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Membership Inference
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Train model

Database / training data



Differential Privacy
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Train model +aaa

Train model +aaa



Intuitive Protection

Differential Privacy
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Mechanism Attack

Train model +aaa

Train model +aaa



M is ε differentially private (ε-DP):

For all “neighboring” (a,a’) and for every 
attack S:

Differential Privacy
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Intuitive Protection

Mechanism Attack



Which inputs should be indistinguishable?

Examples:

● (a,a’) neighboring ⇔ adding/removing one person 
to/from a yields a’

● (a,a’) neighboring ⇔ changing the data/features of 
one person in a yields a’

● (a,a’) neighboring ⇔ ǁa-a’ǁ
p
<R

Neighborhood
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Typically symmetric

Written: (a, a’) ∈ Neigh



Intuition behind Inequality

7



Medical data Laplace distribution

Example: Laplace Mechanism
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Name Has disease (a)

Jane 1

John 1

Richard 0

Report number of patients with disease

μ=0, σ=1
μ=0, σ=2
μ=0, σ=4

μ=-5, σ=4



Example: Laplace (Analysis)
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In exercises
We show: M is ε-DP

density

Reverse triangle 
inequality



Laplace and Sensitivity
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Theorem: Laplace Mechanism

f(a) + Lap(0, Δ
1
/ε) is ε-DP

Note: Also works for vector 
outputs (add noise elementwise)

Sensitivity: Largest possible effect of 
changing input on output in L1 norm



M is (ε,δ)-DP iff:

For all “neighboring” (a,a’) and for 
every attack S:
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Generalization: (ε,δ)-DP

Theorem: Gaussian Mechanism is DP

                             is (ε,δ)-DP

for

Sensitivity: Largest possible 
effect of changing input in 
L2 normAbsolute difference in 

probabilities (vs relative)
Allows support of 
distributions to differ



Benefits of DP
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Post-processing

If M is (ε,δ)-DP, then
f ∘ M is (ε,δ)-DP

No assumptions on 
attacker

Attacker may have side 
information, e.g., know part of 

the dataset (not discussed)

Protected against unbounded 
computation (see→)

Composition

If M
1
 and M

2
 are (ε

1
, δ

1
) and (ε

2
, δ

2
)-DP, 

then the combined mechanism
M(a) := (M

1
(a), M

2
(a)) is (ε

1
+ ε

2
, δ

1
+ δ

2
)-DP

M1(a)

a

M2(a)

…

Also ok: Adaptive 
composition



Common Pattern* when Creating DP Algorithms
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Original algorithm (not private)

Algorithm I Algorithm II

Add noise
bound sensitivity + apply theorem 

(typically Laplace/Gaussian mechanism)

post-processing

Maybe apply 
composition

This step is 
challenging

Possible that:
Original algorithm

≠
Algorithm I + Algorithm II

Not always the case. Analysis could be harder and error-prone. May need analysis tools:
 Bichse, Steffen, Bogunovic, Vechev. S&P21. DP-Sniper: Black-Box Discovery of Differential Privacy Violations using Classifiers



Next: Methods to Achieve DP in ML
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DP-SGD

Add noise during
gradient update step

PATE

DP via knowledge transfer

Noise before 
Aggregation

FedSGD and FedAVG 
with noise

Standard Setting Federated Setting



DP-SGD
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Idea

● Introduce noise during SGD training
● Can safely re-distribute resulting model

- Private against white-box attacker
- Private under arbitrary number of 

inference queries (see post-processing)

Training +     . Inference



DP-SGD
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Algorithm

Initialize random
For                                  :

Sample a random subset of      data points
For each input       in the subset:

Compute gradient of loss:

Clip gradient:

Aggregate:

Add noise:

Update:
Return 

Abadi, Chu, Goodfellow. CCS 2016. Deep Learning with Differential Privacy

In practice:
Permute inputs and iterate 
through batches of size    .

Project onto      -ball of size

Required to bound the sensitivity 
of the gradient update step

Level of privacy?

Add Gaussian noise of scale 

      and      are parameters affecting privacy
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DP-SGD: Basic Privacy Analysis

1) Assume T = 1 and no sub-sampling (L = N)

Result is            -DP

Adding/removing an input to/from the 
training set affects at most one index i

Neighborhood: Training example 
input present vs. not present

Gaussian mechanism

L2 Sensitivity: 
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DP-SGD: Basic Privacy Analysis

2) Assume T = 1 but sample random fraction

For      inputs, define

Thm. 9 from: Balle et al. NeurIPS 2018. Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences.

Theorem: Privacy Amplification

Applying a          -DP mechanism on a random fraction
subset yields a              -DP mechanism, where             .

Result is                -DP



When selecting                                                ,

DP-SGD is                         -DP
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DP-SGD: Basic Privacy Analysis

3) Repeat for T >= 1 iterations

Apply composition theorem:
Privacy budgets “sum up”

Problem: T large in practice Why don’t we just select           very small?

Problem: Introduces more noise (larger     )...



Utility vs Privacy
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Florian Tramèr and Dan Boneh. ICLR 2021. Differentially Private Learning Needs Better Features (or Much More Data)

More noise = more privacy :)
More noise = less utility :(

Not specific to DP-SGD, applies to all DP approaches (also beyond ML)
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DP-SGD: Refined Privacy Analysis

Our analysis was simple, but very imprecise

Abadi, Chu, Goodfellow. CCS 2016. Deep Learning with Differential Privacy

DP-SGD is                          -DP

Even better bound via moments accountant (not discussed) and adaptive σ (data-dependent):

                     - DP

Now, privacy level depends on data: be careful!
No factor of T any more

Better bound via strong composition theorem (not discussed) and different σ:

                                              - DP



DP-SGD: Problems
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Problems with DP-SGD

● Tailored to specific training algorithm (SGD)
● Relatively weak privacy guarantees for reasonable utility:

E.g. (8, 10-5)-DP for 97% accuracy on MNIST

Next: PATE
● Independent of training algorithm
● Better results:

E.g. (2.04, 10-5)-DP for 98% accuracy on MNIST



PATE: Private Aggregation of Teacher Models
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m partitions
Labeled
training

data
Train

Teacher 
models

Train normally, using 
any training algorithm

Train

Train

Aggregate 
teacher

Noisy voting (see next…)

Aggregate:
Vote with   .

Public 
unlabeled 

data

Public data with 
labels

Infer

Where could this 
come from?

Protect privacy

Papernot, Abadi, Erlingsson, Goodfellow, Talwar. ICLR 2017.
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Student
model

Train

Knowledge transfer
(semi-supervised learning)

Requires only a subset to be labeled



Better: Noise before argmax
By Laplace mechanism + post-processing:
One such inference query is            -DP

Sensitivity for vector             is

PATE: Noisy Voting
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Let             be the number of teachers predicting class     for input     .  

The aggregate teacher     should use the votes             for prediction. Where to add noise?

Naive attempt: Laplace mechanism after voting Need to add a lot of noise (c large…)

Sensitivity c
(number of classes)

Neighborhood: Training example 
input present vs. not present



PATE: Basic Privacy Analysis
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One query:                -DP

Labeling T inputs for training 
the student is composition

Again, can get better bounds via strong composition theorem
or data-dependent moments accountant (not discussed)

After labeling the public dataset, the remaining pipeline is just 
postprocessing and does not affect privacy

     queries:                    -DP

Number of labels required to train student 
is large in practice (                   )…



Server aggregation

Client update

Idea: FedSGD with Noise

Server

Analogous analysis 
as for DP-SGD

Idea: Make this differentially 
private using DP-SGD

Client update using DP-SGD

Clip and add noise
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Server aggregation

Client update

for b in range(    ):

for e in range(    ):

end for  
end for  

Idea: FedAVG with Noise

Server

Idea: Make this differentially 
private by adding noise to weights

Client update

for b in range(    ):

for e in range(    ):

end for  
end for  

Clip and add noise
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Wei et al. arXiv 2019. Federated Learning with Differential Privacy: Algorithms and Performance Analysis



Connection to Randomized Smoothing
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Lecuyer, Atlidakis, Geambasu, Hsu, and Jana. S&P 2019. https://arxiv.org/pdf/1802.03471.pdf
Certified Robustness to Adversarial Examples with Differential Privacy

Simple L1 Smoothing

● f:  ℝd →Y

● Bounded attacks: ǁa-a’ǁ
1
<R

● Classify a as c IFF

∀c’≠c. Pr[f(a + η)=c] > Pr[f(a + η)=c’]

for η ~ Lap(0,R/ε)

● Robust IF

∀c’≠c. Pr[f(a + η)=c] > exp(2ε) Pr[f(a + η)=c’]

Analysis

● a + η is ε-DP            (Laplace mechanism)

● f(a + η) is ε-DP        (post-processing)

● Robust                      (due to DP, see exercises)

Analogous for L2 Smoothing
(but with Gaussian noise)



● We introduced the notion of Differential Privacy (DP) a principled mechanism to defend 

against membership inference attacks.

● We discussed basic general mechanisms achieving DP, including the Laplace and Gaussian 

mechanisms.

● We introduced and applied important properties of DP, especially post-processing and 

composition, and discussed its inherent utility-privacy tradeoff.

● We analyzed several methods to achieve DP in machine learning, including techniques 

perturbing gradients or performing noisy voting. Such methods can be used to achieve DP 

guarantees in the setting of federated learning.

● We discussed the connection of DP to Randomized Smoothing.

Summary
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