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Aspects of Reliable Al

Al Safety & Robustness Interpretability Privacy & Fairness
Verification of safety and Understanding the models Data of individuals in
robustness properties; training decision making process. produced and they are not
that enforces them. discriminated,

e.g. Adversarial e.g. Attention e.g. Differential privacy,
Robustness, Robust Mechanisms, Neuro- Enforcing Fairness in
Training, Querying and symbolic Approaches, Neural Networks
Constraining Neural Nets Visualization of (covered in upcoming
(covered in upcoming and decision making lectures)

previous lectures) (today)



Today: Visualizing Classification

INPUT IMAGE ACTIVATIONS of neuron groups

Olah et al., 2018



Convolutional Neural Net (CNN)

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

» Convolutional layers: f)(x) = ReLU(x * F + b)
* Linear layers: f®)(x) = ReLU(A - x + b)

[source: Wikipedia by user Aphex34]



https://commons.wikimedia.org/wiki/File:Typical_cnn.png

Example: 2D Convolution
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Example: 2D Convolution
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Example: 2D Convolution

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[:,:,0] wO[:,:,0 wl[:,:,0] o[:,:,0]
ojoyffojo o 0 O 01 |I-1 0 0 O EO 0
[oltltlo 1t o o 0 1] 0 1 -1 2 3 2
offlr1 fjlo |12 1 2 O 1 {|]O ||O 0 0 O -1 -3 0
0 2 0 0 0 2 O wO[:,:,1 wl[:,:,1] o[:,:,1]
01 0100 0 ll-l-l, 0 0 1 1 3 -2
0110 0 0 -1|0 ||O 0O 1 0 2 3 4
0 0 0 0 0 0|0 -1 -1 1 10 B25 Bt
7, 1] w0 72 wl[:,:,2]
oo oo o e © . When we apply a convolutional layer we in fact
g 0 % = : z o o 1+ 4+ apply many convolutions in parallel
002204 0 Bias b0/ (Lalx0) sasvy ey WVE refer to the to the different results as
0 1027220 0% +/0] b1l /:/0] channels. The above green output has two
g : (2) (‘) : - channels (as two filters were used).
t,:,2] toggle movement
0 0|Loé 0 00
OoJlo4q0|1 00 O
1|1 1 0 0
0N 125 F25 R N1 (O 10}
0O 0 0 0 0 0 O . . .
—1 1111 https://cs231n.github.io/convolutional-networks/
0O 0 0 0 0 0 O


https://cs231n.github.io/convolutional-networks/

Convolution

e Convolutions (formally cross-correlations) have a
high response if the local pattern of the filter
(kernel) matches the pattern in the data

* For example: a matrix encoding high contrast
between left and right (shown below) yields a
vertical edge detector
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AlexNet

e 2012 - Krizhevsky et al. “AlexNet”
* low error on ImageNet benchmark
* Observation: feature similarity

“If two images produce feature activation vectors
with a small Euclidean separation, we can say that
the higher levels of the neural network consider

them to be similar.”

Krizhevsky et al., 2012



AlexNet

* Let R(x) be the vector of neuron activations for a
layer deep in the network

e If the distance ||R(x;) — R(x5)]||, is small, then the
images X, X, are similar

15t column: image
from test set

others: 6 training set
images with most
similar R(x)

Krizhevsky et al., 2012



Features

* Consequence: neuron activations capture semantic
features of the input

* Feature Visualization: For a given neural network,
what are these features?

* Feature Attribution: Which areas of a given image
are responsible for classification in a given neural
network?



AlexNet: First Layer Features

* Weights of the first convolutional layer (11x11x3)
shown as color images

* Detectors for edges, simple patterns and color
blobs

Krizhevsky et al., 2012



Inverting Convolutions

* Inspect neural networks in order to improve them

* For a given input and convolutional filter:

* inverts convolutions to showcase the structure in the
input causing high activation
* first propagate input forward to the filter

* then propagate these activations back to the input layer
in the inverted network (shown next)

* the outputs highlight which part of the image are
responsible for the activation of the filter

Zeiler et al., 2013



Inverting Convolutions
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Inverting Convolutions

* For a random set of convolutional filters in each layer, this shows
the inputs causing the highest activations in the test set

* Pattern on the left reveals structure causing activation
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Zeiler et al,, 2013



Zeiler et al., 2013




Zeiler et al., 2013




Feature Visualization by Optimization

Find input x that
/ maximizes score

find X

maximize score(x) —A{R{(x) — ...— AR, (x) and minimized
regularizes

where score(x) = mean(layer,|x,y,z]) — .

the activation of
a neuron,
channel or layer

Different optimization
objectives show what
different parts of a
network are looking for.

[
sofmjlax
@

n layer index

x,y Spatial position
z channel index

k class index

' ,\"\;-‘ N
o3

Neuron Channel Layer/DeepDream

Class Logits Class Probability

layer [x,y,z] layer [:,:,2] layer [:,:,: 12 pre_softmax[k] softmax[k]

Olah et al.,, 2017; Erhan et al. 09



Feature Visualization by Optimization

Step O Step 4 Step 48

Regularizers/Pirors

'

layer, — score(x) — X;A; Ry (x)

x < x+nV,score(x) — XA Re(x)

Olah et al., 2017



Feature Visualization by Optimization

e Regularizers are crucial
* Encode the prior “input should look a real image”

* Optimization in Fourier basis, data whitening, added
jitter etc.

* Optimize for multiple inputs at once
* add diversity term loss to discourage similarity

Simple Optimization

Optimization with diversity reveals four different, curvy facets. Layer mixed4a, Unit 97

Olah et al., 2017



Feature Visualization by Optimization

S

Edges (layer conv2d0) Textures (layer mixed3a) Parts (layers mixed4b & mixed4c) Objects (layers mixed4d & mixed4e)

Olah et al., 2017



Feature Visualization by Optimization

Baseball—or stripes? Animal faces—or snouts? Clouds—or fluffiness? Buildings—or sky?
mixed4a, Unit 6 mixed4a, Unit 240 mixed4a, Unit 453 mixed4a, Unit 492

Olah et al., 2017



Feature Attribution

* Which areas of the image are responsible for
classification?

* Many techniques
* Gradient based
* Shapley values
* Occlusion based
* Etc.

Selvaraju et al., 2017



Feature Attribution: Gradient Based

Gradient of target logit w.r.t. the
input shows how changing single
pixels influences the logit

dlogit:(x)
0x

Adebayo et al., 2018



Feature Attribution: Gradient Based

Integrated Gradient

Original . Guided Guided Integrated Gradients
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* To obtain a clearer result
 Different methods apply scaling/conditioning of the gradient

* Just looking at the visualization is dangerous: many of
these methods were found not to depend (much) on
the actual weights in higher layers of the network

e the gradient, by it’s definition, however does

Adebayo et al., 2018



Feature Attribution: Shapley Values
(general)

* Input x has a set of features P (e.g. individual pixels)

 Want to know how much each feature contributes
to a function f(P) (e.g. a class logit)

* Classic result from game theory
* Theoretically justified

ISIt(P] =18 = 1)! .
= ) o [FSU{i) - f(S)]
ScP \ {i} '
\ ] |\ J\ J \ J
| | | |
attribution  all subsets average contribution to feature i
to feature i

e (%))

Shapley 1952; Lundberg & Lee 2017



Feature Attribution: Shapley Values
(image classification)

* Treat each pixel location as a feature

* Instantiate f with the logit of the target class (or
the classification loss)

* Define meaning of f(S)

* E.g. pixels locations not contained in S are setto a
baseline value (zero, mean pixel value etc.)

 Computationally expensive
* Exponentially many subsets
* Can be approximated in polynomial time ,"{,

Ancona et al. 2019



Example: Shapley Values

* Want to compute the influence of x4, x, on
[{ forx = (D, R denotes RelU

* Define f(S5) as the value of [; when inputs
notin S aresettoO

* P ={x1,x5}
=y PR D s v - ol
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Combining Viualization & Attribution

1. Compute activations in
a convolutional layer

2. Clusters activations k
groups (here k = 6)

3. For each group:

1. show which pixel affect
it most by upscaling
the activation map
(grouped activations)

2. show avisualization for
the group of features

This allows for “human-
scale” explanations (k
groups rather than
thousands)

Olah et al., 2018

By using non- INPUT IMAGE ACTIVATIONS of neuron groups
negative matrix
factorization we can
reduce the large
number of neurons to
a small set of groups
that concisely
summarize the story
of the network.

NEURON GROUPS based on matrix factorization of mixed4d layer —

feature visualization of
each group w %
HHHHHH @ u " -

EFFECT of neuron groups on output classes

6 groups

Labrador retriever 2.249 3.755 -1.193 -1.141 1.117 -1.892
beagle 3.298 0.599 -0.110 -0.356 -0.133 -2.618
tiger cat -0.350 -0.994 -1.607 0.116 0.248 0.205
lynx 0111 -0.642 -0.057 0.117 1120 0.152
tennis ball 0.920 1.336 0.152 -0.885 1.227 -0.480



Combining Viualization & Attribution

1. Compute activations in
a convolutional layer

2. Clusters activations k N channels
groups (here k = 6) k prototype feature maps
n

3. For each group:

1. show which pixel affect h
it most by upscaling ~
the activation map h - X k
(grouped activations) |

2. show a visualization for w
the group of features w
\ J \ J | ]
| | Y
This allows for “human- n maps, each k maps, each k featrure
scale” explanations (k showing the showing the groups; each a
groups rather than activations of a activations of a mixture of the n
thousands) convolution feature group original
channel convolution
channels

Olah et al., 2018



How Do Adversarial Examples Impact
Visualization?



Problem: Adversarial Examples

* Recall: If the distance [|R(x;) — R(x,)||, is small,
then the images x4, X, are similar

* Yet x and it’s adversarial example x’ are similar, but
R(x) and R(x") are different

* Can we even find dissimilar x, x, with similar
R(x;) and R(x;,)?



Counterexample

find X; =% +6
minimize IR(x1) — R(xy)|l

* Solve via gradient decent
* here: projected gradient decent (PGD), similar to the attack

* take a step toward the objective, project back on the region
defined step size

* no overall projection on a constraint (as in the attack)

* Expectation: x;’ is visually similar to x, (no constraint
on o)

Engstrom et al., 2019



Counterexample

find X; =% +6
minimize IR(x;) — R(x)|l,

Engstrom et al., 2019



But on a robustly trained network

find
minimize

Target (x,)

Standard (x;) Robust (x;) Source (x;)

Engstrom et al., 2019

X; =% +6
IR(x1) — R(x)Il;

Robust Net: trained with PGD.




Implications for Feature Visualization

e Feature Visualization by optimization requires
heavy regularization

* to encode “looks like an image” prior
* else optimization produces noise

* What happens without regularization?



Implications for Feature Visualization

find X
maximize score(x) —A{R{(x) — ...— AR, (x)
where score(x) = mean(layer,|x,y, z])

Different optimization
objectives show what
different parts of a
network are looking for.
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n layer index

x,y Spatial position
z channel index

k class index

Layer/DeepDream Class Logits Class Probability

layer [x,y,z] layer [:,:,2] layer [:,:,: 12 pre_softmax[k] softmax[k]

Neuron

Olah et al.,, 2017; Erhan et al. 09



Implications for Feature Visualization

find X / Optimized via PGD

maximize score(x)
where score(x) = mean(layer,|x,y, z]

Single neuron

here (component
of R(x))

Maximizing different coordinates (i)

Seeds (x,)

Robust

Standard

Engstrom et al., 2019



Implications for Feature Attribution

* On non-robust networks gradient based-attribution
methods require condition to show a “clean” saliency map

* On robust networks the gradient is better is alighed with
human expectation (as the features are better aligned)
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(a) MNIST (b) CIFAR-10 (c) Restricted ImageNet
Gradient of classfication loss w.r.t input

Tsipras et al., 2019



Why?

* Robust Neural Networks rely on different features
* these features are aligned with human perception
* e.g. these features are robust to small perturbations
* thus visualizations are what we expect

* Non-Robust Neural Networks learn non-robust
spurious features in the data
e optimization shows these
* but additional regularization hides them
* these features may allow for higher accuracy

Tsipras et al., 2019
llyas et al., 2019



Consequence: Image Manipulation

The representation learned by the robust classifier is robust
and versatile enough to allow for various computer vision
tasks just by optimizing w.r.t. the input..

Sketch-to-Image

e

~ = e =
B e e L

Santurkar et al., 2019



Why do adversarial examples exist?

e Recall (lecture 2): Neural
Networks are too linear

argument to softmax

e Additional Reason:
Non-Robust Neural Networks learn features that
statistically are only weakly connected with the input

Goodfellow et al., 2015
Tsipras et al., 2019
llyas et al., 2019



Lecture Summary

Feature Visualization & Connection to
Feature Attribution adversarial Robustness

INPUT IMAGE ACTIVATIONS of neuron groups

Target (X,)

Standard (x;) Robust (x;) Source (x;)



