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Now: Logic and Deep Learning

Can we query the network with questions beyond adversarial 
examples?

Can we enforce properties that the network should satisfy?

What are the guarantees of such methods?

Lecture is based on: 

DL2: Training and Querying Neural Networks with Logic, ICML 2019



Combining Logic and Deep Learning
As Deep Learning makes more and more decisions (e.g: bank credit, job applications, 

university admissions, political elections), it becomes critical to be to understand how 

these decisions can be influenced and understood.

Rejected for 
credit by  NN

Query

Deep Learning 
Query Engine

Neural Network NN

What should the applicant change 
to receive a bank credit?

• income
• residence
• conditions
• job
• …

To be in the > 84%
probability of receiving
credit, increase income
by at least 5K and be
employed for at least 3
more months…



Combining Logic and Deep Learning
Adversarial examples are in fact just a special case of a query…

deer

Query

Deep Learning 
Query Engine

Neural Network NN

image i

Find an image i which gets

classified to 9 (truck) where the

image i is within some distance

of the image deer.

classified as 
truck by NN!



Image nine

Deep Learning 
Query Engine

Network NN1

image i

Network NN2

Find an image i which gets

classified to 8 with network 1

and to 9 with network 2, such

that pixels in row 0:9 of image i

are the same as image nine

Combining Logic and Deep Learning

Comparing

neural networks



Combining Logic and Deep Learning
Adversarial examples are in fact just a special case of a query…

deer

Query

Deep Learning 
Query Engine

Neural Network NN

image i

classified as 
truck by NN!

Hmm, but this involves logical 

constraints and a neural network! 

How can we unify these?



Combining Logic and Deep Learning

We can also train neural networks to satisfy a logical property

In fact, this can help accuracy as we can label part of the data and specify 

properties on the remaining, unlabeled data.

Dataset of 
images

Logical Property 𝜙

Deep Learning  
+ Logic Training

Network  𝜙

Network 
Topology 

weights 



Declaratively, to query the network for inputs
we need a precise way to impose constraints on
these inputs, hence some type of logic.

Operationally, we also need a way to perform
queries on the network with these constraints.



Part I: 

Querying the Network



Declaratively, to query the network for inputs
we need a precise way to impose constraints on
these inputs, hence some type of logic.



We introduce a standard logic with:

 no quantifiers: no , 

  ,  , ,  ,  ,  , <, >, 

 functions   f: ℝm  ℝn

 terms: variables, constants: represent vectors of reals

 terms: function application

 terms: arithmetic expressions over terms (e.g., +)

Lets first define the logic

Comparison operations on vectors are done point-wise.

If a and b are vectors of dimension 2, then a = b is written as a[0] = b[0]  a[1] = b[1] 



𝐜𝐥𝐚𝐬𝐬 NN i = 9  i − deer ∞ < 25  i − deer ∞ > 5

Lets expand this a bit

The logic used in our example query



The logic used in our example query

𝐜𝐥𝐚𝐬𝐬 NN i = 9  i − deer ∞ < 25  i − deer ∞ > 5

ሥ
j=1, j≠9

k

NN i j < NN i 9  i − deer ∞ < 25  i − deer ∞ > 5

Syntactic   sugar  

This is the actual formula being used after expanding the 
syntactic sugar. 

Here, k is the number of labels.



Here we have 2 functions: NN and the norm ∞. 

Function NN returns a probability distribution over labels.

We have 4 constants: 9, 5, 25 and deer (real-valued vector)

We have 1 free variable i

Goal: find a value for i that satisfies the constraint above

𝜙 

ሥ
j=1, j≠9

k

NN i j < NN i 9  i − deer ∞ < 25  i − deer ∞ > 5

The logic used in our example query



𝜙 

ሥ
j=1, j≠9

k

NN i j < NN i 9  i − deer ∞ < 25  i − deer ∞ > 5

One approach to finding the value of i is to invoke standard a
constraint solver (e.g., SMT solver which generalize SAT to

richer theories). Unfortunately, unless the network NN is really
small, these solvers simply time out (one of the problem is the
non-linear constraints that the network exhibits). Thus, we
need another approach.

How do we solve this problem?



Operationally, we also need a way to perform 
queries on the network with these constraints.



𝜙 

ሥ
j=1, j≠9

k

NN i j < NN i 9  i − deer ∞ < 25  i − deer ∞ > 5

Instead, the idea will be to introduce a particular
translation T of logical formulas into a differentiable
loss function T(𝜙 ) to be solved with (mostly
standard) optimization, where the translation T has a
certain property.

Solve as optimization



Theorem: ∀x, T(𝜙)(x) = 0 if and only if x satisfies 𝜙

Wanted Property of Translation

What this theorem says is that: if we can find a solution x
where the loss function of 𝜙 is 0, then that solution x is a
satisfiable assignment to 𝜙, that is, it is a solution to our
original problem.

Also: If x satisfies 𝜙 then the loss function at x is 0



Optimize to find a solution

Given this theorem, our goal is to find an assignment
x = i such that T(𝜙)(i) is 0.

We can use standard gradient-based optimization to
minimize the function T(𝜙). There can potentially be
many solutions which set the function to 0.

Theorem: ∀x, T(𝜙)(x) = 0 if and only if x satisfies 𝜙



Translation: Formula to Loss

t1  t2 max(0, t1  - t2)

t1  t2 [t1 = t2]

t1 = t2 T(t1  t2   t2  t1)

t1 < t2 T(t1  t2   t1  t2)

   T()   T() 

   T() + T() 



Two comments on the translation:

• Translation is recursive: translating a term defined in a way which refers to how the 
constituents of the term are translated.

• The resulting loss function is non-negative

Translation: Formula to Loss

t1  t2 max(0, t1  - t2)

t1  t2 [t1 = t2]

t1 = t2 T(t1  t2   t2  t1)

t1 < t2 T(t1  t2   t1  t2)

   T()   T() 

   T() + T() 



t1  t2 max(0, t1  - t2)

what this says is:

as long as t1  t2 , the translated value is 0.

However, if t1 > t2 then the magnitude of the violation
is measured by t1 - t2 and the closer the two values get,
the smaller the violation is.

Intuition behind the translation



t1  t2 [t1 = t2]

Intuition behind the translation

Translated value is equal to 0 except when t1 = t2. In the 
case of t1 = t2, translated values is equal to 1.



Intuition behind the translation

t1 = t2 T(t1  t2   t2  t1)

Translated value is computed recursively - it is equal to:

T(t1  t2 ) + T(t2  t1) = 
max(0, t1 - t2) + max(0, t2 – t1) = |t1 - t2|.

As t1 and t2 get closer, the translated value gets closer to 0.



t1 < t2 T(t1  t2  t1  t2)

Intuition behind the translation

what this says is:

To encode t1 < t2, we will encode conjunction of t1  t2 and t1  t2. 

The translated value is then equal to max(0, t1 - t2) + [t1 = t2].



The Translation: Formula to Loss

   T()   T() 

what this says is:

if one of the terms is 0, then the entire translated
expression will be 0 (that is, the formula is satisfied).



The Translation: Formula to Loss

   T()  + T() 

what this says is:

for the result to be 0, both of terms should be 0.



Example: a satisfying formula

x  2  x  5 max 0, 2 − x + max 0, x − 5

Logical formula: Translated Loss:

Satisfying assignments:

Any value between 2 and 5, inclusive

The function is 0 when x is between 2 and 5.
We need to find one such assignment.

x



Example: an unsatisfiable formula

x  4  x  3 max 0, 4 − x + max(0, x − 3)

Logical formula: Translated Loss:

Satisfying assignments:

There are no satisfying assignments

The function is never 0



Something more fun: Octagon

x - y  3       
y  8           
y  2           
x + y  13      
x + y  5       
x  1           
x – y  -5      
x  7

See plot here: 
https://www.desmos.com/calculator/kw38cpoirk

Formula is 
SAT here

max(0, x-y-3) + 

max(0, y-8)  + 

max(0, 2-y) +   

max(0, x+y-13)   + 

max(0, 5-x-y)    + 

max(0, 1-x)      +  

max(0, -5-x+y)   + 

max(0, x-7)

Translate

https://www.desmos.com/calculator/kw38cpoirk


Plot with Mathematica

We can visually see that for values of x between 1 
and 7 and of y between 2 and 8, the loss is 0

Plot3D
[Max[0, 2 - y] + Max[0, -3 + x - y] + Max[0, -8 + y] +   Max[0, -13 + x + y] + Max[0, 5 - x - y] + Max[0, 1 - x] +   
Max[0, -5 - x + y] + Max[0, x - 7], {x, 0, 10}, {y, 0, 14}]

Formula is 
SAT here

xx

y

xy

loss



Back to Neural Nets



ሥ
j=1, j≠9

k

NN i j < NN i 9  i − deer ∞ < 25  i − deer ∞ > 5

NN(i) 1 < NN(i) 9 

NN(i) 2 < NN(i) 9 

NN(i) 3 < NN(i) 9 

NN(i) 4 < NN(i) 9 

NN(i) 5 < NN(i) 9 

NN(i) 6 < NN(i) 9 

NN(i) 7 < NN(i) 9 

NN(i) 8 < NN(i) 9 

i − deer ∞ < 25 

i − deer ∞ > 5

max(0, NN(i) 1 − NN(i) 9 )  + [NN(i)[1] = NN(i)[9]] 

+ max(0, i − deer ∞ − 25) + [ i − deer ∞ = 25] 

+ max(0, 5 − i − deer ∞ ) + [ i − deer ∞ = 5]

Original Formula 𝜙 Translated Loss  T(𝜙)

+ max(0, NN(i) 2 − NN(i) 9 )  + [NN(i)[2] = NN(i)[9]] 

+ max(0, NN(i) 3 − NN(i) 9 )  + [NN(i)[3] = NN(i)[9]] 

+ max(0, NN(i) 4 − NN(i) 9 )  + [NN(i)[4] = NN(i)[9]] 

+ max(0, NN(i) 5 − NN(i) 9 )  + [NN(i)[5] = NN(i)[9]] 

+ max(0, NN(i) 6 − NN(i) 9 )  + [NN(i)[6] = NN(i)[9]] 

+ max(0, NN(i) 7 − NN(i) 9 )  + [NN(i)[7] = NN(i)[9]] 

+ max(0, NN(i) 8 − NN(i) 9 )  + [NN(i)[8] = NN(i)[9]] 



Tricky detail for optimization: 
box constraints

As we discussed before, optimizing for ‘box
constraints’ with gradient descent is ineffective.
Here, the [0,1] restricts each pixel in image i to be
of a particular concrete value.

Thus, rather than translating these constraints like
all other constraints, we can ``take out’’ the box
constraints out and give them to the optimizer
directly.

For example, we can use the L-BFGS-B optimizer
where the B stands for Box constraints.



Finding SAT with optimization: 
solution flow

Original formula
𝜙(i,      )

Translation T
Loss 

L(i,      )

Minimize
Solution  

i = 

Quantifier-free 
logical fragment

Satisfies a 
mathematical 
property 
(see theorem)

Use L-BFGS-B to 
deal with box 
constraints and 
minimize the loss

Ideally, i makes loss 
0.

Take out box constraints and pass them separately

We can think of this pipeline as using optimization to find counter-examples 
to a given property that the network should satisfy



Beyond counter examples however, a fundamental question is:

can we somehow force the network to satisfy the property we
want? Essentially, defend the network w.r.t to a particular
property, beyond only robustness.



Part II: 

Training the Network with Background Knowledge

(Generalized Adversarial Training beyond Robustness)



Training the Network with Logic

Dataset of 
images

Logical Property 𝜙

Deep Learning  
+ Logic Training

Network  𝜙

Neural Network 
Topology 

weights 

Principles:

• We still use  the same logic as before

• We still ``compile’’ property 𝜙 into a loss as before

• We need a way to define the optimization problem now



To motivate:

Lets look at some general class of use cases 
before discussing how it actually works



Use in supervised learning (entire dataset labeled): 
Example training constraints on CIFAR-10

𝑦 = 𝑐𝑎𝑟 ⇒ 𝑁𝑁 𝑥 𝑡𝑟𝑢𝑐𝑘 > 𝑁𝑁 𝑥 𝑑𝑜𝑔 + 𝛿

All images in dataset that are classified as a 𝑐𝑎𝑟 have a higher probability for the label 
𝑡𝑟𝑢𝑐𝑘 than the probability for 𝑑𝑜𝑔:

∀𝑧 ∈ 𝐿∞ 𝑥, 𝜖 . 𝑦 = 𝑐𝑎𝑟 ⇒ 𝑁𝑁 𝑧 𝑡𝑟𝑢𝑐𝑘 > 𝑁𝑁 𝑧 𝑑𝑜𝑔 + 𝛿

Same as above, but now constraints should also hold for all images close to 𝑥:

Experimentally, once we finish training with either of the two constraints , the accuracy tends to
dip slightly (1-2%), however, the constraint accuracy (how many images in the dataset satisfy the
constraint) tends to increase by about 10% which is significant.

However, not all images in the dataset satisfy the constraint. There are several reasons for that: (i)
we typically do not stop at a solution with loss 0, (ii) the constraint is not supposed to hold for all
images anyway, (iii) the loss is not yet ideal and can be improved.



Use in semi-supervised (part of dataset labeled): 
Example training constraints on CIFAR-100

𝑝 𝑝𝑒𝑜𝑝𝑙𝑒 < 𝜖  𝑝 𝑝𝑒𝑜𝑝𝑙𝑒 > 1 − 𝜖 
𝑝 𝑖𝑛𝑠𝑒𝑐𝑡𝑠 < 𝜖  𝑝 𝑖𝑛𝑠𝑒𝑐𝑡𝑠 > 1 − 𝜖  …

Either the probability of a group is very high or very low:
𝑝 𝑝𝑒𝑜𝑝𝑙𝑒 = 𝑁𝑁 𝑥 𝑏𝑎𝑏𝑦 + 𝑁𝑁 𝑥 𝑏𝑜𝑦 + 𝑁𝑁 𝑥 𝑔𝑖𝑟𝑙 + …

Approach I: train with just the labeled (green) dataset, ignoring the red one.

or

Approach II: train with both data sets, and leverage the constraint also on the red one.

With Approach II, can raise prediction accuracy on test data set by 2% and constraint 
accuracy by 26%  

Unlabeled Dataset (e.g. 80%) 
 but we provide a 

constraint 

Labeled Dataset (e.g. 20%) Here we provide the labels as usual

Here we do not provide labels as its often difficult to give labels 
However, we can provide a constraint (belief):



Connection to Linf robustness: 
Semi-supervised learning increases robustness on CIFAR-10
[Carmon et al. 2019, Uesato et al. 2019]

Result: State-of-the-art standard accuracy and empirical robustness against 
strong adversaries.

Benefits over TRADES, previously known best defense, are 5% higher standard accuracy 
and 7% higher empirical robustness (against PGD).

Additional 500K 
unlabeled CIFAR-10 images

Labeled CIFAR-10 Dataset Here we provide the labels as usual

Simplest approach:

1) Train a base classifier ෡Θ on labeled dataset
2) Use ෡Θ to infer the labels for unlabeled dataset.
3) Use standard adversarial training to learn robust classifier Θ on all 
images (both originally labeled and pseudo-labeled by ෡Θ.



Problem Statement

find 𝜃
maximize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [∀𝒛 . 𝜙 𝒛, 𝑠, 𝜃 ]𝑠~𝐷

What this says is: we want to find such parameters/weights
𝜃 for the network, so the expected value of the property
increases.

Note that we even allow restricted quantified formulas here.



Rephrasing : Step I

find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [𝐦𝐚𝐱 𝜙 𝒛, 𝑠, 𝜃 ]𝑠~𝐷

What this says is: we want to find such parameters/weights 𝜃 for the neural 

network, so that the maximum violation of the property 𝜙 is minimized.

This is essentially: generalized adversarial training beyond robustness

find such 𝒛 where 
violation is maximized

𝒛

became minimization



Rephrasing: Step II

find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [T(𝜙) 𝑧_𝑤𝑜𝑟𝑠𝑡, 𝑠, 𝜃 ]

and z_worst = argmin(T(¬𝜙) 𝑧, 𝑠, 𝜃)

𝑠~𝐷

The translation leads to a differentiable function which we
can optimize. Intuitively, we are trying to get the worst
possible violation of the formula and then to find a network
that minimizes its effect.

minimize the expected value of 
the worst counter-example

𝑧

find the worst-case counter 
example z_worst



Solving the inner minimization problem

In principle, we can use a standard optimizer to solve for the

inner minimization problem. However, the variable 𝑧 can

participate in all kinds of constraints in 𝜙. And as we saw

earlier, even if its just norm constraints that 𝑧 participates in, a

pure SGD-style optimizer can have a hard time.

find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [T(𝜙) 𝑧_𝑤𝑜𝑟𝑠𝑡, 𝑠, 𝜃 ]

and z_worst = argmin(T(¬𝜙) 𝑧, 𝑠, 𝜃)

𝑠~𝐷

𝑧



Solving the inner minimization problem

Thus, we will focus on a restricted fragment where 𝑧 participates

in constraints that restrict 𝑧 to be a convex set where we have an

efficient algorithm for projection (a closed form solution). Note

that in general, projection onto arbitrary convex sets is hard.

find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [T(𝜙) 𝑧_𝑤𝑜𝑟𝑠𝑡, 𝑠, 𝜃 ]

and z_worst = argmin(T(¬𝜙) 𝑧, 𝑠, 𝜃)

𝑠~𝐷

𝑧



Example: Generating the Loss

𝜙 𝑧, 𝑥, 𝜃 = 𝑥 − 𝑧 ∞ ≤ 𝜖 ⇒ 𝑁𝑁𝜃 𝑧 [3] > 𝛿

𝜙 𝑧, 𝑥, 𝜃 = ¬ 𝑥 − 𝑧 ∞ ≤ 𝜖  𝑁𝑁𝜃 𝑧 [3] > 𝛿

¬𝜙 𝑧, 𝑥, 𝜃 = 𝑥 − 𝑧 ∞ ≤ 𝜖  𝑁𝑁𝜃 𝑧 [3] ≤ 𝛿

𝑙𝑜𝑠𝑠 𝑧, 𝑥, 𝜃 = max 0, 𝑥 − 𝑧 ∞− 𝜖 +max(0, 𝑁𝑁𝜃 𝑧 [3] − 𝛿)

expansion of ⇒

negation ¬

translation to loss

difficult to solve: minimization over  arbitrary constraints

we want to enforce 
the constraint 
∀𝑧. 𝜙 𝑧, 𝑥, 𝜃



A possible solution to minimizing the loss

𝑙𝑜𝑠𝑠 𝑧, 𝑥, 𝜃 = max 0, 𝑥 − 𝑧 ∞− 𝜖 +max(0, 𝑁𝑁𝜃 𝑧 [3] − 𝛿)

this part aims to restrict 𝑧 to be in 
the 𝐿∞ ball around 𝑥 of size 𝜖

𝑙𝑜𝑠𝑠 𝑧, 𝑥, 𝜃 = max(0, 𝑁𝑁𝜃 𝑧 [3] − 𝛿)

split the problem

𝐚𝐫𝐠𝐦𝐢𝐧
𝑧

𝐚𝐫𝐠𝐦𝐢𝐧
𝑧

𝐿∞ (𝑥, 𝜖)

Solve with Projected Gradient Descent (PGD) while projecting 𝑧 onto the 𝐿∞ ball

𝐿∞ ball around 𝑥 of size 𝜖

Note: in general, efficient projections (closed form solutions) on convex sets is a hard problem. Such

algorithms exist for 𝐿1 , 𝐿2 , 𝐿∞ and some others. Because of this, in practice, the logic is restricted to

having z participate only in constraints where efficient projections are possible.



Lecture Summary

Combine Deep Learning with Logic Logic to loss

Query

Deep Learning 
Query Engine

find 𝜃
maximize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [∀𝒛 . 𝜙 𝒛, 𝑠, 𝜃 ]
𝑠~𝐷

Training with logic as maximization

𝑙𝑜𝑠𝑠 𝑧, 𝑥, 𝜃 = max 0, 𝑥 − 𝑧 ∞− 𝜖 +max(0,𝑁𝑁 (𝑧) − 𝛿)

𝑙𝑜𝑠𝑠 𝑧, 𝑥, 𝜃 = max(0,𝑁𝑁 (𝑧) − 𝛿)

𝐦𝐢𝐧
𝑧

𝐦𝐢𝐧
𝑧

𝐿∞ (𝑥, 𝜖)

𝐿∞ ball around 𝑥 of size 𝜖

Restrictions so we can use PGD

t1  t2 max(0, t1  - t2)

t1  t2 [t1 = t2]

t1 = t2 T(t1  t2   t2  t1)

t1 < t2 T(t1  t2   t1  t2)

   T()   T() 

   T() + T() 


