Exercise 04 Adversarial Defenses and Certification

Reliable and Interpretable Artificial Intelligence ETH Zurich

Problem 1 (Coding). In this task, you are going to implement adversarial training with PGD (originally introduced in [1]) and an alternative defense.

1. Complete the provided code skeleton in train.py to train the network model with PGD defense. That is, for data distribution D (the MNIST dataset in our case) and network parameters θ , optimize the following objective:

$$\min_{\theta} \mathbb{E}_{(x,y)\sim D} \left[\max_{x' \in \mathbb{B}_{\epsilon}(x)} L(\theta, x', y) \right].$$
(1)

Here, $\mathbb{B}_{\epsilon}(x) := \{x' \mid ||x - x'||_{\infty} \leq \epsilon\}$ denotes the ϵ -sized ℓ_{∞} -ball around x. L is the usual classification loss $L(\theta, x', y) := \mathcal{H}(y, f_{\theta}(x'))$, where $f_{\theta} = (\text{model} \circ \text{softmax})$ denotes the output distribution of the neural network, and \mathcal{H} the cross entropy¹ between distributions (being a discrete value, we treat y as a one-hot distribution). In PyTorch, you can use nn.CrossEntropyLoss² to implement L.

Use PGD to solve the inner optimization problem with $\epsilon = 0.1$, k = 7 steps, and $\epsilon_{\text{step}} = 2.5 \frac{\epsilon}{k}$. You can reuse your implementation of untargeted PGD from the previous exercise, or create a more efficient (batched) version better suited for training.

Compare the accuracy results with and without PGD training.

2. The TRADES [2] algorithm minimizes the following objective (see [2] for details):

¹https://en.wikipedia.org/wiki/Cross_entropy

²https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

$$\min_{\theta} \mathbb{E}_{(x,y)\sim D} \Big[\underbrace{L(\theta, x, y)}_{\text{for accuracy}} + \underbrace{\lambda \max_{x' \in \mathbb{B}_{\epsilon}(x)} L(\theta, x', f_{\theta}(x))}_{\text{regularization for robustness}} \Big].$$
(2)

Extend your implementation in train.py to the TRADES defense. Again, the inner optimization problem is solved using PGD. Use $\lambda = 1.0$ and the same parameters as in the previous task. Compare your results with the previous task.

Note: Here, $L(\theta, x', f_{\theta}(x))$ still denotes the cross entropy loss. However, PyTorch's nn.CrossEntropyLoss cannot be used as it expects one of the distributions to be a one-hot encoding of the label. Instead, you will need to manually implement L. To this end, some existing functions in PyTorch^{3 4} may be useful.

Problem 2 (Alternating optimization). We formalized adversarial defense as the optimization problem in (1). In general, finding the globally optimal parameters θ^* is hard due to the nesting of maximization and minimization. In the lecture, we considered a method that *approximates* θ^* by individually solving the outer and inner optimization problem in alternation. In this task, you will show that this approach can result in a local minimum that is not globally optimal.

Consider the basic case in one dimension where the data is of the form (x, y) with discretized $x \in \mathbb{Z}$ and label $y \in \{0, 1\}$. Assume a very simple classifier ρ in one parameter $\theta \in \mathbb{Z}$, which classifies a point x as $\rho(\theta, x) = [x \ge \theta]$, where $[\cdot]$ is the Iverson bracket. ⁵ Consider a scenario where $D = \{(0, 0), (2, 0), (3, 1), (8, 1)\}$ as illustrated below:

For a datapoint (x, y), we define the loss $L(\theta, x, y) := [\rho(\theta, x) \neq y]$. Assuming all data points in D are equally likely, the expected loss of a model $\rho(\theta, \cdot)$ is the fraction of misclassified points in D. In our example, the model for $\theta = 4$ (indicated as a blue line) has expected loss $\frac{1}{4}$ as it misclassifies one out of four points. We set $\epsilon = 2$ for the adversarial region $\mathbb{B}_{\epsilon}(x)$ to denote the set of integers with distance at most 2 to x. For example, point (8, 1) can be perturbed to (6, 1).

Show how in this scenario, alternating optimization of (1) can result in a local optimum that is strictly worse than the global optimum.

³https://pytorch.org/docs/stable/nn.html#loss-functions

⁴https://pytorch.org/docs/stable/generated/torch.nn.LogSoftmax.html#torch. nn.LogSoftmax

⁵https://en.wikipedia.org/wiki/Iverson_bracket

Problem 3 (Box Transformers). In the lecture, you have seen the dox domain for numerical analysis. For vectors $a, b \in \mathbb{R}^m$ with $\forall i. a_i \leq b_i$, the box [a, b] is a hypercube in \mathbb{R}^m . We can use abstract transformers to obtain an over-approximation of the behavior of a function. Given a function $f: \mathbb{R}^n \to \mathbb{R}^m$ and an input box $[a, b] \subset \mathbb{R}^n$, a sound abstract transformer f^{\sharp} finds $[c, d] \subset \mathbb{R}^m$ such that $\forall x \in [a, b]$. $f(x) \in [c, d]$.

For example, let $x \in [1,3]$ and $y \in [2,4]$, and assume we want to approximate the result of 2x - y. Using the basic abstract transformers from the lecture, we can compute

$$2 \cdot^{\sharp} [1,3] -^{\sharp} [2,4] = [2,6] +^{\sharp} [-4,-2] = [-2,4]$$

and conclude that $2x - y \in [-2, 4]$.

- 1. Show that the box transformers lose precision, by approximating the outcome of x x for $x \in [0, 1]$ using the transformers $+^{\sharp}$ and $-^{\sharp}$ from the lecture.
- 2. Prove or disprove: The alternative transformer [a, b] + [c, d] = [a + c, b + |d|] for addition is sound (i.e., the output box is an over-approximation of all possible result values).
- 3. Prove or disprove: The alternative transformer $[a, b] + [c, d] = [-\infty, a+b+d]$ for addition is sound.
- 4. Derive a sound abstract transformer f^{\sharp} for the function $f(x) := x^2$. That is, derive expressions for g, h such that $[g, h] = f^{\sharp}([a, b])$ for $a, b \in \mathbb{R}$.
- 5. Derive a sound abstract transformer \cdot^{\sharp} for multiplication. That is, derive expressions for g, h such that $[g, h] = [a, b] \cdot^{\sharp} [c, d]$, where $a, b, c, d \in \mathbb{R}$.

References

- Aleksander Madry et al. "Towards deep learning models resistant to adversarial attacks". ICLR (2018).
- [2] Hongyang Zhang et al. "Theoretically Principled Trade-off between Robustness and Accuracy". ICML (2019).