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1. Infers (typically convex) shapes capturing intermediate invariants. Usually, 

relaxations are variants of Polyhedra to balance analysis scalability and precision.

2. The method is general. It can handle any safety property (not just robustness).

3. Deterministic guarantees are provided.

4. Very active research area constantly pushing the size of networks.

Key challenge: scaling to large networks

Deterministic Certification: reminder



Key idea: construct a classifier g out of an existing classifier f, in a way which

ensures that g has certain statistical robustness guarantees.

The construction does not assume knowledge of f and can scale to large

networks. The method focuses on restricted robustness-like properties, and

requires sampling at inference time, not required by convex methods. The

usual standard accuracy vs. robustness trade-off is present here as well.

Certified Adversarial Robustness via Randomized Smoothing, ICML 2019
Cohen, Rosenfeld, Kolter

Randomized Smoothing

https://arxiv.org/pdf/1902.02918.pdf

https://arxiv.org/pdf/1902.02918.pdf


Constructing classifier 𝑔

Given a base classifier 𝑓:ℝ𝑑 → 𝒴,

construct a smoothed classifier 𝑔 as follows:

𝑔 𝑥 := argmax𝑐∈𝒴 ℙ𝜖(𝑓(𝑥 + 𝜖) = 𝑐)

where 𝜖 ∼ 𝒩(0, 𝜎2𝟏)

𝜎 controls the amount of noise Isotropic Gaussian: 
restricted co-variance 

matrix



Robustness Guarantee

Suppose that:  𝑐𝐴 ∈ 𝒴 and 𝑝𝐴, 𝑝𝐵 ∈ 0,1 satisfy:

ℙ𝜖 𝑓 𝑥 + 𝜖 = 𝑐𝐴 ≥ 𝑝𝐴 ≥ 𝑝𝐵 ≥ 𝒎𝒂𝒙 ℙ𝜖 𝑓 𝑥 + 𝜖 = 𝑐
𝑐 ≠ 𝑐𝐴

Then:  

𝑔 𝑥 + 𝛿 = 𝑐𝐴 for all ∥ 𝜹 ∥𝟐 < 𝑅 where:

certification radius 𝑅:=
𝜎

2
(Φ−1(𝑝𝐴) − Φ−1(𝑝𝐵))

and Φ−1 is the inverse of the standard Gaussian CDF.



Robustness Guarantee

Suppose that:  𝑐𝐴 ∈ 𝒴 and 𝑝𝐴, 𝑝𝐵 ∈ 0,1 satisfy:

ℙ𝜖 𝑓 𝑥 + 𝜖 = 𝑐𝐴 ≥ 𝑝𝐴 ≥ 𝑝𝐵 ≥ 𝒎𝒂𝒙 ℙ𝜖 𝑓 𝑥 + 𝜖 = 𝑐
𝑐 ≠ 𝑐𝐴

A lower bound  on the true 
highest probability 𝑝𝐴

An upper bound on the true 
second-highest probability 𝑝𝐵

In theory, we could potentially compute the true exact probabilities 𝑝𝐴, 𝑝𝐵 using for

instance exact probabilistic inference solvers such as PSI [https://github.com/eth-

sri/psi]. However, exact inference solvers do not scale to realistic networks and we

will approximate the probabilities (with certain statistical guarantees).

𝑐𝐴 is the most likely class

https://github.com/eth-sri/psi


Robustness Guarantee

certification radius 𝑅:=
𝜎

2
(Φ−1(𝑝𝐴) − Φ−1(𝑝𝐵))

Φ−1 is the inverse of the standard Gaussian CDF.

If 𝑥~𝒩(0,1) and probability 𝑝 ∈ 0,1 , then Φ−1 𝑝 = 𝑣 s.t. ℙ𝑥 𝑥 ≤ 𝑣 = 𝑝

Φ−1 is monotone: higher values of 𝑝 produce higher values for Φ−1(𝑝)

For fixed noise 𝜎, to increase radius 𝑅, we want higher 𝑝𝐴 and lower 𝑝𝐵. 

Thus, it is  important that classifier 𝑓 is pre-trained to perform well under Gaussian noise.

Increasing noise 𝜎 can increase
certified 𝑅 but can reduce accuracy.



Visualization of the normal 𝒩(0,1) CDF

certification radius 𝑅:=
𝜎

2
(Φ−1(𝑝𝐴) − Φ−1(𝑝𝐵))

Φ−1 is the inverse of the standard Gaussian CDF.

Note: result of Φ−1 𝑝 can be
negative but radius 𝑅 is always
positive due to Φ−1 being
monotone and the theorem
requiring 𝑝𝐴 ≥ 𝑝𝐵



Certified and Standard Accuracy

Then:  

𝑔 𝑥 + 𝛿 = 𝑐𝐴 for all ∥ 𝛿 ∥2 < 𝑅 where:

certification radius 𝑅:=
𝜎

2
(Φ−1(𝑝𝐴) − Φ−1(𝑝𝐵))

and Φ−1 is the inverse of the standard Gaussian CDF.

Note: the certified radius 𝑅 we obtain 

may differ between different input 𝑥’s 

because the true probabilities 𝑝𝐴 and 

𝑝𝐵 and correspondingly their lower and 

upper bounds, depend on the input 𝑥.

Thus, to compute certified accuracy, we

pick a target radius 𝑇 and count the number

of points in the test set whose certified

radius 𝑅 ≥ 𝑇 and where the predicted

𝑐𝐴 matches the test set label. Standard

accuracy is instantiated with 𝑇 = 0.



Key challenge: 

To compute certified accuracy of 𝑔, we need to get the

probabilities 𝑝𝐴 and 𝑝𝐵 or their bounded versions.

However, doing so analytically is not possible due to

inherent costs. Thus, we resort to sampling which will

provide statistical guarantees on the probabilities.



Certification Procedure



Certification Procedure

To prevent selection bias, 
sample first to find top label, 
then sample again with the 
number of samples 𝑛 >> 𝑛0



Certification Procedure

To prevent selection bias, 
sample first to find top label, 
then sample again with the 
number of samples 𝑛 >> 𝑛0

SampleUnderNoise(𝑓, 𝑥, 𝑛, 𝜎): 

evaluates 𝑓 at 𝑥 + 𝜖𝑖 for 𝑖 ∈ {1, … , 𝑛} where 𝜖𝑖 ∼ 𝒩(0, 𝜎2𝟏) and 

returns a dictionary of class counts. 



Certification Procedure

LowerConfBound(𝑘, 𝑛, 1 − α):
assuming 𝑘 ∼ Binomial(𝑛, 𝑝) for some unknown 𝑝, it returns probability 𝑝𝑙 such 
that 𝑝𝑙 ≤ 𝑝 with probability 1 − 𝛼. That is, it finds a lower bound on this unknown 
probability of success 𝑝.

There are many methods to compute confidence intervals, the smoothing paper 
uses Clopper-Pearson.



Certification: Guarantees

Let: 𝑝𝐵 = 1 − 𝑝𝐴 .  Because 𝑝𝐴 >
1

2
, we know that 𝑝𝐵 <

1

2
and 

therefore 𝑝𝐴 ≤ 𝑝𝐵 .   We now can instantiate the theorem to 

obtain the certified radius.



Certification: Guarantees

To get the radius:

𝑅 =
𝜎

2
Φ−1 𝑝𝐴 −Φ−1 𝑝𝐵 =

𝜎

2
Φ−1 𝑝𝐴 −Φ−1 1 − 𝑝𝐴

=  
𝜎

2
Φ−1 𝑝𝐴 +Φ−1 𝑝𝐴

=  𝜎 Φ−1 𝑝𝐴



Certification: Guarantees

Then we get the guarantee from the theorem:

with probability at least 1 − 𝛼, if CERTIFY returns class ෝ𝑐𝐴 and 

radius 𝑅 = 𝜎 Φ−1 𝑝𝐴 , then 𝑔(𝑥 + 𝛿) = ෝ𝑐𝐴 for all ∥ 𝛿 ∥2 < 𝑅. 



Robustness vs. Accuracy

Note: We certify that 𝑔 returns the same class for all inputs in radius 𝑅 not that

this output is necessarily correct (that is, same label as in the test set)!

There are several reasons why one may obtain an incorrect label

(incorrect includes abstentions).



Robustness vs. Accuracy

Reason I:

With increasing noise 𝜎, it is more likely that the perfect smoothed classifier

𝑔 𝑥 returns 𝑐𝐴 which may not be the label in the test set.

𝜎 = 0 𝜎 = 0.25 𝜎 = 0.5 𝜎 = 1.0



Robustness vs. Accuracy

Reason II:

Even if the perfect smoothed classifier returns 𝑐𝐴 in the test set, it is possible that

because: (i) 𝑛0 is small, or (ii) the true probabilities 𝑝𝐴 and the next-best probability

are similar, we obtain a label ෝ𝑐𝐴 which differs from the 𝑐𝐴. And then, this almost

certainly will lead to abstention which will be counted as incorrect label.

𝜎 = 0 𝜎 = 0.25 𝜎 = 0.5 𝜎 = 1.0



Effect of noise 𝜎 on 
Robustness vs. Accuracy

Each entry shows % of images in the test set (in this case ImageNet images), with provable radius ≥ 𝑟 and label as in test set.

Standard 
Accuracy

We see that as noise increases, the standard accuracy drops but the certified robust radius

increases, the same trade-off between accuracy and robustness we discussed before with

adversarial training.

Reminder: all of these results are statistical in nature and not deterministic (due to sampling).

That is, they hold with high probability.



Increasing certified radius for fixed 
noise 𝜎 may require many samples

As Φ−1 is monotone, increasing 𝑝𝐴 will increase the radius. To increase 𝑝𝐴

we need to get the base classifier 𝑓 to classify more points as ෝ𝑐𝐴.

However, even in the extreme case where all points are always classified as

ෝ𝑐𝐴 by 𝑓, increasing the number of samples will only slowly grow the radius.



Increasing certified radius for fixed 
noise 𝜎 may require many samples

In the best case scenario where 𝑓 always classifies to 𝑐𝐴,

we have that with confidence 1 − 𝛼, a tight 𝑝𝐴 lower

bound is 𝛼
1

𝑛. Plotting the resulting radius 𝜎 ⋅ Φ−1(𝛼
1

𝑛 )

for 𝛼 = 0.001 and 𝜎 = 1 , we see that increasing the

number of samples will only slowly grow the radius.



Once a classifier is certified on the test set (via

sampling as discussed so far), we need to actually

use this classifier at inference time, and again we

resort to sampling (with statistical guarantees).



Inference

The null hypothesis is: the true probability of success of a Bernoulli trial is 𝑞.

BinomialPValue(𝑖, 𝑛, 𝑞): returns the p-value of the null hypothesis, evaluated on 𝑛
statistically independent samples with 𝑖 successes.

In our case, the null hypothesis: the true probability of 𝑓 returning ෞ𝑐𝐴 is 𝑞 = 0.5
(meaning the classes are indistinguishable).

Additional work needed at
inference time, which can
be expensive, depending
on the number of samples



Inference

We accept the null hypothesis if the returned p-value is > 𝛼

We reject the null hypothesis if the returned p-value is ≤ 𝛼

If 𝛼 is small (typically 0.001) , then we may often accept the null hypothesis
and ABSTAIN, but we will be more confident in our predictions. If 𝛼 is
higher , then we may make prediction more often, but make more mistakes.



Inference: Guarantees

We can prove that:

it returns the wrong class ෞ𝑐𝐴 ≠ 𝑐𝐴 with probability at most 𝛼



Inference Guarantees: Proof Sketch

ℙ ෞ𝑐𝐴 ≠ 𝑐𝐴, no abstain

= ℙ ෞ𝑐𝐴 ≠ 𝑐𝐴 ⋅ ℙ no abstain | ෞ𝑐𝐴 ≠ 𝑐𝐴

≤ ℙ no abstain | ෞ𝑐𝐴 ≠ 𝑐𝐴

≤ 𝛼

= 𝛼 see Rank verification for exponential families, Hung & Fithian 
The Annals of Statistics, 2019
https://arxiv.org/abs/1610.03944

https://arxiv.org/abs/1610.03944


Generalizing Smoothing

Given a base classifier 𝑓:ℝ𝑑 → 𝒴,

and image transformation 𝜓𝛼: ℝ
𝑑→ ℝ𝑑

construct a smoothed classifier 𝑔 as follows:

𝑔 𝑥 := argmax𝑐∈𝒴 ℙ𝜖(𝑓(𝜓 (𝑥)) = 𝑐)

where 𝜖 ∼ 𝒩 0, 𝜎2𝟏 and requiring composition:   𝜓𝛼 (𝜓𝛽) = 𝜓

• One obtains the same guarantees as standard smoothing but also further

generalizations (e.g., relaxed distributional guarantees and individual guarantees).

• We instantiate 𝜓 with geometric transformations (e.g., rotation, translation) as in

earlier lectures. A key challenge here is handling interpolation [see paper].

standard 
smoothing is:

𝜓𝜖 𝑥 = 𝑥 + 𝜖

Certified Defense to Image Transformations via Randomized Smoothing, NeurIPS’2020
Fischer, Baader, Vechev https://www.sri.inf.ethz.ch/publications/fischer2020smoothing

𝛼 + 𝛽

𝜖

https://www.sri.inf.ethz.ch/publications/fischer2020smoothing


Summary

• We introduced randomized smoothing, a method which constructs robust classifiers

by introducing Gaussian noise which induces a robustness radius. A benefit of

smoothing is that it scales to large networks.

• Smoothing relaxes the standard deterministic guarantees into statistical guarantees

on the robustness of the classifier.

• To obtain higher certified radius, one may need many samples. It also requires

sampling at inference time which convex methods do not. The classic trade-off of

accuracy vs. robustness is also present here and is controlled by the amount of noise.

• Generalizing smoothing to different properties is harder than convex methods.


