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Aspects of Reliable AI

e.g. Attention 
Mechanisms, Neuro-
symbolic Approaches,  

Visualization of 
decision making 

(today)

AI Safety & Robustness
Verification of safety and 

robustness properties; training 
that enforces them.

Interpretability
Understanding the models 
decision making process.

e.g. Adversarial 
Robustness, Robust 

Training, Querying and 
Constraining Neural Nets

(covered in upcoming  and 
previous lectures)

e.g. Differential privacy, 
Enforcing Fairness in 

Neural Networks
(covered in upcoming 

lectures)

Privacy & Fairness
Data of individuals in 

produced and they are not 
discriminated,



Today: Visualizing Classification

Olah et al., 2018



Convolutional Neural Net (CNN)

• Convolutional layers: 𝑓 ! 𝑥 = 𝑅𝑒𝐿𝑈(𝑥 ∗ 𝐹 + 𝑏)
• Linear layers: 𝑓 ! 𝑥 = 𝑅𝑒𝐿𝑈(𝐴 ⋅ 𝑥 + 𝑏)

[source: Wikipedia by user Aphex34]

https://commons.wikimedia.org/wiki/File:Typical_cnn.png


Example: 2D Convolution
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Example: 2D Convolution
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Example: 2D Convolution

https://cs231n.github.io/convolutional-networks/

When we apply a convolutional layer we in fact 
apply many convolutions in parallel
We refer to the to the different results as 
channels. The above green output has two 
channels (as two filters were used).

https://cs231n.github.io/convolutional-networks/


Convolution

• Convolutions (formally cross-correlations) have a 
high response if the local pattern of the filter 
(kernel) matches the pattern in the data
• For example: a matrix encoding high contrast 

between left and right (shown below) yields a 
vertical edge detector
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AlexNet

• 2012 - Krizhevsky et al. “AlexNet”
• low error on ImageNet benchmark
• Observation: feature similarity

“If two images produce feature activation vectors 
with a small Euclidean separation, we can say that 
the higher levels of the neural network consider 
them to be similar.”

Krizhevsky et al., 2012



AlexNet

• Let 𝑅(𝑥) be the vector of neuron activations for a 
layer deep in the network
• If the distance 𝑅 𝑥* − 𝑅 𝑥+ + is small, then the 

images 𝑥*, 𝑥+ are similar

1st column: image 
from test set
others: 6 training set 
images with most 
similar 𝑅(𝑥)

Krizhevsky et al., 2012



Features

• Consequence: neuron activations capture semantic 
features of the input
• Feature Visualization: For a given neural network, 

what are these features?
• Feature Attribution: Which areas of a given image 

are responsible for classification in a given neural 
network?



AlexNet: First Layer Features

• Weights of the first convolutional layer (11x11x3) 
shown as color images
• Detectors for edges, simple patterns and color 

blobs

Krizhevsky et al., 2012



Inverting Convolutions

• Inspect neural networks in order to improve them
• For a given input and convolutional filter:
• inverts convolutions to showcase the structure in the 

input causing high activation
• first propagate input forward to the filter
• then propagate these activations back to the input layer 

in the inverted network (shown next)
• the outputs highlight which part of the image are 

responsible for the activation of the filter

Zeiler et al., 2013



Inverting Convolutions

Zeiler et al., 2013



Inverting Convolutions

• For a random set of convolutional filters in each layer, this shows 
the inputs causing the highest activations in the test set

• Pattern on the left reveals structure causing activation

Zeiler et al., 2013



Zeiler et al., 2013



Zeiler et al., 2013



Feature Visualization by Optimization

find 𝑥
maximize 𝑠𝑐𝑜𝑟𝑒 𝑥 − 𝜆!𝑅! 𝑥 − …− 𝜆"𝑅"(𝑥)

where 𝑠𝑐𝑜𝑟𝑒(𝑥) = 𝑚𝑒𝑎𝑛(𝑙𝑎𝑦𝑒𝑟#[𝑥, 𝑦, 𝑧])

Find input 𝑥 that 
maximizes score 
and minimized 

regularizes 

Score denotes 
the activation of 

a neuron, 
channel or layer 

Olah et al., 2017; Erhan et al. 09



Feature Visualization by Optimization

softm
ax

𝑙𝑎𝑦𝑒𝑟! 𝑠𝑐𝑜𝑟𝑒 𝑥 − ∑" 𝜆" 𝑅"(𝑥)

𝑥

Regularizers/Pirors

𝑥 ← 𝑥 + 𝜂 ∇#𝑠𝑐𝑜𝑟𝑒 𝑥 − ∑" 𝜆" 𝑅"(𝑥)

𝑥

Olah et al., 2017



Feature Visualization by Optimization

• Regularizers are crucial
• Encode the prior “input should look a real image”
• Optimization in Fourier basis, data whitening, added 

jitter etc.

• Optimize for multiple inputs at once
• add diversity term loss to discourage similarity
• multiple visualizations for one neuron

Olah et al., 2017



Feature Visualization by Optimization

Olah et al., 2017



Feature Visualization by Optimization

Olah et al., 2017



Feature Attribution

• Which areas of the image are responsible for 
classification?
• Many techniques
• Gradient based
• Shapley values
• Occlusion based
• Etc.

Selvaraju et al., 2017



Feature Attribution: Gradient Based

Gradient of target logit w.r.t. the 
input shows how changing single 
pixels influences the logit

𝜕𝑙𝑜𝑔𝑖𝑡,(𝑥)
𝜕𝑥

Adebayo et al., 2018



Feature Attribution: Gradient Based

• To obtain a clearer result
• Different methods apply scaling/conditioning of the gradient

• Just looking at the  visualization is dangerous: many of 
these methods were found not to depend (much) on 
the actual weights in higher layers of the network
• the gradient, by it’s definition, however does

Adebayo et al., 2018



Feature Attribution: Shapley Values 
(general)

all subsets average

(= !" ⋅
" #!
$

#!
)

contribution to feature iattribution
to feature i

• Input x has a set of features P (e.g. individual pixels)
• Want to know how much each feature contributes 

to a function 𝑓(𝑃) (e.g. a class logit)
• Classic result from game theory
• Theoretically justified

𝐶$ = '
%⊆' ∖ $

𝑆 ! 𝑃 − 𝑆 − 1 !
𝑃 ! [𝑓 𝑆 ∪ 𝑖 − 𝑓(𝑆)]

Shapley 1952; Lundberg & Lee 2017



Feature Attribution: Shapley Values 
(image classification)

• Treat each pixel location as a feature
• Instantiate 𝑓 with the logit of the target class (or 

the classification loss)
• Define meaning of 𝑓 𝑆
• E.g. pixels locations not contained in S are set to a 

baseline value (zero, mean pixel value etc.)

• Computationally expensive
• Exponentially many subsets
• Can be approximated in polynomial time

Ancona et al. 2019



Example: Shapley Values

R

R

𝑙!𝑥$

𝑥%
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1
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• Want to compute the influence of 𝑥!, 𝑥" on 
𝑙! for 𝑥 = !

! , R denotes ReLU
• Define 𝑓(𝑆) as the value of 𝑙! when inputs 

not in 𝑆 are set to 0
• 𝑃 = {𝑥!, 𝑥"}

𝑆 𝑓(𝑆)
∅ 0

{𝑥!} 1

{𝑥"} 1

{𝑥!, 𝑥"} 2.5

𝐶& = 6
'⊆) ∖ &

𝑆 ! 𝑃 − 𝑆 − 1 !
𝑃 !

[𝑓 𝑆 ∪ 𝑖 − 𝑓(𝑆)]

𝜅 𝑆

𝐶$! = 𝜅 ∅ [𝑓 𝑥! ) − 𝑓 ∅ + 𝜅 {𝑥"} [𝑓 𝑥!,, 𝑥" ) − 𝑓 𝑥"
= %! " '% '! !

"!
1 − 0 + !! " '! '! !

"!
2.5 − 1 = !

"
1 + 1.5 = 1.25

𝐶$" = 1.25

𝑥!, 𝑥" both contribute 1.25 to 𝑙! = 2.5 for 𝑥 = !
!



Combining Viualization & Attribution

Olah et al., 2018

1. Compute activations in 
a convolutional layer

2. Clusters activations k 
groups (here k = 6)

3. For each group:
1. show which pixel affect 

it most by upscaling 
the activation map
(grouped activations)

2. show a visualization for 
the group of features

This allows for “human-
scale” explanations (k 
groups rather than 
thousands) 



Combining Viualization & Attribution

Olah et al., 2018

ℎ ≈
𝑛

𝑘
𝑤

𝑛 channels

×

𝑘 prototype feature maps

ℎ
𝑤

𝑛 maps, each
showing the
activations of a 
convolution
channel

𝑘 maps, each
showing the
activations of a 
feature group

𝑘 featrure
groups; each a 
mixture of the 𝑛
original 
convolution
channels

1. Compute activations in 
a convolutional layer

2. Clusters activations k 
groups (here k = 6)

3. For each group:
1. show which pixel affect 

it most by upscaling 
the activation map
(grouped activations)

2. show a visualization for 
the group of features

This allows for “human-
scale” explanations (k 
groups rather than 
thousands) 



How Do Adversarial Examples Impact 
Visualization?



Problem: Adversarial Examples

• Recall: If the distance 𝑅 𝑥* − 𝑅 𝑥+ + is small, 
then the images 𝑥*, 𝑥+ are similar
• Yet 𝑥 and it’s adversarial example 𝑥’ are similar, but 
𝑅(𝑥) and 𝑅(𝑥’) are different
• Can we even find dissimilar 𝑥*, 𝑥+ with similar 
𝑅(𝑥*) and 𝑅(𝑥+)?



Counterexample

• Solve via gradient decent
• here: projected gradient decent (PGD), similar to the attack
• take a step toward the objective, project back on the region 

defined step size
• no overall projection on a constraint (as in the attack)

• Expectation: 𝑥*’ is visually similar to 𝑥+ (no constraint 
on 𝛿)

find 𝑥!( ≔ 𝑥! + 𝛿
minimize 𝑅 𝑥!( − 𝑅 𝑥) )

Engstrom et al., 2019



Counterexample

find 𝑥!( ≔ 𝑥! + 𝛿
minimize 𝑅 𝑥!( − 𝑅 𝑥) )

Engstrom et al., 2019



But on a robustly trained network

find 𝑥!( ≔ 𝑥! + 𝛿
minimize 𝑅 𝑥!( − 𝑅 𝑥) )

Robust Net: trained with PGD.

Engstrom et al., 2019



Implications for Feature Visualization

• Feature Visualization by optimization requires 
heavy regularization
• to encode “looks like an image” prior
• else optimization produces noise

• What happens without regularization?



find 𝑥
maximize 𝑠𝑐𝑜𝑟𝑒 𝑥 − 𝜆!𝑅! 𝑥 − …− 𝜆"𝑅"(𝑥)
where 𝑠𝑐𝑜𝑟𝑒(𝑥) = 𝑚𝑒𝑎𝑛(𝑙𝑎𝑦𝑒𝑟#[𝑥, 𝑦, 𝑧])

Olah et al., 2017; Erhan et al. 09

Implications for Feature Visualization



find 𝑥
maximize 𝑠𝑐𝑜𝑟𝑒 𝑥
where 𝑠𝑐𝑜𝑟𝑒(𝑥) = 𝑚𝑒𝑎𝑛(𝑙𝑎𝑦𝑒𝑟#[𝑥, 𝑦, 𝑧])

Implications for Feature Visualization
Single neuron 

here (component 
of 𝑅(𝑥))

Optimized via PGD

Engstrom et al., 2019



Implications for Feature Attribution
• On non-robust networks gradient based-attribution 

methods require condition to show a “clean” saliency map
• On robust networks the gradient is better is aligned with 

human expectation (as the features are better aligned)

Gradient of classfication loss w.r.t input 
Tsipras et al., 2019



Why?

• Robust Neural Networks rely on different features
• these features are aligned with human perception
• e.g. these features are robust to small perturbations
• thus visualizations are what we expect

• Non-Robust Neural Networks learn non-robust 
spurious features in the data
• optimization shows these
• but additional regularization hides them
• these features may allow for higher accuracy

Tsipras et al., 2019
Ilyas et al., 2019



Consequence: Image Manipulation

Santurkar et al., 2019

The representation learned by the robust classifier is robust 
and versatile enough to allow for various computer vision 
tasks just by optimizing w.r.t. the input..



Why do adversarial examples exist?

• Recall (lecture 2): Neural
Networks are too linear

• Additional Reason:
Non-Robust Neural Networks learn features that 
statistically are only weakly connected with the input

Goodfellow et al., 2015
Tsipras et al., 2019
Ilyas et al., 2019



Lecture Summary
Feature Visualization &
Feature Attribution

Connection to
adversarial Robustness


