
Exercise 04 - Solution
Adversarial Defenses and Certification

Reliable and Interpretable Artificial Intelligence
ETH Zurich

Problem 1 (Coding). In this task, you are going to implement adversarial training with
PGD (originally introduced in [1]) and an alternative defense.

1. Complete the provided code skeleton in train.py to train the network model
with PGD defense. That is, for data distribution D (the MNIST dataset in our
case) and network parameters θ, optimize the following objective:

min
θ

E(x,y)∼D

[
max

x′∈Bε(x)
L(θ, x′, y)

]
. (1)

Here, Bε(x) := {x′ | ‖x− x′‖∞ ≤ ε} denotes the ε-sized `∞-ball around x. L is the
usual classification loss L(θ, x′, y) := H(y, fθ(x

′)), where fθ = (model ◦ softmax)
denotes the output distribution of the neural network, and H the cross entropy1

between distributions (being a discrete value, we treat y as a one-hot distribution).
In PyTorch, you can use nn.CrossEntropyLoss2 to implement L.

Use PGD to solve the inner optimization problem with ε = 0.1, k = 7 steps, and
εstep = 2.5 εk . You can reuse your implementation of untargeted PGD from the
previous exercise, or create a more efficient (batched) version better suited for
training.

Compare the accuracy results with and without PGD training.

2. The TRADES [2] algorithm minimizes the following objective (see [2] for details):

1https://en.wikipedia.org/wiki/Cross_entropy
2https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

1

https://en.wikipedia.org/wiki/Cross_entropy
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

min
θ

E(x,y)∼D
[
L(θ, x, y)︸ ︷︷ ︸
for accuracy

+λ max
x′∈Bε(x)

L(θ, x′, fθ(x))︸ ︷︷ ︸
regularization for robustness

]
. (2)

Extend your implementation in train.py to the TRADES defense. Again, the
inner optimization problem is solved using PGD. Use λ = 1.0 and the same pa-
rameters as in the previous task. Compare your results with the previous task.

Note: Here, L(θ, x′, fθ(x)) still denotes the cross entropy loss. However, PyTorch’s
nn.CrossEntropyLoss cannot be used as it expects one of the distributions to
be a one-hot encoding of the label. Instead, you will need to manually implement L.
To this end, some existing functions in PyTorch3 4 may be useful.

Solution 1. See train.py.

Defense Clean Accuracy Adversarial Accuracy

None 0.98 0.26
PGD 0.98 0.90
TRADES 0.98 0.89

Table 1: Test set accuracy.

The accuracy obtained with the default parameters and 50 (instead of 10) epochs is
shown in table 1. Without any defense, the adversarial accuracy drops significantly,
while it remains high with a defense. Note that the PGD defense outperformed TRADES
here (higher adversarial accuracy at the same clean accuracy)—MNIST is a very “easy”
task where adversarial training does not impact the clean accuracy too much. Note that
the model and hyper-parameters used here are far from optimal.

Problem 2 (Alternating optimization). We formalized adversarial defense as the opti-
mization problem in (1). In general, finding the globally optimal parameters θ∗ is hard
due to the nesting of maximization and minimization. In the lecture, we considered a
method that approximates θ∗ by individually solving the outer and inner optimization
problem in alternation. In this task, you will show that this approach can result in a
local minimum that is not globally optimal.

Consider the basic case in one dimension where the data is of the form (x, y) with
discretized x ∈ Z and label y ∈ {0, 1}. Assume a very simple classifier ρ in one parameter

3https://pytorch.org/docs/stable/nn.html#loss-functions
4https://pytorch.org/docs/stable/generated/torch.nn.LogSoftmax.html#torch.
nn.LogSoftmax

2

https://pytorch.org/docs/stable/nn.html#loss-functions
https://pytorch.org/docs/stable/generated/torch.nn.LogSoftmax.html#torch.nn.LogSoftmax
https://pytorch.org/docs/stable/generated/torch.nn.LogSoftmax.html#torch.nn.LogSoftmax

θ ∈ Z, which classifies a point x as ρ(θ, x) = [x ≥ θ], where [·] is the Iverson bracket. 5

Consider a scenario where D = {(0, 0), (2, 0), (3, 1), (8, 1)} as illustrated below:

1 100
0 1 2 3 4 5 6 7 8

... ...

For a datapoint (x, y), we define the loss L(θ, x, y) := [ρ(θ, x) 6= y]. Assuming all data
points in D are equally likely, the expected loss of a model ρ(θ, ·) is the fraction of
misclassified points in D. In our example, the model for θ = 4 (indicated as a blue
line) has expected loss 1

4 as it misclassifies one out of four points. We set ε = 2 for the
adversarial region Bε(x) to denote the set of integers with distance at most 2 to x. For
example, point (8, 1) can be perturbed to (6, 1).

Show how in this scenario, alternating optimization of (1) can result in a local optimum
that is strictly worse than the global optimum.

Solution 2. In Fig. 1, we show how alternating optimization leads to a suboptimal local
optimum.

Round 1, outer problem: First, we find the optimal parameter θ minimizing the expected
loss for the initial data points. The optimal parameter is θ = 3 (a).

Round 1, inner problem: We maximize the expected loss for the given parameter θ = 3
by perturbing data points as shown in (b). The expected loss for θ = 3 is thus 1

2 .

Round 2, outer problem: Optimizing θ over the perturbed points, one possible solution
is θ = 1 (c).

Round 2, inner problem: The expected loss for the given θ is maximized when perturbing
point (0, 0) as shown in (d). The expected loss is for θ = 1 is again 1

2 .

Round 3, outer problem: We optimize θ over the newly perturbed points to again obtain
θ = 3, as in round 1. The process continues back at (b) and the expected loss gets stuck
at the local optimum 1

2 .

However, the global optimum is achieved for θ = 6 where the expected loss is only 1
4 ,

see (f). Note that in this case, the adversary cannot increase the loss by perturbing any
data points.

5https://en.wikipedia.org/wiki/Iverson_bracket

3

https://en.wikipedia.org/wiki/Iverson_bracket

1 100
0 1 2 3 4 5 6 7 8

... ...

0 1 2 3 4 5 6 7 8

... ...

0 1 2 3 4 5 6 7 8

... ...

0 1 2 3 4 5 6 7 8

... ...1 100 1 0

10 1 0
0 1 2 3 4 5 6 7 8

... ...0 1010 10

0 10 10 1 10
0 1 2 3 4 5 6 7 8

... ...0

Figure 1: (a–e) Example stuck in a local optimum. Left: Optimizing the parameter θ
for given data points. Right: Adversarial examples maximizing the loss for a
given parameter θ. (f) Global optimum.

Problem 3 (Box Transformers). In the lecture, you have seen the dox domain for
numerical analysis. For vectors a, b ∈ Rm with ∀i. ai ≤ bi, the box [a, b] is a hypercube
in Rm. We can use abstract transformers to obtain an over-approximation of the behavior
of a function. Given a function f : Rn → Rm and an input box [a, b] ⊂ Rn, a sound
abstract transformer f] finds [c, d] ⊂ Rm such that ∀x ∈ [a, b]. f(x) ∈ [c, d].

For example, let x ∈ [1, 3] and y ∈ [2, 4], and assume we want to approximate the result
of 2x− y. Using the basic abstract transformers from the lecture, we can compute

2 ·] [1, 3]−] [2, 4] = [2, 6] +] [−4,−2] = [−2, 4]

and conclude that 2x− y ∈ [−2, 4].

1. Show that the box transformers lose precision, by approximating the outcome of
x− x for x ∈ [0, 1] using the transformers +] and −] from the lecture.

2. Prove or disprove: The alternative transformer [a, b] +′ [c, d] = [a + c, b + |d|] for
addition is sound (i.e., the output box is an over-approximation of all possible
result values).

3. Prove or disprove: The alternative transformer [a, b] +′′ [c, d] = [−∞, a+ b+d] for
addition is sound.

4. Derive a sound abstract transformer f] for the function f(x) := x2. That is, derive
expressions for g, h such that [g, h] = f]([a, b]) for a, b ∈ R.

5. Derive a sound abstract transformer ·] for multiplication. That is, derive expres-
sions for g, h such that [g, h] = [a, b] ·] [c, d], where a, b, c, d ∈ R.

4

Solution 3.

1. It is [0, 1]−] [0, 1] = [0, 1] +] [−1, 0] = [−1, 1]. However, the only possible result of
x− x for x ∈ [0, 1] is 0, which could be represented exactly using the more precise
interval [0, 0].

2. This is true. Let x ∈ [a, b] and y ∈ [c, d]. Hence, a ≤ x ≤ b and c ≤ y ≤ d. Now
consider the sum z := x+y. It is a+c ≤ z and z ≤ b+d ≤ b+ |d|, because d ≤ |d|.
Therefore, z ∈ [a+ c, b+ |d|].

3. This is not true. Consider [−1,−1] +′′ [0, 0] = [−∞,−2], which does not include
value −1 produced by −1 + 0.

4. Recall that a ≤ b. We have to distinguish the three general positions of the interval
w.r.t. 0: below (b ≤ 0), above (a ≥ 0), or including 0 (otherwise).

[g, h] = f]([a, b]) =


[a2, b2] if a ≥ 0,

[b2, a2] else if b ≤ 0,

[0,max(a2, b2)] otherwise.

5.
[a, b] ·] [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]

Note: To see this, perform a case distinction on the signs of a, b, c, and d. The
naive solution attempt [ab, cd] is unsound (why?).

References

[1] Aleksander Madry et al. ”Towards deep learning models resistant to adversarial
attacks”. ICLR (2018).

[2] Hongyang Zhang et al. ”Theoretically Principled Trade-off between Robustness and
Accuracy”. ICML (2019).

5

