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Human-Level Intelligence or Animal-Like Abilities?
Communications of the ACM, Oct 2018 
Adnan Darwiche
https://cacm.acm.org/magazines/2018/10/231373-human-level-intelligence-or-animal-like-abilities/fulltext

Pointing the need for broader view on AI

“…We need a new generation of AI researchers who are well
versed in and appreciate classical AI, machine learning, and
computer science more broadly while also being informed
about AI history…”

https://cacm.acm.org/magazines/2018/10/231373-human-level-intelligence-or-animal-like-abilities/fulltext


Today: Adversarial Examples

What are these? More examples in various domains

Why do they exist?

How to generate adversarial examples?
(techniques also used for adversarial training, logic, etc...discussed in later lectures)



“Adversarial examples are inputs to machine learning models 

that an attacker has intentionally designed to cause the model to 

make a mistake” 

(Goodfellow et al 2017)



Explaining and Harnessing Adversarial 
Examples, ICLR ‘15

Adversarial Examples [from lecture 1]

Tape pieces make network 
predict a 45mph sign

Robust Physical-World Attacks on Deep 
Learning Visual Classification, CVPR’18

Noisy attack: vision system thinks we now have a gibbon…

Self-driving car: in each picture one of 
the 3 networks makes a mistake…

DeepXplore: Automated Whitebox Testing of Deep Learning Systems, 
SOSP’17



Adversarial Geometric Perturbations

𝐼𝑜

7

𝐼 = 𝑟𝑜𝑡𝑎𝑡𝑒(𝐼𝑜,-35)

3



Adversarial Examples (more)

Reese Witherspoon

Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition, CCS '16

=
Russel Crowe



Real World Impersonation/Dodging Attacks



Adversarial Examples in Reinforcement Learning

Adversarial Attacks on Neural Network Policies, Huang et.al, 2017

An agent (Deep Q Network) plays the game by selecting actions from a given
state (image) that the game produces.

An attacker can perturb the image slightly so that the DQN agent chooses the
wrong action: here, it wrongly picks noop (do nothing) in the right image,
instead of moving the paddle down (left image).



Adversarial Examples in NLP

Adversarial Examples for Evaluating Reading Comprehension Systems, EMNLP’17 

The Ensemble model is fooled by the addition of an adversarial distracting sentence in blue. 



Adversarial Examples in Audio Processing: 
Speech to Text

Audio Adversarial Examples: Targeted Attacks on Speech-to-Text, ICML 2018 workshop

Adding small noise to the input audio makes the network transcribe any arbitrary phrase 

An attack on DeepSpeech:



“Stop”

“Go”

𝑠𝑜

𝑠 = 𝑠𝑜 − 110 𝑑𝐵

Adversarial Examples in Audio Processing: 
Text classification

Adding small noise to the input audio changes the classification of the output



Adversarial Examples: Some History

2006: Deep learning models gain renewed interest

2012: Multiple works showed that deep networks can achieve near-
human performance (sometimes even better)

2013: Research in understanding neural networks behavior becomes
critical with society implications beyond computer science

2014: While trying to understand decision making in neural
networks, Szegedy et al. discovered adversarial examples

2015-on: Finding adversarial examples and proving their absence
becomes an active research area…



Robustness

Robustness: A network is robust if it returns correct output on all inputs

Impractical: the input space is too large to be covered

Local Robustness (informal): A learning model is locally-robust if it returns the 
correct output on inputs similar to inputs in the training set 

This was believed to be evident by having high accuracy on the test set 



Why is High Accuracy Not Enough?

Inputs in the training and test set are taken from a given
distribution

Neural networks aim to achieve high accuracy on test sets drawn
from the given distribution

There are still many similar inputs that are never tested (and have
low-probability for the given distribution)



The Story of Clever Hans



Why Do Adversarial Examples Exist?



Neural Networks are too linear



Neural Networks are too linear

Learned Model not 
powerful enough to 

fit data properly

Learned Model trained on 
adversarial examples now 

more powerful
(less linear)

(Madry 2017)



Experimental Linearity of Perturbations

Explaining and harnessing adversarial examples, 
Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy, ICLR’15

• We have 1 image and 10 classes (0 to 9). The
correct classification is 4.

• x-axis is perturbation (chose direction and
perturb the image by that direction).

• y-axis are logits (values before calling
softmax), unnormalized probabilities.

We see that the function which computes the
particular logit, is basically almost (piece wise)
linear in the perturbation.

Only around 0 (no perturbation) does the
function behave in a non-linear manner and
where classification is correct (i.e. 4).



Generating Adversarial Examples



Targeted Attack – aims to misclassify the input (e.g., image) to 
a specific label (e.g. panda to gibbon)

Untargeted Attack – aims to misclassify the input to any wrong 
label (e.g. panda to any other animal)

Formulated as  a slightly different optimization problem

Targeted vs. Untargeted Attacks



Input:

 neural network 𝒇:𝑿 → 𝑪

 input 𝒙 ∈ 𝑿

 target label 𝒕 ∈ 𝑪, such that 𝒇 𝒙 ≠ 𝒕

Output:

 A perturbation 𝜼 such that 𝒇 𝒙 + 𝜼 = 𝒕

Adversarial example 
𝑥′ = 𝑥 + 𝜂

Targeted Attack: Problem Statement



Input:

 neural network 𝒇:𝑿 → 𝑪

 input 𝒙 ∈ 𝑿

Output:

 A perturbation 𝜼 such that 𝒇 𝒙 + 𝜼 ≠ 𝒇 𝒙

Adversarial example 
𝑥′ = 𝑥 + 𝜂

Untargeted Attack: Problem Statement



Types of Attacks

White box attacker: the attacker knows the model, the parameters,
and the architecture

Black box attacker: the attacker knows the architecture (e.g., the
layers) but not its parameters (e.g., weights)

Note: it was found adversarial examples are transferrable, hence
given the same training data as the original network, an attacker can
train their own mirror network of the black box original network and
then attack the mirror network with white-box techniques. If attack
on mirror network succeeds, it will likely succeed on the original.

We will look at white box attacks



Targeted Fast Gradient Sign Method

1. Compute perturbation:
𝜂 = 𝜖 ⋅ sign(𝛻𝑥loss𝑡 𝑥 ), where

𝛻𝑥 loss𝑡 =
𝜕loss𝑡

𝜕𝑥1
, … ,

𝜕loss𝑡

𝜕𝑥𝑛
sign(𝑔) = ቐ

−1, if 𝑔 < 0
0, if 𝑔 = 0
1, if 𝑔 > 0

2. Perturb the input:

𝑥′ = 𝑥 − 𝜂

3. Check if:

𝑓 𝑥′ = 𝑡

• Here, each 𝑥𝑖 is a pixel

• 𝜖 is a very small constant (e.g., 0.007)

• As FGSM is 1-step, 𝑥′ is guaranteed to stay inside the 

box [𝑥 - 𝜖, 𝑥 + 𝜖], so no need to project.

• 𝑡 is the target, bad label

• loss𝑡 is the loss w.r.t target label

• FGSM was designed to be fast, not optimal

(may not compute minimal perturbation)



Untargeted version of FGSM

1. Compute perturbation:
𝜂 = 𝜖 ⋅ sign(𝛻𝑥loss𝑠 𝑥 )

2. Perturb the input:

𝑥′ = 𝑥 + 𝜂

3. Check if: 

𝑓 𝑥′  𝑠

• With untargeted FGSM, we do not know what 
the target (bad) label is that we want.

• We just want some label different than the 
correct label s. 

• So we try to “get away” from the correct label 
by maximizing the value of the loss



sign(𝛻𝑥loss𝑡 𝑥 )

𝜖

FGSM



Importance of Small Perturbations

Original
image

Slightly
Perturbed

Image

Too
Perturbed

Image

We need some notion of distance….



Norm: Notion of Distance

Similarity of 𝒙 ∼ 𝒙′ is usually captured by an 𝑙𝑝 norm:

𝒙 ∼ 𝒙′ iff 𝒙 − 𝒙′ 𝒑 < 𝝐, 

where 𝒙 − 𝒙′ 𝒑 = |𝒙𝟏 − 𝒙′𝟏|
𝒑 +⋯+ |𝒙𝒏 − 𝒙′𝒏|

𝒑
𝟏

𝒑

𝑙0 (when 00 = 0 and we get rid of 1/p root) captures the number of changed pixels.

𝑙2 captures the Euclidian distance between 𝑥 and 𝑥′. It can remain small if there are many 
small changes to many pixels.

𝑙∞ captures maximum noise (change) added to any coordinate. It is the maximum of the 
absolute values of the entries:

𝒙 − 𝒙′
∞
= 𝒎𝒂𝒙 |𝒙𝟏 − 𝒙′𝟏|, … , |𝒙𝒏 − 𝒙′𝒏|

This is the most common norm used for adversarial example generation and it is argued that 
it most naturally captures human vision.

To derive the max equation, see:
https://math.stackexchange.com/questions/3099179/proving-the-infinity-norm-is-equal-to-the-maximum-value-of-the-vector&sa=D&source=hangouts&ust=1600861806197000&usg=AFQjCNFLvo4hpAfiNBK06EwAZVFkuRiDNw



Input:

 neural network 𝒇:𝑿 → 𝑪

 input 𝒙 ∈ 𝑿

 target label 𝒕 ∈ 𝑪, such that 𝒇 𝒙 ≠ 𝒕

Output:

 A perturbation 𝜼 such that 𝒇 𝒙 + 𝜼 = 𝒕

 𝜼 𝒑 is minimized

Targeted Attack with Small Changes



The problem of generating small perturbations can be phrased as 

an optimization problem:

find 𝜼

minimize 𝜼
𝑝

such that 𝑓 𝒙 + 𝜼 = 𝑡
𝒙 + 𝜼 ∈ 0,1 𝑛

𝑝 ∈ {0, 2,∞}

Key insight: Relaxation of the hard constraint

Optimization Problem

This is a hard discrete
constraint which is
difficult to optimize for
with gradient methods.

Note: 𝜼 can have negative
components.

Carlini et al., Towards Evaluating the Robustness of Neural Networks, 2017



Two steps:

Step 1:   Define an objective function 𝒐𝒃𝒋𝒕 such that: 

if 𝒐𝒃𝒋𝒕 𝒙 + 𝜼 ≤ 𝟎 then 𝒇 𝒙 + 𝜼 = 𝒕

Step 2:  Solve the following optimization problem:

Optimization Problem

find 𝜼
minimize 𝜼 𝑝 + 𝑐 ⋅ 𝒐𝒃𝒋𝒕(𝒙 + 𝜼)

such that 𝒙 + 𝜼 ∈ 𝟎, 𝟏 𝒏



Two steps:

Step 1:   Define an objective function 𝒐𝒃𝒋𝒕 such that: 

if 𝒐𝒃𝒋𝒕 𝒙 + 𝜼 ≤ 𝟎 then 𝒇 𝒙 + 𝜼 = 𝒕

What are examples of functions for 𝒐𝒃𝒋 with the property of Step 1?

Optimization Problem

𝒐𝒃𝒋𝒕 𝒙′ = losst 𝒙′ − 1
Lets  take cross 
entropy loss for loss𝑡

Choice I:

𝒐𝒃𝒋𝒕 𝒙′ = max(0, 0.5 − 𝐩𝐟 𝒙′ t)

Choice II:
𝐩𝐟 𝒙′ t returns the probability of 
class 𝒕 for input 𝒙′on network f



Choice I: 𝒐𝒃𝒋 𝒙 = losst 𝒙 − 1

𝒐𝒃𝒋𝒕 𝒙 = losst 𝒙 − 1

= −𝐥𝐨𝐠𝟐(𝐩 𝑡 ) − 1

Plug in cross entropy loss for loss𝑡
with logarithm base 2

Here, we use 𝐩 𝑡 as a shortcut for 
𝐩𝐟 𝒙 t so to avoid clutter

Choice I:

𝐩 𝑡

𝒐𝒃𝒋 𝒙

What we see here is that if the 𝒐𝒃𝒋𝒕
function is 0 or negative, then the
probability 𝐩 𝑡 is  0.5 (50%) .

But if 𝐩 𝑡 is  0.5 for the input 𝒙, then
𝒇 will return 𝑡 as a classification
for 𝒙 because this is the highest
probability class. Hence, the desired
property of Step 1 holds.



Choice II: max(0, 0.5 − 𝐩𝐟 𝒙 t)

𝒐𝒃𝒋𝒕 𝒙 = max(0, 0.5 − 𝐩 𝑡 )

Choice II:

𝒐𝒃𝒋 𝒙′

What we see here is that the 𝒐𝒃𝒋𝒕
function is always 0 or greater.

It is only 0 when 𝐩 𝑡 is  0.5 for the
input 𝒙.

Again, then 𝒇 will return 𝑡 as a
classification for 𝒙 because this is the
highest probability class.

Hence, the desired property holds for
Step 1.

𝐩 𝑡

𝒐𝒃𝒋 𝒙

Again we use 𝐩 𝑡 as a shortcut for 
𝐩𝐟 𝒙 t so to avoid clutter



Two steps:

Step 1:   Define an objective function 𝒐𝒃𝒋𝒕 such that: 

if 𝒐𝒃𝒋𝒕 𝒙 + 𝜼 ≤ 𝟎 then 𝒇 𝒙 + 𝜼 = 𝒕

Step 2:  Solve the following optimization problem:

Optimization Problem

find 𝜼
minimize 𝜼 𝑝 + 𝑐 ⋅ 𝑜𝑏𝑗𝒕(𝒙 + 𝜼)

such that 𝒙 + 𝜼 ∈ 𝟎, 𝟏 𝒏



Two steps:

Step 1:   Define an objective function 𝒐𝒃𝒋𝒕 such that: 

if 𝒐𝒃𝒋𝒕 𝒙 + 𝜼 ≤ 𝟎 then 𝒇 𝒙 + 𝜼 = 𝒕

Step 2:  Solve the following optimization problem:

Optimization Problem

find 𝜼
minimize 𝜼 ∞ + 𝑐 ⋅ 𝑜𝑏𝑗𝒕(𝒙 + 𝜼)
such that 𝒙 + 𝜼 ∈ 𝟎, 𝟏 𝒏

This is a problem for 
optimization



𝜼
∞

computes the maximum change: it takes the absolute value of
every coordinate in 𝜼 and returns the maximum value.

Lets take a closer look at  𝜼
∞

𝜕 𝜼 ∞

𝜕𝜼1

= 1𝜼 = (0.5, 0.49, 0.48) 𝜕 𝜼 ∞

𝜕𝜼2

= 0
𝜕 𝜼 ∞

𝜕𝜼3

= 0

After one step we get: 𝜼 = 𝜼 − 𝛾 ⋅ 1,0,0 = 𝜼 − 0.03 ⋅ 1,0,0 = (0.47, 0.49, 0.48)

After two steps we get: 𝜼 = 𝜼 − 𝛾 ⋅ 0,1,0 = 𝜼 − 0.03 ⋅ 0,1,0 = (0.47, 0.46, 0.48)

After three steps we get: 𝜼 = 𝜼 − 𝛾 ⋅ 0,0,1 = 𝜼 − 0.03 ⋅ 0,0,1 = (0.47, 0.46, 0.45)

What we see is that because the gradient is 0 at all non-max locations,
the gradient does not impose a penalty on the optimizer increasing a
little bit those locations (due to the 𝑜𝑏𝑗𝒕(𝒙 + 𝜼) term in the
optimization). Also, only one entry is changed at a time.



Going back to the full optimization problem which also includes 𝑜𝑏𝑗(𝒙 + 𝜼)

Lets take a closer look at  𝜼
∞

After one step we get: 𝜼 = 𝜼 − 𝛾 ⋅ 1,0,0 = 𝜼 − 0.03 ⋅ 1,0,0 = (0.47, 0.49, 0.48)

Now the optimizer can slightly bump up the second location:

After one full step of optimizer, it may also bump up the 2nd location: (0.47, 0.5, 0.48)

After second full step of optimizer, we may get: (0.5, 0.47, 0.48)

Well, we are just oscillating now and bouncing around…turns out SGD

may not be a good way to optimize 𝜼
∞

especially with other terms



Replace 𝜼
∞

with other proxy functions that reflect the distance

One idea is to penalize large values in 𝜼 via a term :

Replace 𝜼
∞

with σ𝑖 max 0, |𝜼𝑖| − 

 is basically intended to capture the 𝜼
∞

bound when optimization finishes.

 will be continuosly minimized. Initially,  starts at 1

 is decreased with some factor (say 0.9) at every iteration if all 𝜼𝑖 are less than  (then,

entire expression will be 0).

Note: an iteration consist of K small steps.

Note: when  is large, gradient of σ𝑖 max 0, |𝜼𝑖| −  is similar to gradient of 𝜼
∞

.

One approach to solving the issue



Let L 𝜼 = σ𝑖 max 0, |𝜼𝑖| −  and 𝜼 = (0.47, 0.49, 0.48)

Start with  = 1, then L 𝜼 = 0

Next iteration:  = 0.9, then L 𝜼 = 0

Next iteration:  = 0.81, then L 𝜼 = 0

…

At some iteration:  = 0.478, now via one step, we get:

L 𝜼 = σ𝑖 max 0, |𝜼𝑖| − 0.478 = σ𝑖 0, 0.012, 0.002 = 𝟎. 𝟎𝟏𝟒

We can then update 𝜼 as usual, complete this step, and continue with the next step

Notes on optimization:

• There are K steps within an iteration, each updating 𝜼.

• Entire optimization stops if after K steps L 𝜼 ≠ 0. Otherwise, if L 𝜼 = 0 , optimization continues with
a new  = 0.9 * previous .

• Entire optimization stops if it also reaches some pre-defined value of  ( 1/256 for Carlini & Wagner).

• When optimization stops, we return 𝜼 at the iteration before the last one. This means 𝜼
∞
≤  where

 is the one used at iteration before last.

• If 𝜼𝑡𝑜𝑝2 < 𝜏 < 𝜼𝑡𝑜𝑝1 where 𝜼𝑡𝑜𝑝1 is the largest element and 𝜼𝑡𝑜𝑝2 is second largest element in 𝜼, then
the gradient𝛻𝜼 L 𝜼 will be the same as 𝛻𝜼 𝜼

∞

Example & Notes on Optimization

𝛻𝜼 L 𝜼 = (𝟎, 𝟏, 𝟏)

Here we only show the optimization of one 

term, namely L 𝜼 , to illustrate the 

relationship with optimizing 𝜼
∞



Two steps:

Step 1:   Define an objective function 𝒐𝒃𝒋𝒕 such that: 

if 𝒐𝒃𝒋𝒕 𝒙 + 𝜼 ≤ 𝟎 then 𝒇 𝒙 + 𝜼 = 𝒕

Step 2:  Solve the following optimization problem:

Summary: Optimization Problem

find 𝜼
minimize 𝜼 ∞ + 𝑐 ⋅ 𝑜𝑏𝑗𝒕(𝒙 + 𝜼)
such that 𝒙 + 𝜼 ∈ 𝟎, 𝟏 𝒏



Lecture Summary

Deep Learning is susceptible to 
adversarial examples in various domains

Generating Adversarial examples
(basically, an optimization problem)

• FGSM: targeted and untargeted 

• small perturbation attacks

• Need suitable optimization problem

Next lecture: Dealing with Constraints and Adversarial defenses


