
Exercise 06 - Solution
Zonotopes and Abstract Interpretation

Reliable and Interpretable Artificial Intelligence
ETH Zurich

Problem 1 (Zonotope Concretizations). Which of the following 2D regions (a–e) rep-
resent concretizations of a zonotope? For all such regions, sketch a set of 2D magnitude
vectors a0, . . . , ak describing the zonotope (select k as small as possible).

Solution 1. The regions (b) and (d) are not point symmetric and hence can not be
concretizations of zonotopes. The regions (a), (c) and (e) are concretizations of zonotopes
with the following magnitude vectors:
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Problem 2 (Certification using Zonotopes). Consider the following small neural network
with two input neurons x1, x2 and two output neurons x5, x6. The network consists of
an affine layer followed by a ReLU layer.

You are given the following zonotope ψ over the input neurons:

ψ :

(
x̂1
x̂2

)
=

(
2
1

)
· ε1 +

(
1
2

)
· ε2 +

(
4
3

)
Your goal is to prove that x5 ≥ x6 for all inputs x1, x2 in the zonotope ψ.

1. Draw the concretization γ(ψ) of ψ. What shape does it have?

2. Using the transformers for affine and ReLU layers discussed in the lecture, trans-
form ψ to a zonotope φ over the output neurons of the network above.

3. Draw the concretization γ(φ) of φ. Can you use φ to prove the desired property?

Solution 2.

1. The 4 corners of the zonotope’s concretization can be obtained by setting ε1 and
ε2 to the extreme values {−1, 1}. The corners are(

7
6

)
,

(
1
0

)
,

(
5
2

)
,

(
3
4

)
and the concretization is the parallelogram with these corners.

Note: For k > 2, finding corners is a bit more involved as not all such extreme
points are corners (see for example region (c) in the solution of problem 1).

2. We can write x̂1 = 2ε1 + ε2 + 4 and x̂2 = ε1 + 2ε2 + 3.

Step 1: Affine layer. It is

x̂3 = (2 + 2 · 1) · ε1 + (1 + 2 · 2) · ε2 + (4 + 2 · 3) = 4ε1 + 5ε2 + 10

x̂4 = ((−1) · 2 + 1) · ε1 + ((−1) · 1 + 2) · ε2 + ((−1) · 4 + 3) = −ε1 + ε2 − 1
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Step 2: ReLU layer. First, we compute the bounds for x̂3. The lower bound lx̂3

for x̂3 can be obtained by setting ε1 = −1 and ε2 = −1. The upper bound ux̂3 can
be obtained by setting ε1 = 1 and ε2 = 1. This gives the bounds [lx̂3 , ux̂3 ] = [1, 19].
Because the bounds are above 0, the ReLU has no effect and it is:

x̂5 = x̂3 = 4ε1 + 5ε2 + 10 (1)

Next, we compute the bounds for x̂4. The lower bound is obtained for ε1 = 1 and
ε2 = −1, the upper bound for ε1 = −1 and ε2 = 1. It is [lx̂4 , ux̂4 ] = [−3, 1], hence
we are in the “crossing boundary” case. We compute the slope λ as

λ =
ux̂4

ux̂4 − lx̂4

= 1
4

and obtain the following expression for x̂6, where ε3 is a new noise term:

x̂6 = λ · x̂4 − ε3 ·
λ · lx̂4

2
− λ · lx̂4

2
= 1

4 x̂4 − ε3 ·
(
1
4 ·
−3
2

)
−
(
1
4 ·
−3
2

)
= 1

8 −
1
4ε1 + 1

4ε2 + 3
8ε3 (2)

The zonotope φ is given by (1) and (2). Its concretization is:

3. By (1), the minimum value (lower bound) for x5 is lx̂5 = −4 − 5 + 10 = 1.
Independently, by (2), the maximum value (upper bound) for x6 is ux̂6 = 1

8 +
1
4 + 1

4 + 3
8 = 1. Hence, it is guaranteed that x5 ≥ lx̂5 = 1 = ux̂6 ≥ x6, which proves

the property.

Note: Here, we have analyzed the lower and upper bounds for x5 and x6 indepen-
dently. This is an overapproximation because x5 and x6 are not independent due
to shared noise terms (ε1, ε2). In particular, lx̂5 and ux̂6 can not be attained at the
same time (see how the point Z is outside the zonotope in the figure above). While
our argument here is sound, it may be too imprecise in certain cases. For example,
with this argument we can not prove the strict inequality x5 > x6, even though it
holds: See how the zonotope lies strictly below the line x5 = x6 in the figure above.
Thus, proving properties given an output zonotope may require further analysis
(e.g., inspecting the zonotope’s shape).
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Problem 3 (hybrid Zonotopes). In this problem, we consider a new convex relaxation,
fusing the zonotope with the interval relaxation. Specifically, we generalize the standard
zonotope x = c +

∑
i aiεi for c ∈ R and ai ∈ R for all i to x = [cl, cu] +

∑
i aiεi, where

we replaced the center c with an interval [cl, cu]. The design goal for this exercise is to
not increase the number of error-terms.

1. Derive a formula for the addition of two hybrid Zonotopes.

2. Derive a formula for the unary ”-” operation applied to a hybrid Zonotope.

3. Derive a formula for the subtracting one hybrid Zonotope from another one.

4. Derive a formula for concretizing a hybrid Zonotope to an interval.

5. Derive a formula for multiplying an interval with a hybrid Zonotope.

Bonus: Derive a formula for the multiplication of two hybrid Zonotopes.

Solution 3. Let x1 := [c1l , c
1
u]+

∑
i a

1
i εi, x2 := [c2l , c

2
u]+

∑
i a

2
i εi and x = [cl, cu]+

∑
i aiεi.

1. Addition:

x1 + x2 = [c1l , c
1
u] +

∑
i

a1i εi + [c2l , c
2
u] +

∑
i

a2i εi = [c1l + c2l , c
1
u + c2u] +

∑
i

(a1i + a2i )εi

2. Unary ”-”:

−x = −[cl, cu]−
∑
i

aiεi = [−cu,−cl] +
∑
i

(−ai)εi

3. Subtraction:

x1 − x2 = [c1l , c
1
u] +

∑
i

a1i εi − [c2l , c
2
u]−

∑
i

a2i εi = [c1l − c2u, c1u − c2l ] +
∑
i

(a1i − a2i )εi

4. Interval-concretization:

Interval(x) = Interval

(
[cl, cu] +

∑
i

aiεi

)

=

[
min([cl, cu] +

∑
i

aiεi),max([cl, cu] +
∑
i

aiεi)

]

=

[
cl −

∑
i

‖ai‖, cu +
∑
i

‖ai‖

]
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5. Interval - hybrid Zonotope multiplication:

[v, w] · x = [v, w] ·

(
[cl, cu] +

∑
i

aiεi

)
= [v, w] · [cl, cu] + [v, w] ·

∑
i

aiεi

= [v, w] · [cl, cu] + (v+w
2 + w−v

2 ε′) ·
∑
i

aiεi

= [v, w] · [cl, cu] + v+w
2 ·

∑
i

aiεi + w−v
2 ε′ ·

∑
i

aiεi

= [v, w] · [cl, cu] +
∑
i

v+w
2 aiεi +

∑
i

w−v
2 aiε

′ · εi

→ [v, w] · [cl, cu] +
∑
i

v+w
2 aiεi +

∑
i

w−v
2 aiε

′′
i

→ [v, w] · [cl, cu] +
∑
i

v+w
2 aiεi + [−1, 1] ·

∑
i

‖w−v2 ai‖

= [min(vcl, vcu, wcl, wcu),max(vcl, vcu, wcl, wcu)]

+
∑
i

v+w
2 aiεi + [−1, 1] ·

∑
i

‖w−v2 ai‖

=

[
min(vcl, vcu, wcl, wcu)−

∑
i

‖w−v2 ai‖,max(vcl, vcu, wcl, wcu) +
∑
i

‖w−v2 ai‖

]
+
∑
i

v+w
2 aiεi

Bonus:

x1 · x2 = ([c1l , c
1
u] +

∑
i

a1i εi) · ([c2l , c2u] +
∑
j

a2jεj)

= [c1l , c
1
u] · [c2l , c2u] + [c1l , c

1
u] ·
∑
j

a2jεj + [c2l , c
2
u] ·
∑
i

a1i εi +
∑
i

a1i εi ·
∑
j

a2jεj

The first term is standard interval multiplication, the second and third term are interval
- hybrid Zonotope multiplications, so we just show how to proceed with the last term:∑

i

a1i εi ·
∑
j

a2jεj =
∑
i,j

a1i a
2
jεiεj =

∑
i,j

a1i a
2
jε
′
i,j

→

−∑
i,j

‖a1i a2j‖,
∑
i,j

‖a1i a2j‖


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