ReliableAl 2022 Course Project

The goal of the project is to design a precise and scalable automated verifier for proving the
robustness of fully-connected, convolutional and residual networks with ReLU activation against
adversarial attacks. We will consider adversarial attacks based on the L_-norm perturbations. A

network is vulnerable to this type of attack if there exists a misclassified image inside an L_

-norm based e-ball around the original image.

We will leverage the DeepPoly relaxation [1] for building our verifier. The ReLU transformer
introduced in [1] is a DeepPoly transformer with a minimum area, if one considers a single
neuron at a time. However, as explained in the lecture, the ReLU transformer is parametrized by
the slope a of the linear lower bound and it is sound for any value « in [0, 1]. In this project, your
task is to improve the ReLU transformer in DeepPoly. Your goal is to learn a value « for each
neuron in the network which maximizes the precision of the verifier. Given the network and a
test case (an image and a radius), your algorithm should first produce a new ReLU transformer
(by learning «) for each neuron in the network and then run the verification procedure using
these transformers.

You are allowed to learn an ensemble or a set of different «, run DeepPoly verification using
each a separately, and then use the information from all runs to verify the robustness. Formally,
you are allowed to verify an image if you can prove that all outputs in the intersection of final
convex shapes computed using different sets of a are correctly classified.

Project Task

The input to your verifier is a neural network and a test case. The output is the result of your
verification procedure (verified/not verified). Below we provide more details.

Datasets: We consider 2 datasets: MNIST and CIFAR-10. MNIST consists of grayscale images
of dimensions 28 x 28. CIFAR-10 consists of RGB images of dimensions 32 x 32.

Networks: We will run your verifier on 3 fully connected, 4 convolutional and 3 residual neural
networks. The networks are trained using different training methods (e.g. standard training,
PGD, DiffAl). The architectures and weights of these networks will be provided together with the
code release. The architectures are encoded as PyTorch classes in networks.py. All trained
networks are provided in the folder nets. Figure provides an overview of these architectures.



Conv
Conv ReLu Conv
Cony RelLU
\\ — - Conv
Linear Linear Linear
Relu Relu RelLU
Linear Linear Linear

Fully connected Residual Convolutional

Example Test Cases: The example test cases consist of 20 specification files from the MNIST
or CIFAR-10 test set, 2 tests for each network, formatted to be used by the verifier. Each
specification file contains a single row that consists of comma-separated image label and pixel
values. Each pixel value is an integer between 0 and 255. For MNIST image, there are 784 pixel
values that represent 28 x 28 grayscale image, and for CIFAR-10 image, there are 3072 pixel
values that represent 32 x 32 RGB image. The provided networks expect images with pixel
values normalized between 0 and 1. In the file verifier.py we provide a function get_spec
that reads the input specification and returns a normalized image in the format expected by the
networks. All example test cases are stored in the folder examples.

The epsilon value of a test case can be deduced from its name, e.g., the file img1_0.1.txt
defines the 0.1-ball around an image img1. We provide those example test cases for you to
develop your verifier and they are not the same as the ones we will use for the final grading.

The epsilon value refers to the normalized pixel values (between 0 and 1). Note that you only
have to verify images with pixel intensities between 0 and 1: e.g. if perturbation is 0.2 and pixel
has value 0.9 then you only have to verify range [0.7, 1.0] for intensities of this pixel, instead of
[0.7, 1.1]. File gt . txt contains ground truth for each example (output of the master solution).



Verifier: The directory verifier contains the skeleton code of the verifier (file verifier.py). The
verifier addresses the following problem:

Inputs:
- Afully connected, convolutional or residual neural network
- Atest case

Output:
- verified, if the verifier successfully proves that network is robust for the test case
- not verified, if the verifier fails to prove that network is robust for the test case

Your verifier will be executed using the following command, where <network> is replaced by the
network identifier (netl, net2, ..., net1@) and <test case file> is replaced by a file containing

the test case (e.g. . ./examples/netl/imgl_0.0500.txt).

$ python3 verifier.py --net <network> --spec <test case file>

“analyze” function. To this end, you must build upon the DeepPoly relaxation [1] as explained
before. Your verifier must be sound: it must never output verified when the network is not robust
to a test case. It should be precise: it should try to verify as many test cases as possible while
keeping soundness and scalability (we will use a time limit of 1 minute per test case).

Testing Conditions and Grading

Your verifier will be tested on the following conditions:
- Inputs to the networks are images from the MNIST or CIFAR-10 dataset.
- e values range between 0.0001 and 0.9999.
- Configuration of the machine used for testing: Intel Xeon E5-2690 v4 CPUs and 512GB
RAM. We will use 14 threads and memory limit 64GB to verify each test case.
- Time limit for verification is 1 minute for each test case
- Your verifier will be executed using Python 3.7

The verifier will be graded based on the precision and soundness of your verifier:
- You start with 0 points.
- You receive 1 point for any verification task for which your verifier correctly outputs
verified within the time limit.
- You will be deducted 2 points if your verifier outputs verified when the network is not
robust for the provided test case.




- If your verifier outputs not verified you receive 0 points. This means that the maximum
number of points that can be achieved by any solution may be less than 100.
- If there is a timeout or memory limit exceeded on a verification task, then the result will

be considered as not verified.

We do not require your verifier to be floating-point sound and we guarantee that full points can
be obtained using torch.float32. If you have questions about the requirements or grading, please
ask on Moodle or send an email to mislav.balunovic@inf.ethz.ch.

Requirements

You should obey the following rules otherwise you may get 0 points for the project:

You must use the DeepPoly relaxation. No other relaxations are allowed.
You are not allowed to check for counter-examples using any kind of adversarial attack.
The only allowed libraries are PyTorch 1.10.0, Torchvision 0.11.1, Numpy 1.19.5 and

Python Standard Library. Other libraries are not allowed and will not be installed on the

1. The implementation must be in Python 3.7.
2.
3.
4.
evaluation machine.
Deadlines
Event Deadline

Project announcement

Skeleton code release
Preliminary submission (optional)
Preliminary feedback

Final submission

October 26, 2022
October 26, 2022
5:59 PM CET, November 25, 2022
5:59 PM CET, November 29, 2022

5:59 PM CET, December 21, 2022


mailto:mislav.balunovic@inf.ethz.ch

Groups can submit their project by the preliminary submission deadline to receive feedback. We
will run your verifier on 25 out of 100 test cases which will be used for the final grading and
report to you, for each test, the ground truth, output and the runtime of your verifier. The
feedback will be sent by 5:59 PM CET, November 29, 2022. Your preliminary submission results
do not affect your final project score.

Submission

Each group is going to receive an invitation to the GitLab repository of name
ddd-riai-project-2022 where ddd here is the group number that will be assigned to you. This
repository will contain template code, networks and test cases (content is the same as the zip
file released on the course website on October 26).

You should commit your solutions to the assigned repository. After the final submission
deadline, we will treat the assigned repository as your submission and evaluate your solution in
the repository on the final test cases. Note that we are not going to accept any submission by
email. Below are detailed instructions for the final submission. You should follow the rules in the
instructions, otherwise you may be deducted points:
1. Your submission is code that is present in the master branch of your repository at the
deadline time. We do not accept submissions via some other channel (e.g. e-mail).
The code should:
a. only print verified or not verified. If additional messages are printed, we will take
the last line as your output.
b. follow the Requirements section of this document. You should only use the
allowed libraries. In the final evaluation, importing libraries not allowed will crash
the verifier as they are not installed in the evaluation environment, resulting in 0
points.
2. At the deadline time, we will pull your solution and put it into the final_submission
branch. You should not commit to the final_submission branch. After the final
evaluation, we will put the evaluation result into the final_submission branch.

If you have questions about repositories or the submission procedure, please ask on Moodle or
send an email to jingxuan.he@inf.ethz.ch.

References

[1] Singh, Gagandeep, Timon Gehr, Markus Pulschel, and Martin Vechev. "An abstract domain
for verifying neural networks." Proceedings of the ACM on Programming Languages 3, no.
POPL (2019)

https://www.sri.inf.ethz.ch/publications/singh2019domain



mailto:jingxuan.he@inf.ethz.ch
https://www.sri.inf.ethz.ch/publications/singh2019domain




