
Reliable and Interpretable Artificial Intelligence

http://www.sri.inf.ethz.ch

Lecture 4b: Mathematical Certification of Neural Networks

Martin Vechev
ETH Zurich

Fall 2020

http://www.srl.inf.ethz.ch/

Adversarial Examples: Attacks and Defenses

Explaining and Harnessing Adversarial
Examples, ICLR ‘15

Tape pieces make network
predict a 45mph sign

Robust Physical-World Attacks on Deep
Learning Visual Classification, CVPR’18

Noisy attack: vision system thinks we now have a gibbon…

Self-driving car: in each picture one of
the 3 networks makes a mistake…

DeepXplore: Automated Whitebox Testing of Deep Learning Systems,
SOSP’17

The fundamental problem

The attacks and defenses so far are similar to testing: they may work well in

practice sometimes, but provide no formal guarantees.

Automated verifier to prove properties of realistic networks

Useful in:

• Certifying large cyber-physical systems that use NN

• Proving robustness of NN

• Learning interpretable specs of the NN

• Comparing NNs

More generally we want

Problem Statement

Given

- a neural network 𝑵

- a property over inputs 𝝓 [called: pre-condition]

- a property over outputs 𝝍 [called: post-condition]

Prove that ∀𝒊 ∈ 𝑰. 𝒊 ⊨ 𝝓 ⟹ 𝑵 𝒊 ⊨ 𝝍 holds or return a violation

Instantiating the problem to certifying robustness of a character

classification neural network, it would look as follows

L∞ ball:

With robustness, its a region captured by 𝝓:

Example 𝝓:

Ball(𝑥)𝜖 = { 𝑥′ | || 𝑥 – 𝑥′ ||∞ < 𝜖 }

𝑥

Step 1: Define 𝝓 Formally

C
e

rt
if

ic
at

io
n

Region 𝝓:

𝑥0 = 0
𝑥1 = 0.975 + 0.025𝜖1
𝑥2 = 0.125
…
𝑥784 = 0.938 + 0.062𝜖784
∀𝑖. 𝜖𝑖 ∈ [0,1]

Example: here, we
capture brightening

attack (only few pixels
have 𝜖)

Step 1: Define 𝝓 Formally

Step 2: Verify 𝝓 satisfies 𝝍

Property 𝝍 ∶ every point classifies to 3:

𝝍 ∶ ∀𝑗 ∈ 0,9 . 𝑜3 ≥ 𝑜𝑗

Here, 𝑜 is the output of the layer before the
last softmax layer

C
e

rt
if

ic
at

io
n

Region 𝝓:

𝑥0 = 0
𝑥1 = 0.975 + 0.025𝜖1
𝑥2 = 0.125
…
𝑥784 = 0.938 + 0.062𝜖784
∀𝑖. 𝜖𝑖 ∈ [0,1]

We need to prove this property:

∀𝒊 ∈ 𝑰. 𝒊 ⊨ 𝝓⟹ 𝑵 𝒊 ⊨ 𝝍

C
e

rt
if

ic
at

io
n

Region 𝝓:

𝑥0 = 0
𝑥1 = 0.975 + 0.025𝜖1
𝑥2 = 0.125
…
𝑥784 = 0.938 + 0.062𝜖784
∀𝑖. 𝜖𝑖 ∈ [0,1]

We need to prove this property:

∀𝒊 ∈ 𝑰. 𝒊 ⊨ 𝝓⟹ 𝑵 𝒊 ⊨ 𝝍

How to prove this property?

Challenge: as 𝝓 can capture an
unbounded set of points, one
cannot simply enumerate points in
𝝓 and check each satisfies 𝝍

Challenge

Property 𝝍 ∶ every point classifies to 3:

𝝍 ∶ ∀𝑗 ∈ 0,9 . 𝑜3 ≥ 𝑜𝑗

Here, 𝑜 is the output of the layer before the
last softmax layer

A reasoning method is called sound if when a program violates a property,

when the method terminates, the method always states the property is

violated. We typically refer to these methods as certification methods.

A reasoning method is called unsound if when the program violates a

property, the method could potentially terminate stating the property is

satisfied. For example, adversarial attack methods are typically unsound:

they may miss violations when they exist.

Certification Methods: Sound vs. Unsound

A certification method is called complete if it is able to prove the property

holds when it actually holds.

A certification method is called incomplete if it cannot guarantee that it can

prove a property which actually holds.

Certification Methods: Complete vs. Incomplete

For certification we want:

• Soundness

• Scalable Algorithm

• Precision: ``as complete as

possible’’

Soundness vs. Completeness vs. Automation

Due to Rice’s theorem, generally, it is not possible to construct an automated method

that is both sound and complete. However, for some restricted types of computations,

like neural networks (which are generally loop-free), it is possible to be both, sound and

complete (but these may not scale to realistic networks).

We will cover two kinds of sound methods:

Incomplete but scalable methods: these include convex

relaxations such as Box, Zonotope and DeepPoly.

Complete but not scalable methods: Mixed-Integer Linear

Solvers (MILP) and Linear Solvers (LP).

Combinations of both: goal is to either scale complete methods

or to make incomplete methods more precise.

Certification of Neural Networks

We will investigate a specific type of incomplete method, based on bound

propagation through the neural network. Starting with the initial pre-

condition 𝝓 , we will ``push’’ 𝝓 through the network, computing an over-

approximation of the effect of each layer.

Lets see how we would prove our example property with this method

Incomplete methods

...

C
e

rt
if

ic
at

io
n

Output region 𝜙𝑛

𝑜0 = 0
𝑜1 = 2.60 + 0.015𝜖0 + 0.023𝜖1 + 5.181𝜖2 +⋯
𝑜2 = 4.63 − 0.005𝜖0 − 0.006𝜖1 + 0.023𝜖2 +⋯
…
𝑜9 = 0.12 − 0.125𝜖0 + 0.102𝜖1 + 3.012𝜖2 +⋯
∀𝑖. 𝜖𝑖 ∈ [0,1]

Region 𝝓:

𝑥0 = 0
𝑥1 = 0.975 + 0.025𝜖1
𝑥2 = 0.125
…
𝑥784 = 0.938 + 0.062𝜖784
∀𝑖. 𝜖𝑖 ∈ [0,1]

Step 1: Compute bounds by propagating 𝝓

Before softmax

Convex
approximation

Over-approximation 𝜙𝑛 means it is possible there are concrete points inside 𝜙𝑛 which
cannot be produced by any concrete point inside 𝝓.

...

C
e

rt
if

ic
at

io
n

Step 2: Certify the property

⊨

Output region 𝜙𝑛

𝑜0 = 0
𝑜1 = 2.60 + 0.015𝜖0 + 0.023𝜖1 + 5.181𝜖2 +⋯
𝑜2 = 4.63 − 0.005𝜖0 − 0.006𝜖1 + 0.023𝜖2 +⋯
…
𝑜9 = 0.12 − 0.125𝜖0 + 0.102𝜖1 + 3.012𝜖2 +⋯
∀𝑖. 𝜖𝑖 ∈ [0,1]

𝝍  every point classifies to label 3

𝝍  ∀𝑗 ∈ 0,9 . 𝑜3 ≥ 𝑜𝑗

The region 𝜙𝑛 is an over-approximation, hence if we fail to prove 𝝍 , it could be the property
is really violated or there was over-approximation introduced during propagation which
precludes provability.

...

Key challenge: how to produce convex shapes?

To instantiate incomplete methods which use bound propagation, we need two parts:

1. What is the convex approximation ? E.g., Box, Zonotope, Polyhedra

2. How are these convex approximations produced? That is, what is the effect of the

layer on a given approximation ? This effect is often called an

abstract transformer as it transforms abstract shapes.

A trade-off between approximation and speed exists: transformers for Box are fast, but

imprecise, while Polyhedra is more precise but in exponential complexity.

Let us answer these questions for the simplest and most efficient

convex relaxation, namely, Box / Intervals. This relaxation will be

useful in both, certification, as well as in provable training (which

we look at in later lectures).

Incomplete method I: Box

Box Abstract Transformers Needed for
Handling ReLU Neural Networks

𝒂, 𝒃 +# [𝒄, 𝒅] = [𝒂 + 𝒄, 𝒃 + 𝒅] Addition transformer

−#[𝒂, 𝒃] = [−𝒃,−𝒂] Negation transformer

𝑹𝒆𝑳𝑼#[𝒂, 𝒃] = [𝑹𝒆𝑳𝑼 𝒂 , 𝑹𝒆𝑳𝑼(𝒃)] ReLU transformer

𝝀#[𝒂, 𝒃] = [𝝀 ∗ 𝒂, 𝝀 ∗ 𝒃] Multiplication by a constant 𝝀 > 𝟎

• Here, 𝒂, 𝒃 ∈ 𝑹𝒎 where ∀𝒊. 𝒂𝒊 ≤ 𝒃𝒊

• 𝑹𝒆𝑳𝑼 𝒙 = 𝒎𝒂𝒙(𝟎, 𝒙)

•
#

denotes the abstract effect of the operation on the box

Optimal Box transformer is not exact!

𝑥1 𝑥3

𝑥2 𝑥4

1

−1

1

1

[0,0.3]

[0.1,0.4]

0

0

[0,0.3]

[0.1,0.4]

[0.1,0.7]

[−0.4,0.2]

We have 2 pixels (𝑥1, 𝑥2) as input ranging over [0, 0.3] and [0.1, 0.4]

0.1 ≤ 𝑥3 ≤ 0.7

−0.4 ≤ 𝑥4 ≤ 0.2

Bounds using Box:

Exact bounds would be:

𝑥3 = 𝑥1 + 𝑥2
𝑥4 = 𝑥1 − 𝑥2
0 ≤ 𝑥1 ≤ 0.3
0.1 ≤ 𝑥2 ≤ 0.4

𝑥3 = 0.7 𝑥4 = −0.4

This point is in the Box,
but is infeasible:

Even though the Box abstract transformer for the affine

computation is optimal for the Box relaxation, it may not be

complete (exact)! Nonetheless, even if not exact, it may be

enough to verify the property of interest.

Lets see this next.

Key Point

Box succeeds in verifying robustness

𝑥1 𝑥3 𝑥5

𝑥2 𝑥4 𝑥6

1 max(0, 𝑥3) 1

−1 −1max(0, 𝑥4)

1 1

1 1

[0,0.3]

[0.1,0.4]

0 0.5

0 −0.5

[0,0.3]

[0.1,0.4]

[0.1,0.7]

[−0.4,0.2]

[0.1,0.7]

[0,0.2]

[0.6,1.4]

[−0.6,0.2]

Using Box, we succeed in proving the network classifies any input in the range as 0. This is
because [0.6,1.4] > [-0.6, 0.2], provably so.

𝑜0

𝑜1

We have 2 pixels (𝑥1, 𝑥2) as input ranging over [0, 0.3] and [0.1, 0.4]

Box fails in verifying robustness

Using Box, we failed to prove the network classifies any input in the range as 0, even though
property actually holds. This is because [0.6,2.3] is not > [-0.9, 0.8], provably so.

Let us slightly increase the range of the input pixels to [0, 0.6] and [0.1, 0.7]

𝑥1 𝑥3 𝑥5

𝑥2 𝑥4 𝑥6

1 max(0, 𝑥3) 1

−1 −1max(0, 𝑥4)

1 1

1 1

[0,0.6]

[0.1,0.7]

0 0.5

0 −0.5

[0,0.6]

[0.1,0.7]

[0.1,1.3]

[−0.7,0.5]

[0.1,1.3]

[0,0.5]

[0.6,2.3]

[−0.9,0.8]

𝑜0

𝑜1

Summary So Far

• We introduced the concepts of complete and incomplete sound

methods for neural network certification.

• We defined the Box convex relaxation and its best transformers,

an instance of an incomplete method.

Next: complete certification and using Box to speed it up.

