification
e.g. DeepPoly

Through 
sound 
analysis

Requries new 
transfromers

Encode 
Perturbation as 
convex region

small to mid size

Randomized Smoothing By 
construction Model Agnostic

Requires new 
mathematical 
insights

All sizes, but added 
latency might be 
prohibitive when 
small nets are used



Summary of Part 1: Certification

Robustness

attacks and defenses, certification 
(relaxations, branch and bound, 

certified training, smoothing)

Fairness/Bias

individual fairness, group 
fairness, methods for building 
fair systems for tabular, NLP 
and visual data

Privacy

attacks, differential privacy, 
secure synthetic data, data 
minimization, federated 
learning vulnerabilities



Lecture appendix: Robustness Guarantee: Proof Sketch
Def: A function ℎ: 𝑅O ↦ 0,1 is 𝑲-Lipschitz if ℎ 𝑥P − ℎ 𝑥Q ≤ 𝐾 𝑥P − 𝑥Q Q.
Lemma: For some function ℎ: 𝑅O ↦ 0,1 ,
ΦRP(𝔼S∼𝒩(V,P) ℎ 𝑥 + 𝜖 ) is 1-Lipschitz in 𝑥.

Assume	the	top	class	is	𝑐! and	𝑝! 𝑥 ≔ ℙS 𝑓 𝑥 + 𝜖 = 𝑐! = 𝔼S 𝑓 𝑥 + 𝜖 = 𝑐! and 𝑝! 𝑥
> 𝑝W 𝑥 .  An adversary picks 𝛿 to flip classification, i.e. 𝑝! 𝑥 + 𝛿 ≤ 𝑝W 𝑥 + 𝛿 .

Provably Robust Deep Learning via Adversarially Trained Smoothed Classifier, NeurIPS 2019
Salman et al. https://arxiv.org/pdf/1906.04584.pdf

By Lipschitzness: −ΦRP 𝑝! 𝑥 + 𝛿 ≤ 𝛿 Q. This shows ΦRP 𝑝! 𝑥 − ΦRP 𝑝! 𝑥 + 𝛿 and 

when plugging in the adversary’s goal yields ΦRP 𝑝! 𝑥 − ΦRP 𝑝W 𝑥 + 𝛿 ≤ 𝛿 Q.

Adding these inequalities yields PQ ΦRP 𝑝! 𝑥 − ΦRP 𝑝W 𝑥 ≤ 𝛿 Q, which tells us that due 

to the Lipschitzness of ΦRP 𝑝! ⋅ and ΦRP 𝑝W ⋅ 𝛿 Q needs to be at least the LHS above.

probability of 
indicator 
function is an 
expectation

Applying the same reasoning to 𝑝W, we arrive at ΦRP 𝑝W 𝑥 + 𝛿 − ΦRP 𝑝W 𝑥 ≤ 𝛿 Q.

By the monotonicity of ΦRP ⋅ we can also plug in 𝑝! and 𝑝W and recover the original theorem.
This shows the case for 𝜎 = 1.0, can be extended to arbitrary 𝜎 by extending the above Lemma.  

https://arxiv.org/pdf/1906.04584.pdf

