
Reliable and Interpretable Artificial Intelligence
Lecture 3: Adversarial Attacks II

Martin Vechev
ETH Zurich

Fall 2020

http://www.srl.inf.ethz.ch/

Two steps:

Step 1: Define an objective function 𝒐𝒃𝒋𝒕 such that:

if 𝒐𝒃𝒋𝒕 𝒙 + 𝜼 ≤ 𝟎 then 𝒇 𝒙 + 𝜼 = 𝒕

Step 2: Solve the following optimization problem:

Recall: Our Optimization Problem

find 𝜂
minimize 𝜼 ∞ + 𝑐 ⋅ 𝑜𝑏𝑗𝒕(𝒙 + 𝜼)
such that 𝒙 + 𝜼 ∈ 𝟎, 𝟏 𝒏

Hard Box Constraint

find 𝜼
minimize 𝜼 𝑝 + 𝑐 ⋅ 𝑜𝑏𝑗𝒕(𝒙 + 𝜼)

such that 𝒙 + 𝜼 ∈ 𝟎, 𝟏 𝒏

Dealing with Constraints

Projected gradient descent (PGD)
“Fit” all coordinates to be within the box

LBFGS-B optimizer:

pass each 𝜼
𝒊
∈ [−𝒙𝒊, 1 − 𝒙𝒊]

separately to the optimizer.

“-B” stands for box constraints

Given 𝒙 is constant, this is the same as enforcing 𝜼𝒊∈ [−𝒙𝒊, 1 − 𝒙𝒊] for every

𝜼𝒊 . We can then use either of these two methods:

𝒑𝒓𝒐𝒋𝒆𝒄𝒕 (𝜼1, … , 𝜼𝑛) = 𝑐𝑙𝑖𝑝1 𝜼1 , … , 𝑐𝑙𝑖𝑝𝑛 𝜼𝑛

𝑐𝑙𝑖𝑝𝑖 𝜼𝒊 =

−𝒙𝒊 if 𝜼𝒊 < −𝒙𝒊

𝜼𝒊, if 𝜼𝒊 ∈ [−𝒙𝒊, 1 − 𝒙𝒊]

1 − 𝒙𝒊, if 𝜼𝒊 > 1− 𝒙𝒊

Used by Carlini & Wagner

Note: if we also want 𝜼 ∞ < 𝑒 then we can also add the box constraints 𝜼𝒊
∈ [−𝑒, 𝑒]

Target label

In
it

ia
ll

ab
el

With this approach we get

What we see is that on the
MNIST (digit recognition)
data set it is not difficult to
get a realistic looking
image that fools the neural
network classifier…

DeepSpeech Attack: more technically

Audio Adversarial Examples: Targeted Attacks on Speech-to-Text, ICML 2018 workshop

find 𝜼

minimize 𝜼 ∞ + 𝑐 ⋅ 𝑜𝑏𝑗𝒕(𝒙 + 𝜼)

such that 𝒙 + 𝜼 ∈ 𝟎, 𝟏 𝒏

find 𝜼

minimize 𝜼 2 + 𝑐 ⋅ 𝑙𝑜𝑠𝑠𝒕(𝒙 + 𝜼)

such that 𝜼′ ∈ 𝟎, 𝒌 𝒏

where 𝜼′ = 𝟐𝟎 ∗ 𝐥𝐨𝐠𝟏𝟎(𝜼)

Instantiate
to audio

2

audio specific
loss

easier to optimize
(smooth function)

change to decibels

find 𝜼

minimize 𝜼 2 + 𝑐 ⋅ 𝑙𝑜𝑠𝑠𝒕(𝒙 + 𝜼)

such that 𝜼 ∈ 𝟏, 𝟏𝟎 𝒏

2

k/20

A re-write so we work with 𝜼 only.

Now we can project on 𝜼 as usual.

• So far, we looked at FGSM as well as an attack to minimize the
distance to the original input (e.g., image, audio)

• Now, we illustrate another attack, a variant of FGSM applied
iteratively with projection.

• The attack uses Projected Gradient Descent (PGD) and is
referred to as a PGD attack.

• This is a commonly used attack for adversarial training:
training the network to be robust.

Another attack…often used during training

Given a dataset of points (x, y) where label is:

0 if x2+y2<16

1 otherwise

train a neural network to classify the points correctly

Illustrating the PGD attack

Illustrating the PGD attack

0
0

0
0

0
0

0
0

1

1

1

1

1

1

https://www.wolframalpha.com/input/?i=plot+x^2+%2B+y^2+<+16

After training we get the classifier:

Dark blue – neural network
predicts 1 (property does not
hold)

Light blue – neural network
predicts 0 (property holds)

Red dots – those where property
actually holds

White dots – those where
property actually does not hold

Goal:

Find adversarial input in

Linf ball around:

xorig = (-2.2, -2.2)
(red point)

with ε=0.4

Lets pick a point…

Initialize PGD with:

x = (-1.8, -2.6)

Note: this is just for the
example to illustrate
projection. In practice, one
picks a point at random in
the box

Lets Zoom in a bit…

x

xorig

NN(x) = [0.5973, 0.4027]

Loss(x) = 0.5153

𝛁x Loss(x) = [-0.852, -1.373]

x’ = x + 0.1 * sign(𝛁x Loss(x))
= [-1.9, -2.7] (yellow point)

Up-to-here, its just standard
untargeted FGSM attack but with
smaller step-size of 0.1 than ε
which is 0.4.

But now we also project:

x’’ = project(x’, xorig, ε)
= [-1.9, -2.6] (purple point)

x

x’

x’’

PGD Iteration 1

Change Δ
xorig

x’’ from before now named x:

NN(x) = [0.5455, 0.4545]
(so point x = (-1.9, -2.6) is
not yet a counter example

Loss(x) = 0.6060

𝛁x Loss(x) =[-0.9621, -1.5493]

x’ = x + 0.1 * sign(𝛁x Loss(x))
= [-2, -2.7]

x’’ = project(x’ ,xorig, ε)
= [-2, -2.6]

x

x’

x’’

PGD Iteration 2

Change Δ

xorig

NN(x) = [0.4927, 0.5073]

found adversarial example
x = [-2, -2.6]

Neural network predicts 1,
although (-2)2 + (-2.6)2 < 16
so it should have been
classified as 0

x

PGD Iteration 3

xorig

• The goal of the PGD attack is to find a point in the region which
maximizes the loss (it may still classify to the same label as xorig)

• For our example, we started at the corner. Typically one starts the
search with a random point inside the box.

• One stops PGD after a pre-defined number of iterations (e.g., 10).

• In our example, we always stepped outside the box to illustrate
projection, and then projected to the box. It is possible to never step
outside the box and thus projection will have no effect.

• It is possible the final produced example is inside the box, and not on
the boundary. However, when we project, if outside the box, we will
end up on the boundary.

• In this example, loss is likely to be highest somewhere around the big
orange point (typically far from the decision boundary). Of course,
when we are searching, we don’t know the actual decision
boundary.

• One can implement PGD in two ways:
• a) by projecting current point x’ to the ε-box around xorig as

well as [0,1] for each dimension, or
• b) by projecting the change Δ to [-ε, +ε] as well as to the

constraints needed so each element in the resulting point is
between [0,1] (see slide 3 in this lecture)

• Step size (in our example 0.1) is typically smaller than ε (in FGSM it is
ε).

x

Some notes on PGD

• Projection is linear-time in the dimension for
𝐿∞ and 𝐿2 norms.

• An open problem: finding efficient projections
for various convex regions that are more
expressive than boxes (e.g., convex polyhedral
restrictions).

xorig

Another Attack Example: Diffing Networks

Finding a differencing input:

Given two neural networks 𝑓1 and 𝑓2 trained to learn the same
function 𝑓∗: 𝑋 → 𝐶, find an input 𝑥 ∈ 𝑋 such that 𝑓1 𝑥 ≠ 𝑓2(𝑥)

DeepXplore: Automated Whitebox Testing of Deep Learning Systems, Pei et al, SOSP’17

Define the following objective (good if we want 𝒇𝟏(𝒙) to classify 𝒙 to 𝒕):

𝒐𝒃𝒋𝒕 𝒙 = 𝒇𝟏(𝒙)𝒕− 𝒇𝟐(𝒙)𝒕

𝒇𝒊(𝒙)𝒕 returns the probability that 𝒇𝒊 predicts 𝒙 to be 𝒕

We can use absolute value loss if we just want to get a different classification by both
(need not be 𝒕).

Select input 𝒙 ∈ 𝑿 which classifes as 𝒕 with both networks

while 𝒄𝒍𝒂𝒔𝒔(𝒇𝟏 𝒙) = 𝒄𝒍𝒂𝒔𝒔(𝒇𝟐 𝒙):

𝒙 = 𝒙 + 𝝐 ⋅
𝝏 𝒐𝒃𝒋𝒕 𝒙

𝝏 𝒙

return 𝒙

Another Attack Example: Diffing Networks

Maximize loss: make 𝒇𝟏

more confident about

𝒕 while making 𝒇𝟐 less

confident about 𝒕

Summary of adversarial attacks

FGSM
(targeted, untargeted)

Change 𝜼 fixed to [-ε, +ε]. Take exactly one ε-sized step Produced example will
be on boundary of
region.

PGD
(typically untargeted,
but can be targeted)

Can be instantiated with any
region one can project to.

Take many steps. Uses
projection to stay inside region.
For special case of 𝑙∞ , step size
smaller than ε.

Result will be inside
region. Tries to maximize
loss.

C&W [Images]
(presented as
targeted)

No real restriction, except
image has to be in [0,1] (like all
other methods). This restricts
the region for the change 𝜼: 𝜼
has to be bounded s.t. original
image + 𝜼 stays in [0,1].

Aims to produce a change 𝜼
with small 𝑙∞. Takes many steps,
using LBFGS-B to ensure 𝜼 stays
in bounds.

Result will be inside
[0,1], with a hopefully
small 𝑙∞ distance from
original image.

C&W [Audio]
(presented as
targeted)

A fixed region for 𝜼. Aims to produce a change 𝜼
with small squared 𝑙2 . Takes
many steps, using LBFGS-B to
ensure 𝜼 stays in bounds.

Result will be inside the
fixed 𝜼 region, with a
hopefully small 𝑙2
distance from original
sound wave.

Diffing
Networks
(targeted)

Can work with a fixed region
around change 𝜼.

Aims to produce a change 𝜼
where one neural networks
classifies image as 𝒕 while the
other as not 𝒕.

Ideally, a result where
two networks disagree
on their classification.

Lecture Summary

Deep Learning is susceptible to
adversarial examples
Deep Learning is susceptible to
adversarial examples

Generating Adversarial examples
(an optimization problem)

• FGSM
• C&W (minimize perturbation)
• PGD
• Diffing

An example of the PGD attack

