Reliable and Trustworthy Artificial Intelligence

Lecture 8: Differential Privacy

Benjamin Bichsel

ETH Zurich

Fall 2022

http://www.sri.inf.ethz.ch

Membership Inference

Differential Privacy

Differential Privacy

Differential Privacy

M is ε differentially private (ε-DP):

For all "neighboring" (a,a') and for every attack S:

 $\Pr[M(a) \in S] \le e^{\epsilon} \Pr[M(a') \in S]$

Neighborhood < Typically symmetric

Which inputs should be indistinguishable?

Examples:

- (a,a') neighboring \Leftrightarrow adding/removing one person ۲ to/from a yields a'
- (a,a') neighboring \Leftrightarrow changing the data/features of ۲ one person in a yields a'
- (a,a') neighboring $\Leftrightarrow ||a-a'||_{R} < R$

Written: $(a, a') \in Neigh$

$(1-\epsilon)\Pr[M(a')\in S] \lesssim \Pr[M(a)\in S] \lesssim (1+\epsilon)\Pr[M(a')\in S]$

Example: Laplace Mechanism

Medical data

Name	Has disease (a)
Jane	1
John	1
Richard	0

Report number of patients with disease

$$M(a) = \left(\sum_{i=1}^{n} a_i\right) + \operatorname{Lap}(0, 1/\epsilon)$$

$$(a, a') \in$$
Neigh $\iff ||a - a'||_0 \le 1$

Laplace distribution

$$p(\operatorname{Lap}(\mu, \sigma) = t) = \frac{1}{2\sigma} \exp\left(-\frac{|t - \mu|}{\sigma}\right)$$

Laplace and Sensitivity

Theorem: Laplace Mechanism

f(a) + Lap(0, Δ_1/ϵ) is ϵ -DP

Sensitivity: Largest possible effect of changing input on output in L1 norm

$$\Delta_1 = \max_{(a,a') \in \text{Neigh}} \|f(a) - f(a')\|_1$$

Generalization: (ϵ, δ) -DP

M is (ε, δ) -DP iff:

For all "neighboring" (a,a') and for every attack S:

 $f(a) + \mathcal{N}(0, \sigma^2 I)$ is (ε,δ)-DP

for

 $\sigma = \frac{\sqrt{2\log(1.25)/\delta} \cdot \Delta_2}{1}$

Sensitivity: Largest possible effect of changing input in L2 norm

 $\Pr[M(a) \in S] \le e^{\epsilon} \Pr[M(a') \in S] + \delta$

Absolute difference in probabilities (vs relative)

Allows support of distributions to differ

Benefits of DP

Also ok: Adaptive composition

No assumptions on attacker

Attacker may have side information, e.g., know part of the dataset (not discussed)

Protected against unbounded computation (see \rightarrow)

Post-processing

If M is (ε, δ) -DP, then f \circ M is (ε, δ) -DP Composition

If M_1 and M_2 are (ϵ_1, δ_1) and (ϵ_2, δ_2) -DP, then the combined mechanism $M(a) := (M_1(a), M_2(a))$ is $(\epsilon_1 + \epsilon_2, \delta_1 + \delta_2)$ -DP

Common Pattern* when Creating DP Algorithms

Not always the case. Analysis could be harder and error-prone. May need analysis tools:

Bichse, Steffen, Bogunovic, Vechev. S&P21. DP-Sniper: Black-Box Discovery of Differential Privacy Violations using Classifiers

Next: Methods to Achieve DP in ML

Standard Setting

DP-SGD

Add noise during gradient update step

PATE

DP via knowledge transfer

Noise before Aggregation

Federated Setting

FedSGD and FedAVG with noise

Idea

- Introduce noise during SGD training
- Can safely re-distribute resulting model
 - Private against white-box attacker
 - Private under arbitrary number of inference queries (see post-processing)

DP-SGD

Algorithm

Abadi, Chu, Goodfellow. CCS 2016. Deep Learning with Differential Privacy

DP-SGD: Basic Privacy Analysis

1) Assume T = 1 and no sub-sampling (L = N)

Adding/removing an input to/from the training set affects **at most one index** i

Neighborhood: Training example input present vs. not present

$$\mathbf{\bar{g}}_t \leftarrow \frac{1}{L} \sum_{i=1}^{L} \mathbf{g}'_t(x_i)$$

L2 Sensitivity: C/L

$$\mathbf{\tilde{g}}_t \leftarrow \mathbf{\bar{g}}_t + \mathcal{N}(0, \sigma^2 \mathbf{I})$$

 $\sigma = \frac{\sqrt{2\log(1.25)/\delta} \cdot (C/L)}{\epsilon}$

Gaussian mechanism

Result is
$$(\epsilon,\delta)$$
 -DP

DP-SGD: Basic Privacy Analysis

2) Assume T = 1 but sample random fraction q

For N inputs, define $q = L/N \label{eq:q}$

Theorem: Privacy Amplification

Applying a (ϵ, δ) -DP mechanism on a random fraction q subset yields a $(\tilde{q}\epsilon, q\delta)$ -DP mechanism, where $\tilde{q} \approx q$.

Result is $\left(ilde{q}\epsilon,q\delta
ight)$ -DP

Thm. 9 from: Balle et al. NeurIPS 2018. Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences.

DP-SGD: Basic Privacy Analysis

3) Repeat for T >= 1 iterations

Apply **composition theorem:** Privacy budgets "sum up"

Utility vs Privacy

More noise = more privacy :) More noise = less utility :(

Not specific to DP-SGD, applies to all DP approaches (also beyond ML)

Florian Tramèr and Dan Boneh. ICLR 2021. Differentially Private Learning Needs Better Features (or Much More Data)

DP-SGD: Refined Privacy Analysis

DP-SGD is $(\tilde{q}T\epsilon, qT\delta)$ -DP

Our analysis was simple, but very imprecise

Better bound via strong composition theorem (not discussed) and different σ :

 $\left(\mathcal{O}\left(q\epsilon\sqrt{T\log\frac{1}{\delta}}\right),\mathcal{O}(qT\delta)\right)$ - DP

Even better bound via **moments accountant** (not discussed) and adaptive σ (data-dependent):

$$(\mathcal{O}(q\epsilon\sqrt{T}),\delta)\operatorname{-}\mathsf{DP}$$

No factor of T any more

Now, privacy level depends on **data**: be careful!

DP-SGD: Problems

Problems with DP-SGD

- Tailored to **specific training algorithm** (SGD)
- Relatively weak privacy guarantees for reasonable utility:
 E.g. (8, 10⁻⁵)-DP for 97% accuracy on MNIST

Next: PATE

- Independent of training algorithm
- Better results:
 - E.g. (2.04, 10^{-5})-DP for 98% accuracy on MNIST

PATE: Private Aggregation of Teacher Models

23

PATE: Noisy Voting

Let $n_i(\mathbf{x})$ be the number of teachers predicting class j for input \mathbf{x} .

The aggregate teacher f should use the votes $n_i(\mathbf{x})$ for prediction. Where to add noise?

Naive attempt: Laplace mechanism after voting

Need to add a lot of noise (c large...)

$$f(\mathbf{x}) = \arg\max_{i} \{n_j(\mathbf{x})\} + \operatorname{Lap}(0, ?)$$

Neighborhood: Training example input present vs. not present

Sensitivity c (number of classes)

Better: Noise before argmax

By Laplace mechanism + post-processing: One such inference query is $(\epsilon, 0)$ -DP

$$f(\mathbf{x}) = \arg\max_{j} \{n_j(\mathbf{x}) + \operatorname{Lap}(0, 2/\epsilon)\}$$

Sensitivity for vector $n(\mathbf{x})$ is $\Delta_1=2$

PATE: Basic Privacy Analysis

Idea: FedSGD with Noise

Server aggregation $g_c \leftarrow rac{1}{K} \sum_{k=1}^K g_k \ \Theta_{t+1} \leftarrow \Theta_t - \gamma g_c$

Client update

$$egin{aligned} \{x^k,y^k\} &\sim \mathcal{D}_k \ g_k &\leftarrow
abla_\Theta \mathcal{L}(f_{\Theta_t}(x^k),y^k) \end{aligned}$$

Idea: Make this differentially private using DP-SGD

Client update using DP-SGD

$$egin{aligned} & g_k \leftarrow
abla_\Theta \mathcal{L}(f_{\Theta_t}(x^k),y^k) \ & ar{g}_k \leftarrow g_k / \max\left(1,rac{\|g_k\|_2}{C}
ight) \ & ar{g}_k \leftarrow ar{g}_k + \mathcal{N}(0,\sigma^2\mathbf{I}) \end{aligned}$$

Clip and add noise

Analogous analysis as for DP-SGD

Idea: FedAVG with Noise

Client update

```
 \begin{array}{l} \Theta_{1,1}^k \leftarrow \Theta_t \\ \text{for e in range}(E): \\ \text{for b in range}(B): \\ \{x_{e,b}^k, y_{e,b}^k\} \sim \mathcal{D}_k \\ \Theta_{e,b}^k \leftarrow \Theta_{e,b-1}^k - \gamma \nabla_\Theta \mathcal{L}(f_{\Theta_{e,b-1}^k}(x_{e,b}^k), y_{e,b}^k) \\ \text{end for} \\ \text{end for} \\ \Theta^k \leftarrow \Theta_{E,B}^k \end{array}
```


Client update

$$\begin{array}{l} \Theta_{1,1}^{k} \leftarrow \Theta_{t} \\ \text{for e in range}(E): \\ \text{for b in range}(B): \\ \{x_{e,b}^{k}, y_{e,b}^{k}\} \sim \mathcal{D}_{k} \\ \Theta_{e,b}^{k} \leftarrow \Theta_{e,b-1}^{k} - \gamma \nabla_{\Theta} \mathcal{L}(f_{\Theta_{e,b-1}^{k}}(x_{e,b}^{k}), y_{e,b}^{k}) \\ \text{end for} \\ \text{end for} \\ \Theta^{k} \leftarrow \Theta_{E,B}^{k} \\ \Theta^{k} \leftarrow \Theta^{k} / \max\left(1, \frac{\|\Theta^{k}\|}{C}\right) \end{array} \right) \\ \begin{array}{c} \text{Clip and add} \\ \Theta^{k} \leftarrow \Theta^{k} + \mathcal{N}(0, \sigma^{2}\mathbf{I}) \end{array}$$

Wei et al. arXiv 2019. Federated Learning with Differential Privacy: Algorithms and Performance Analysis

noise

Analogous for L2 Smoothing (but with Gaussian noise)

ection to Randomized Smoothing

Simple L1 Smoothing

- f: $\mathbb{R}^d \rightarrow Y$
- Bounded attacks: lla-a'll₁<R
- Classify a as c IFF
 ∀ c'≠c. Pr[f(a + η)=c] > Pr[f(a + η)=c']
 for η ~ Lap(0, R/ε)
- Robust IF

 $\forall c' \neq c. \Pr[f(a + \eta) = c] > \exp(2\epsilon) \Pr[f(a + \eta) = c']$

Analysis

- a + η is ε-DP
- f(a + η) is ε-DP
- Robust

- (Laplace mechanism)
- (post-processing)
 - (due to DP, see exercises)

Lecuyer, Atlidakis, Geambasu, Hsu, and Jana. S&P 2019. https://arxiv.org/pdf/1802.03471.pdf Certified Robustness to Adversarial Examples with Differential Privacy

Summary

- We introduced the notion of Differential Privacy (DP) a principled mechanism to defend against membership inference attacks.
- We discussed basic general mechanisms achieving DP, including the Laplace and Gaussian mechanisms.
- We introduced and applied important properties of DP, especially post-processing and composition, and discussed its inherent utility-privacy tradeoff.
- We analyzed several methods to achieve DP in machine learning, including techniques perturbing gradients or performing noisy voting. Such methods can be used to achieve DP guarantees in the setting of federated learning.
- We discussed the connection of DP to Randomized Smoothing.