Exercise 07 DeepPoly and Abstract Interpretation

Reliable and Interpretable Artificial Intelligence ETH Zurich

Problem 1 (Smaller Area). Recall that DeepPoly decides between two options for relaxing the result of y = ReLU(x) based on the area, shown in Fig. 1.

Derive a decision procedure depending on l and u which decides when Option 1 results in a smaller area. Break ties in favor of Option 1.

Problem 2 (DeepPoly Example). Consider the fully connected neural network shown in Fig. 2. The neural network has two input neurons (x_1, x_2) and two output neurons (x_7, x_8) .

Analyze this network using DeepPoly with respect to the input region spanned by $x_1 \in [0, 1]$ and $x_2 \in [0, 1]$. Then, use the result to show that $x_7 \ge x_8$.

Figure 1: Options for triangle relaxations in DeepPoly.

Figure 2: Neural network to be analyzed with DeepPoly.

Problem 3 (Abstract Interpretation). In this problem, we consider a (toy) abstract domain A over \mathbb{R} with abstract elements $\{+, -, 0, \top\}$ whose meaning is defined by the concretization γ : ¹

$$\gamma(+) = \{x \mid x \in \mathbb{R}, x > 0\} \qquad \gamma(0) = \{0\}$$

$$\gamma(-) = \{x \mid x \in \mathbb{R}, x < 0\} \qquad \gamma(\top) = \mathbb{R}$$

For instance, the abstract element + represents all positive real numbers.

- 1. Find sound abstract transformers for addition $(+^{\sharp})$, scalar multiplication with a constant (\cdot^{\sharp}) , and ReLU (ReLU^{\sharp}) in the abstract domain A. The transformers should be as precise as possible.
- 2. Consider the single input neural network $N \colon \mathbb{R} \to \mathbb{R}$ defined as:

$$N(x) = \text{ReLU}(3x - 1) + 1$$

Assume we want to prove that the output of N is positive for inputs greater or equal to 5, this is:

$$\forall x \in \mathbb{R}. \quad x \ge 5 \implies N(x) > 0$$

Try to prove the claim using the domain A. First, find a suitable abstraction of the set of inputs satisfying the left hand side of the implication. Then, construct the abstract transformer $N^{\#}$ of N using the transformers from the previous step and apply $N^{\#}$ to the abstract input. Can you prove the claim?

3. Try to prove the claim using the box/interval domain. Can you prove the claim?

¹For technical reasons, A should also include a dedicated element \perp with concretization $\gamma(\perp) = \emptyset$. However, for this exercise, you do not need to consider this.