
Reliable and Interpretable Artificial Intelligence

Martin Vechev

ETH Zurich

Fall 2020

http://www.sri.inf.ethz.ch

Lecture 6: The Zonotope convex relaxation

http://www.srl.inf.ethz.ch/

The problem with Box

Box is simple and efficient, but the problem is that it looses too much

precision, in both, the ReLU abstract transformer but also in the affine

abstract transfomer.

Zonotope will be a convex relaxation whose affine transformer will not lose

precision (that is, it will be exact); however, its ReLU transformer will again

lose some precision. Zonotope has been shown effective in both verification

and provable training (discussed later).

With the Zonotope relaxation, each variable (neuron) is

captured in an affine form. We can think of Zonotope as a

more extensive version of Box. Unlike Box, the variables can be

related (in limited ways) through parameters.

Incomplete method II: Zonotope

The Zonotope Convex Relaxation

𝑥1 = 𝑎0
1 +෍

𝑖=1

𝑘

𝑎𝑖
1 𝜖𝑖̂

𝑥𝑑 = 𝑎0
𝑑 +෍

𝑖=1

𝑘

𝑎𝑖
𝑑 𝜖𝑖

For 𝑑 (concrete) neurons 𝑥1 to 𝑥𝑑,
the abstract neurons will look like:

Example of a concretization in 2D
(𝑑 = 2) with 𝑘 = 3:

𝑥0̂

This represents a polytope centered around the vector 𝑎0 = (𝑎0
1, … , 𝑎0

𝑑)

…..

𝑥1̂

𝜖𝑖 : noise terms ranging [-1,1] shared
between abstract neurons

𝑎𝑖
𝑗 : real number that controls

magnitude of noisê

Centering
We can flip any point 𝑋 in the zonotope around the center 𝑎0 so to obtain a flipped point

𝑌 of 𝑋, where 𝑌 = 2 ∗ 𝑎0 − 𝑋 and 𝑌 is in the zonotope and 𝑋 and 𝑌 are equal distance

from 𝑎0. That is, the zonotope is point-symmetric around 𝑎0.

2
4 6

2

-2

-2

𝑥0 = 1 − 2𝜖1 + 𝜖2
𝑥1 = 0 + 𝜖1 + 𝜖2

̂
̂

Z =

𝑎0 = (1,0)

𝑋 = (2,−1)

𝑌 = (0,1)

is visualized:

The 4 extreme values 𝜖1∈ {−1,1} and

𝜖2∈ {−1,1} determine the 4 corners.

Example:

The zonotope Z is centered around 𝑎0 = 1,0 . The point

𝑋 = (2,−1) can be flipped to obtain 𝑌 = 2 ∗ 𝑎0 − 𝑋 = (0,1)

𝑥0̂

𝑥1̂

We have formally defined what a Zonotope is. However,

we need to also show how to transform a zonotope,

specifically with the operations found in neural

networks: affine layers and ReLU.

(side note: for provable training, we need to also know how to project to a zonotope).

Zonotope Affine Transformer

𝑢1 𝑥1

𝑢𝑑

…
…

..……..

Affine Transform: defined
next

𝑥𝑔

Input zonotope
at layer i

Output zonotope
at layer i + 1

Note: the affine transformer can
be computed in parallel for all
output neurons 𝑥1…𝑥𝑔

……..

Zonotope Affine Transformer

Multiplication of the 𝑝’th neuron by a real-valued constant 𝐶 :

(𝑎0
𝑝
+෍

𝑖=1

𝑘

𝑎𝑖
𝑝
𝜖𝑖) ∗ 𝐶 = (𝐶 ∗ 𝑎0

𝑝
+෍

𝑖=1

𝑘

𝐶 ∗ 𝑎𝑖
𝑝
𝜖𝑖)

Adding two neurons 𝑝 and 𝑞 is done component-wise:

(𝑎0
𝑝
+෍

𝑖=1

𝑘

𝑎𝑖
𝑝
𝜖𝑖)

Note: abstract transformer for affine is exact

(𝑎0
𝑞
+෍

𝑖=1

𝑘

𝑎𝑖
𝑞
𝜖𝑖)+ = (𝑎0

𝑞
+ 𝑎0

𝑝
) +෍

𝑖=1

𝑘

(𝑎𝑖
𝑝
+𝑎𝑖

𝑞
) 𝜖𝑖

Zonotope ReLU Transformer

𝑦 = max(0, 𝑥)Given this: we need to somehow apply to get 𝑦 = ? ? ?̂𝑥 = 𝑎0 +෍

𝑖=1

𝑘

𝑎𝑖 𝜖𝑖̂

ReLU Transformer
(defined next)

𝑥1 𝑦1

𝑥𝑑

…
…

..……..

𝑦𝑔

……..

ReLU

ReLU

Note: the ReLU transformer is
computed in parallel for all
output neurons 𝑦1…𝑦𝑔

Input zonotope
at layer i

Output zonotope
at layer i + 1

Fast and Effective Robustness Certification, NeurIPS’18
Singh et.al.

Zonotope ReLU Transformer

̂

Step 1: Obtain box bounds for 𝑥 , by exploring 𝜖𝑖= −1 and 𝜖𝑖= 1 values to compute end points. To

compute the lower bound 𝒍𝒙 use 𝜖𝑖= −1 if 𝑎𝑖 is positive and use 𝜖𝑖= 1 if 𝑎𝑖 is negative.

To compute the upper bound 𝒖𝒙 use 𝜖𝑖= 1 if 𝑎𝑖 is positive and use 𝜖𝑖= −1 if 𝑎𝑖 is negative.

̂

𝒍𝒙 𝒖𝒙 𝑥

𝑦

̂

𝑦 = max(0, 𝑥)Given this: we need to somehow apply to get 𝑦 = ? ? ?̂𝑥 = 𝑎0 +෍

𝑖=1

𝑘

𝑎𝑖 𝜖𝑖̂

Zonotope ReLU Transformer

Step 2: Check if the bounds are on one side of the plane (easy cases):

 If 𝒖𝒙 ≤ 𝟎 then 𝑦 = 0 (strictly negative)

 If 𝒍𝒙 > 𝟎 then 𝑦 = 𝑥 (strictly positive)

 If 𝒍𝒙 < 𝟎 and 𝒖𝒙 > 𝟎 then we get into the ``crossing boundary’’ case [discussed next].

̂

̂ ̂

𝑦 = max(0, 𝑥)Given this: we need to somehow apply to get 𝑦 = ? ? ?̂𝑥 = 𝑎0 +෍

𝑖=1

𝑘

𝑎𝑖 𝜖𝑖̂

Zonotope ReLU Transformer

Step 2: The ``crossing-boundary’’ case looks as follows (where in green is the ReLU function):

𝒍𝒙 𝒖𝒙 𝑥̂

𝑦̂

𝑦 = max(0, 𝑥)Given this: we need to somehow apply to get 𝑦 = ? ? ?̂𝑥 = 𝑎0 +෍

𝑖=1

𝑘

𝑎𝑖 𝜖𝑖̂

Zonotope ReLU Transformer

Step 2: We now compute a Zonotope (yellow) which encloses the green ReLU function.

𝒍𝒙 𝒖𝒙

But how? … we need to define
what these 2 parallel lines are

𝑥̂

𝑦̂

𝑦 = max(0, 𝑥)Given this: we need to somehow apply to get 𝑦 = ? ? ?̂𝑥 = 𝑎0 +෍

𝑖=1

𝑘

𝑎𝑖 𝜖𝑖̂

Zonotope ReLU Transformer

Step 2a: Define the first (the bottom) line 𝑦1.

𝒍𝒙 𝒖𝒙

𝒖𝒙

𝑦1 𝑥 = 𝜆 ∗ 𝑥

The slope is:
𝜆 =

𝑢𝑥
𝑢𝑥 − 𝑙𝑥

This line is:

𝑦̂

𝑥̂

̂̂

𝑦 = max(0, 𝑥)Given this: we need to somehow apply to get 𝑦 = ? ? ?̂𝑥 = 𝑎0 +෍

𝑖=1

𝑘

𝑎𝑖 𝜖𝑖̂

Zonotope ReLU Transformer

Step 2b: Define the second (upper) line 𝑦2.

𝒍𝒙 𝒖𝒙

𝒖𝒙

𝑦2 𝑥 = 𝑦1 𝑥 + 𝑑 = 𝜆 ∗ 𝑥 − 𝜆 ∗ 𝑙𝑥

𝑑 = −𝑦1 𝑙𝑥 = −𝜆 ∗ 𝑙𝑥

distance is:

𝑦̂

𝑥̂

̂ ̂ ̂

𝑦 = max(0, 𝑥)Given this: we need to somehow apply to get 𝑦 = ? ? ?̂𝑥 = 𝑎0 +෍

𝑖=1

𝑘

𝑎𝑖 𝜖𝑖̂

𝑦1 𝑥 = 𝜆 ∗ 𝑥

The slope is:
𝜆 =

𝑢𝑥
𝑢𝑥 − 𝑙𝑥

This line is: ̂̂

Constant term

Zonotope ReLU Transformer

Step 3: We now have the two lines, but we need to capture the yellow zonotope with them…

𝒍𝒙 𝒖𝒙

𝑦2 𝑥 = 𝜆 ∗ 𝑥 − 𝜆 ∗ 𝑙𝑥

𝑦1 𝑥 = 𝜆 ∗ 𝑥

𝑦̂

𝑥̂

̂ ̂

̂̂

𝑦 = max(0, 𝑥)Given this: we need to somehow apply to get 𝑦 = ? ? ?̂𝑥 = 𝑎0 +෍

𝑖=1

𝑘

𝑎𝑖 𝜖𝑖̂

Zonotope ReLU Transformer

Step 3: The yellow zonotope is captured by the following inequality:

𝒍𝒙 𝒖𝒙

𝜆 ∗ 𝑥 ≤ 𝑦 𝑥 ≤ 𝜆 ∗ 𝑥 − 𝜆 ∗ 𝑙𝑥

lower line upper line𝑦̂

𝑥̂

̂̂ ̂

𝑦 = max(0, 𝑥)Given this: we need to somehow apply to get 𝑦 = ? ? ?̂𝑥 = 𝑎0 +෍

𝑖=1

𝑘

𝑎𝑖 𝜖𝑖̂

Zonotope ReLU Transformer

Step 3: The yellow zonotope is captured by the following inequality:

But this inequality is not in the Zonotope format so we need to make

the transformer produce an equivalent zonotope in the format

𝜆 ∗ 𝑥 ≤ 𝑦 𝑥 ≤ 𝜆 ∗ 𝑥 − 𝜆 ∗ 𝑙𝑥̂̂ ̂

𝑦 = max(0, 𝑥)Given this: we need to somehow apply to get 𝑦 = ? ? ?̂𝑥 = 𝑎0 +෍

𝑖=1

𝑘

𝑎𝑖 𝜖𝑖̂

Zonotope ReLU Transformer

Step 3: The yellow zonotope is captured by the following inequality:

𝑦 𝑥 = 𝜆 ∗ 𝑥 − 𝑐 ∗ 𝜆 ∗ 𝑙𝑥This is the same as: where 𝑐 ∈ [0,1]

But our error terms 𝜖 ∈ −1,1 and not 0,1

So if we want to use −1,1 we need to have 𝑐 =
𝜖𝑛𝑒𝑤 + 1

2

𝑦 𝑥 = 𝜆 ∗ 𝑥 −
𝜖𝑛𝑒𝑤 + 1

2
∗ 𝜆 ∗ 𝑙𝑥Thus we obtain

where 𝜖𝑛𝑒𝑤 is
a new error term

𝑦 𝑥 = 𝜆 ∗ 𝑥 − 𝜖𝑛𝑒𝑤 ∗
𝜆 ∗ 𝑙𝑥
2

−
𝜆 ∗ 𝑙𝑥
2

The final ReLU
transformer is: This is in zonotope format

𝜆 ∗ 𝑥 ≤ 𝑦 𝑥 ≤ 𝜆 ∗ 𝑥 − 𝜆 ∗ 𝑙𝑥̂̂ ̂

̂̂

̂ ̂

̂ ̂

𝑦 = max(0, 𝑥)Given this: we need to somehow apply to get 𝑦 = ? ? ?̂𝑥 = 𝑎0 +෍

𝑖=1

𝑘

𝑎𝑖 𝜖𝑖̂

Applying the Zonotope ReLU Transformer

, to apply the transformer, we first compute 𝜆 , 𝑙𝑥 , 𝑢𝑥

Plug 𝑥 into transformer definition:̂ 𝑦 𝑥 = 𝜆 ∗ 𝑥 − 𝜖𝑛𝑒𝑤 ∗
𝜆 ∗ 𝑙𝑥
2

−
𝜆 ∗ 𝑙𝑥
2

And obtain: 𝑦 𝑥 = 𝜆𝑎0 +෍

𝑖=1

𝑘

𝜆 𝑎𝑖 𝜖𝑖 − 𝜖𝑛𝑒𝑤 ∗
𝜆 ∗ 𝑙𝑥
2

−
𝜆 ∗ 𝑙𝑥
2

𝑦 𝑥 = 𝑏0 +෍

𝑖=1

𝑘+𝟏

𝑏𝑖 𝜖𝑖
After doing basic calculations:

This is our final result

Not great news:
Error terms increase as depth
of network increases!

̂ ̂

̂

̂

Given this: 𝑥 = 𝑎0 +෍

𝑖=1

𝑘

𝑎𝑖 𝜖𝑖̂

Two Non-Comparable Zonotope Transformers

• First transformer is what we looked at and is optimal area-wise (in the input-output plane).

• Second transformer produces bigger area, but is non-comparable to the first.

• There are many non-comparable ReLU transformers for Zonotope.

Zonotope transformer I Zonotope transformer II

Zonotope vs. Box ReLU Transformer

• Mathematically, the two transformers produce non-comparable results (no shape is included in the

other). However, our Zonotope transformer is optimal in terms of area.

• Both transformers can process one layer in parallel, so they are GPU-friendly.

• The Box transformer is memory friendly as it does not introduce new error terms.

Zonotope transformer Box transformer

Zonotope vs. Optimal ReLU Transformer

• The area of our transformer is 2x the area of the optimal triangle transformer.

• Optimal convex transformer is too expensive to work with (so can only be used selectively).

• Optimal transformer produces optimal convex shape if we consider one neuron at a time.

• However, see next slides:… 

Zonotope transformer Optimal convex transformer
(known as triangle relaxation)

One-neuron at a time is not optimal
[NeurIPS’19: “Beyond Single Neuron Relaxations for Certification” – Singh, Ganvir, Pueschel, Vechev]

• Contrary to popular belief [see: https://arxiv.org/abs/1902.08722, NeurIPS’19], if we consider 2 neurons at a

time, we can produce more precise results.

• Here, we have two neurons 𝑥1 and 𝑥2. The blue figure (b) shows the result for 1-ReLU for triangle, where we

compute neuron-wise, that is we compute 𝑦1 from 𝑥1 and 𝑦2 from 𝑥2.

• However, if we compute 𝑦1 and 𝑦2 by considering 𝑥1 and 𝑥2 together, we can get a more precise result, shown

in figure (c).

• We will see a lecture on how to compute the result in figure (c) later in the course.

https://arxiv.org/abs/1902.08722

...

C
e

rt
if

ic
at

io
n

Output region 𝜙𝑛

𝑜0 = 0
𝑜1 = 2.60 + 0.015𝜖0 + 0.023𝜖1 + 5.181𝜖2 +⋯
𝑜2 = 4.63 − 0.005𝜖0 − 0.006𝜖1 + 0.023𝜖2 +⋯
…
𝑜9 = 0.12 − 0.125𝜖0 + 0.102𝜖1 + 3.012𝜖2 +⋯
∀𝑖. 𝜖𝑖 ∈ [0,1]

Region 𝝓:

𝑥0 = 0
𝑥1 = 0.975 + 0.025𝜖1
𝑥2 = 0.125
…
𝑥784 = 0.938 + 0.062𝜖784
∀𝑖. 𝜖𝑖 ∈ [0,1]

Lets revisit this slide: propagating 𝝓

Before softmax

Convex
relaxation

We saw how to compute the intermediate shapes (in Box or Zonotope format).

For example here 𝜙𝑛 follows the Zonotope format.

Summary

• We introduced another incomplete method, the Zonotope relaxation.

• We introduced the abstract transformers for affine and ReLU for Zonotope.

Both transformers can be computed in parallel for a layer.

• Unlike Box, Zonotope is exact for affine. Both lose precision on ReLUs.

Next time: some discussion on the general theory of relaxations

(what is optimal, what is sound).

