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Assumed Background

Logic

• ∧,∨,→, =⇒
• ∀,∃
• Predicates

Linear Algebra

• Vectors

• Matrices

Probability Theory

• Random variables, Indicator variables

• Probabilities

• Bayes’ law

• Expectation
• Distributions

– Cumulative distribution function
(CDF)

– Probability density function (PDF)
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Linear Algebra
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Linear transformations

Definition

A linear transformation is a map f : Rm → Rn that preserves linear combinations:

f

( k∑
i=1

λi~ui

)
=

k∑
i=1

λi f
(
~ui
)

.

Example (in R2)

−→ −→
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Linear transformations as matrices

Proposition

Every linear transformation f : Rm → Rn can be expressed as a matrix M ∈ Rn×m:

∀~u ∈ Rm : f (~u) = M~u.

Example (in R2)

[
cos θ − sin θ
sin θ cos θ

] [
λ1 0
0 λ2

] [
1 0
0 0

]

rotation dilation projection
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Affine transformations

Definition

An affine transformation is a map f : Rm → Rn that preserves affine combinations:
k∑

i=1

λi = 1 =⇒ f

( k∑
i=1

λi~ui

)
=

k∑
i=1

λi f
(
~ui
)

.

Proposition

Every affine f : Rm → Rn decomposes into a translation after a linear transformation:

f (~u) =~t + g(~u).
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Norms and distances
Euclidean (l2)

‖~u‖2 =
2
√
~u · ~u d2(~u,~v ) = ‖~v − ~u‖2.

lp (1 ≤ p ≤ ∞)

‖~u‖p = p
√∑

|ui |p dp(~u,~v ) = ‖~v − ~u‖p.

l∞

‖~u‖∞ = lim
p→∞

‖~u‖p = sup |ui |.
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Prediction
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Prediction problems

Predict lifespan given GDP per capita.

Predict quantity =⇒ regression.

Predict digit given a pixelated scan.

MNIST http://yann.lecun.com/exdb/mnist/

Predict label =⇒ classification.
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Mathematical formulation

The simple version

Predict a latent variables ~Y from a manifest variables ~X , i.e., select a model f such that

f (~X ) ≈ ~Y .

Consistency

1. In practice, we need to sample (~X , ~Y ) in order to select f .

2. This means that f = fn depends on the sample size n.

3. The selection method is consistent if fn(~X )→ ~Y as n→∞.
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The not so simple version

What is f (~X ) ≈ ~Y?

1. No universal answer.

2. A choice depending on the task.

3. Usually defined by a loss function:

Lf (~x ,~y ) ∈ R

Where does f come from?

1. Comes from a model space F .

2. That space is, again, a choice.

3. Usually parameterized by a vector:

F = {fθ | θ ∈ Rd}.

Model fitting

Ideally, we want a model fθ∗ ∈ F minimizing the risk R(θ) = E~X ,~Y

[
Lfθ

(
~X , ~Y

)]
.
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Empirical risk minimization

Risk estimation

In practice, we can only estimate the risk R(θ) from a sample of (~X , ~Y ).

Definition

The empirical risk for a sample sn = {(~x1,~y1), ... , (~xn,~yn)} is the average loss over sn:

R̂n(θ) =
1
n

n∑
i=1

Lfθ (~xi ,~yi ).

Selection rule

Given a sample sn of (~X , ~Y ), select a model fθ minimizing the empirical risk R̂n.
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Risk minimization flow

1. Select loss

2. Select model space

3. Minimize empirical risk

Reliable and Interpretable Artificial Intelligence Exercise 1 13



Loss: Prediction form

Form of the loss

For prediction it is standard to derive the loss Lfθ from a distance d :

Lfθ (~x ,~y ) = d(~y , fθ(~x)).

Shape of d

The shape of the distance d determines how difficult is to find a minimizer of R̂n:

• The simple 0–1 distance d(~y ,~y ′) = (0 if ~y = ~y ′ else 1) is too difficult in practice.

• The Euclidean distance is easier since it is smooth; often suitable for regression.
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Loss: Smoothing for classification

Predict k classes {1, ... , k}

1. The 0–1 distance most natural but difficult.

2. The Euclidean distance d2 easier but biased: y = 1 =⇒ d2(y , 2) < d2(y , 8).

Embed {1, ... , k} into Rk

1 7→ (1, 0, ... , 0)
2 7→ (0, 1, ... , 0)

...
k 7→ (0, 0, ... , 1)

Predict probability vectors in Rk

Lfθ (~x , y ) = d(embed(y ), fθ(~x))

Use smooth distance d such as

1. Cross-entropy 2. KL divergence
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Loss: Classification details

1. Pass prediction through softmax, fθ = softmax ◦ gθ, to create probability vectors.

2. The cross-entropy H(~p,~q) measures a distance from a true ~p to an estimate ~q.

Softmax : Rk → Rk

Maps any vector to a probability vector.

softmax(~x) =
1

ex1 + · · · + exk
(ex1 , ... , exk ).

Cross-entropy : Rk × Rk → R

Inputs must be probability vectors.

H(~p,~q) = −
k∑

i=1

pi log(qi ).

Full loss
Lfθ (~x ,~y ) = H(embed(y ), softmax ◦ gθ(~x)) fθ = softmax ◦ gθ.
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Model: Feedforward networks

x1

x2

x3

x4

HiddenInput Output

Neuron: η~w ,b(~x) = σ(b + ~w · ~x)

• ~w : weights, b: bias

• σ: non-linearity

Layer: `W ,~b(~x) = σ(~b + W · ~x)

• ~b: bias vector, W : weights matrix

Network: gθ(~x) = `θm ◦ · · · ◦ `θ1 (~x)

• θ = [θ1, ... , θm]: model parameters
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Model: Architecture
Choices

1. Connections:
fully connected, convolutional,
random

2. Non-linearities:
rectifier, sigmoid, tanh, ...
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steep, simple
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Sigmoid

flat for small/large inputs
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tanh

flat for small/large inputs
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Minimization: Gradient descent

Objective

1. Input: a sample of (~X , ~Y )

2. Goal: minimize R̂ = R̂n

Gradient descent

1. Select: θ0

2. Iterate: θt+1 = θt − αt∇R̂(θt ).
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Minimization: Gradients
Gradient operator ∇

1. Input: S : Rd → R
2. Output: ∇S : Rd → Rd

∇S(~u) =
(
∂S
∂u1

(~u), ... ,
∂S
∂ud

(~u)
)

Evaluating ∇R̂(~x)

1. Backpropagation algorithm.

2. Fully automated in software.
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Minimization: Stochastic gradient descent

Issues with gradient descent

• Gets stuck easily.

• Slow for large samples.

Stochastic gradient descent

• Subsample the sample into batches.

• Evaluate ∇R̂ on one batch each step.

Variants and improvements

Momentum, Nesterov, Adagrad, AdaDetla,
RMSProp, Adam, Natural gradient, ...
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