
Exercise 04
Adversarial Defenses and Certification

Reliable and Interpretable Artificial Intelligence
ETH Zurich

Problem 1 (Coding). In this task, you are going to implement adversarial training with
PGD (originally introduced in [1]) and an alternative defense.

1. Complete the provided code skeleton in train.py to train the network model
with PGD defense. That is, for data distribution D (the MNIST dataset in our
case) and network parameters θ, optimize the following objective:

min
θ

E(x,y)∼D

[
max

x′∈Bε(x)
L(θ, x′, y)

]
. (1)

Here, Bε(x) := {x′ | ‖x− x′‖∞ ≤ ε} denotes the ε-sized `∞-ball around x. L is the
usual classification loss L(θ, x′, y) := H(y, fθ(x

′)), where fθ = (model ◦ softmax)
denotes the output distribution of the neural network, and H the cross entropy1

between distributions (being a discrete value, we treat y as a one-hot distribution).
In PyTorch, you can use nn.CrossEntropyLoss2 to implement L.

Use PGD to solve the inner optimization problem with ε = 0.1, k = 7 steps, and
εstep = 2.5 εk . You can reuse your implementation of untargeted PGD from the
previous exercise, or create a more efficient (batched) version better suited for
training.

Compare the accuracy results with and without PGD training.

2. The TRADES [2] algorithm minimizes the following objective (see [2] for details):

1https://en.wikipedia.org/wiki/Cross_entropy
2https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

1

https://en.wikipedia.org/wiki/Cross_entropy
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

min
θ

E(x,y)∼D
[
L(θ, x, y)︸ ︷︷ ︸
for accuracy

+λ max
x′∈Bε(x)

L(θ, x′, fθ(x))︸ ︷︷ ︸
regularization for robustness

]
. (2)

Extend your implementation in train.py to the TRADES defense. Again, the
inner optimization problem is solved using PGD. Use λ = 1.0 and the same pa-
rameters as in the previous task. Compare your results with the previous task.

Note: Here, L(θ, x′, fθ(x)) still denotes the cross entropy loss. However, PyTorch’s
nn.CrossEntropyLoss cannot be used as it expects one of the distributions to
be a one-hot encoding of the label. Instead, you will need to manually implement L.
To this end, some existing functions in PyTorch3 4 may be useful.

Problem 2 (Alternating optimization). We formalized adversarial defense as the opti-
mization problem in (1). In general, finding the globally optimal parameters θ∗ is hard
due to the nesting of maximization and minimization. In the lecture, we considered a
method that approximates θ∗ by individually solving the outer and inner optimization
problem in alternation. In this task, you will show that this approach can result in a
local minimum that is not globally optimal.

Consider the basic case in one dimension where the data is of the form (x, y) with
discretized x ∈ Z and label y ∈ {0, 1}. Assume a very simple classifier ρ in one parameter
θ ∈ Z, which classifies a point x as ρ(θ, x) = [x ≥ θ], where [·] is the Iverson bracket. 5

Consider a scenario where D = {(0, 0), (2, 0), (3, 1), (8, 1)} as illustrated below:

1 100
0 1 2 3 4 5 6 7 8

... ...

For a datapoint (x, y), we define the loss L(θ, x, y) := [ρ(θ, x) 6= y]. Assuming all data
points in D are equally likely, the expected loss of a model ρ(θ, ·) is the fraction of
misclassified points in D. In our example, the model for θ = 4 (indicated as a blue
line) has expected loss 1

4 as it misclassifies one out of four points. We set ε = 2 for the
adversarial region Bε(x) to denote the set of integers with distance at most 2 to x. For
example, point (8, 1) can be perturbed to (6, 1).

Show how in this scenario, alternating optimization of (1) can result in a local optimum
that is strictly worse than the global optimum.
3https://pytorch.org/docs/stable/nn.html#loss-functions
4https://pytorch.org/docs/stable/generated/torch.nn.LogSoftmax.html#torch.
nn.LogSoftmax

5https://en.wikipedia.org/wiki/Iverson_bracket

2

https://pytorch.org/docs/stable/nn.html#loss-functions
https://pytorch.org/docs/stable/generated/torch.nn.LogSoftmax.html#torch.nn.LogSoftmax
https://pytorch.org/docs/stable/generated/torch.nn.LogSoftmax.html#torch.nn.LogSoftmax
https://en.wikipedia.org/wiki/Iverson_bracket

Problem 3 (Box Transformers). In the lecture, you have seen the dox domain for
numerical analysis. For vectors a, b ∈ Rm with ∀i. ai ≤ bi, the box [a, b] is a hypercube
in Rm. We can use abstract transformers to obtain an over-approximation of the behavior
of a function. Given a function f : Rn → Rm and an input box [a, b] ⊂ Rn, a sound
abstract transformer f] finds [c, d] ⊂ Rm such that ∀x ∈ [a, b]. f(x) ∈ [c, d].

For example, let x ∈ [1, 3] and y ∈ [2, 4], and assume we want to approximate the result
of 2x− y. Using the basic abstract transformers from the lecture, we can compute

2 ·] [1, 3]−] [2, 4] = [2, 6] +] [−4,−2] = [−2, 4]

and conclude that 2x− y ∈ [−2, 4].

1. Show that the box transformers lose precision, by approximating the outcome of
x− x for x ∈ [0, 1] using the transformers +] and −] from the lecture.

2. Prove or disprove: The alternative transformer [a, b] +′ [c, d] = [a + c, b + |d|] for
addition is sound (i.e., the output box is an over-approximation of all possible
result values).

3. Prove or disprove: The alternative transformer [a, b] +′′ [c, d] = [−∞, a+ b+d] for
addition is sound.

4. Derive a sound abstract transformer f] for the function f(x) := x2. That is, derive
expressions for g, h such that [g, h] = f]([a, b]) for a, b ∈ R.

5. Derive a sound abstract transformer ·] for multiplication. That is, derive expres-
sions for g, h such that [g, h] = [a, b] ·] [c, d], where a, b, c, d ∈ R.

References

[1] Aleksander Madry et al. ”Towards deep learning models resistant to adversarial
attacks”. ICLR (2018).

[2] Hongyang Zhang et al. ”Theoretically Principled Trade-off between Robustness and
Accuracy”. ICML (2019).

3

