
Reliable and Interpretable Artificial Intelligence

Martin Vechev

ETH Zurich

Fall 2020

http://www.sri.inf.ethz.ch

Lecture 7: DeepPoly convex relaxation + Abstract Interpretation

http://www.srl.inf.ethz.ch/

So far in certification…

2

• Simple box (incomplete) certification, complete certification
via MILP solvers and how to use Box to speed-up MILP.

• A more involved and precise relaxation, the Zonotope, which is
exact for affine transforms but approximates ReLU, also an
incomplete method.

Today: another convex relaxation method, which aims to be more
precise than Zonotope when approximating ReLUs.

Popular numerical relaxations

3

Box: 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖

Zonotope: ො𝑥𝑖 = 𝛼0 +σ𝑖 𝛼𝑖𝜖𝑖 , 𝜖𝑖 ∈ [−1,1] Polyhedra: σ𝑖 𝑎𝑖𝑥𝑖 ≤ 𝑐

Octagon: 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , ±𝑥𝑖 ± 𝑥𝑗 ≤ 𝑐𝑖𝑗

𝑥2

𝑥1 𝑥1

𝑥1 𝑥1

𝑥2

𝑥2 𝑥2

DeepPoly convex relaxation: The Shape
[Singh et. al, POPL’19]

Shape:

for each 𝑥𝑖 , we keep:
• An interval constraint: lower bound 𝑙𝑖 ≤ 𝑥𝑖 and upper bound 𝑥𝑖 ≤ 𝑢𝑖

• Two relational constraints: 𝑎𝑖
≤ ≤ 𝑥𝑖 and 𝑥𝑖 ≤ 𝑎𝑖

≥

where the expressions 𝑎𝑖
≤, 𝑎𝑖

≥ are of the form σ𝑗𝑤𝑗 ⋅ 𝑥𝑗 + 𝑣

DeepPoly convex relaxation: The Shape
[Singh et. al, POPL’19]

Shape:

for each 𝑥𝑖 , we keep:
• An interval constraint: lower bound 𝑙𝑖 ≤ 𝑥𝑖 and upper bound 𝑥𝑖 ≤ 𝑢𝑖

• Two relational constraints: 𝑎𝑖
≤ ≤ 𝑥𝑖 and 𝑥𝑖 ≤ 𝑎𝑖

≥

where the expressions 𝑎𝑖
≤, 𝑎𝑖

≥ are of the form σ𝑗𝑤𝑗 ⋅ 𝑥𝑗 + 𝑣

• less precise than Polyhedra, restriction
needed to ensure scalability

• captures affine transformation
precisely

• custom transformers for ReLU, sigmoid,
tanh, and maxpool activations

DeepPoly convex relaxation: The Shape
[Singh et. al, POPL’19]

6

Shape:

for each 𝑥𝑖 , we keep:
• An interval constraint: lower bound 𝑙𝑖 ≤ 𝑥𝑖 and upper bound 𝑥𝑖 ≤ 𝑢𝑖

• Two relational constraints: 𝑎𝑖
≤ ≤ 𝑥𝑖 and 𝑥𝑖 ≤ 𝑎𝑖

≥

where the expressions 𝑎𝑖
≤, 𝑎𝑖

≥ are of the form σ𝑗𝑤𝑗 ⋅ 𝑥𝑗 + 𝑣

Transformer Polyhedra DeepPoly

Affine Ο(𝑛𝑚2) Ο(𝑤𝑚𝑎𝑥
2 𝐿)

ReLU Ο(exp(𝑛,𝑚)) Ο(1)

𝑛: #neurons, 𝑚:#constraints
𝑤𝑚𝑎𝑥: max #neurons in a layer, 𝐿: #layers

• less precise than Polyhedra, restriction
needed to ensure scalability

• captures affine transformation
precisely

• custom transformers for ReLU, sigmoid,
tanh, and maxpool activations

𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 −1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 −0.5 3

0 0 0

[−1,1]

[−1,1]

[−2,2]

[−2,2]

[0,2]

[0,2]

[−0.5,3.5]

[−2,2]

[0,3.5]

[0,2]

[−0.5,5]

[0,2]

Certification with Box fails as it cannot capture relational information

Box relaxation (scalable but imprecise)

7

𝑥2

𝜙

𝑥1

𝜓: we want to prove that 𝑥11 > 𝑥12 for all values of 𝑥1, 𝑥2 in the input set

𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 −1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 −0.5 3

0 0 0

𝑥1 ≥ −1,
𝑥1 ≤ 1,
𝑙1 = −1,
𝑢1 = 1

𝑥2 ≥ −1,
𝑥2 ≤ 1,
𝑙2 = −1,
𝑢2 = 1

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,
𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,
𝑙4 = −2,
𝑢4 = 2

8

𝑥2

𝜙

𝑥1

DeepPoly relaxation

Single-neuron transformer for 𝑥𝑗 ≔ 𝑚𝑎𝑥(0, 𝑥𝑖) that uses 𝑙𝑖 , 𝑢𝑖

ReLU activation: 𝑥𝑗 ≔ max(0, 𝑥𝑖)

Single-neuron transformer for 𝑥𝑗 ≔ 𝑚𝑎𝑥(0, 𝑥𝑖) that uses 𝑙𝑖 , 𝑢𝑖

• 𝑖𝑓 𝑢𝑖 ≤ 0: 𝑎𝑗
≤ = 𝑎𝑗

≥ = 0, 𝑙𝑗 = 𝑢𝑗 = 0

• 𝑖𝑓 𝑙𝑖 ≥ 0: 𝑎𝑗
≤ = 𝑎𝑗

≥ = 𝑥𝑖 , 𝑙𝑗 = 𝑙𝑖 , 𝑢𝑗 = 𝑢𝑖

• 𝑖𝑓 𝑙𝑖 < 0 𝑎𝑛𝑑 𝑢𝑖 > 0

ReLU activation: 𝑥𝑗 ≔ max(0, 𝑥𝑖)

(strictly negative)

(strictly positive)

(crossing ReLU)

Lets discuss the crossing ReLU activation next

ReLU activation: 𝑥𝑗 ≔ max(0, 𝑥𝑖)

Triangle [Ehlers et al. ATVA’17]

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

Wong et al. [ICML’18]
FastLin [ICML’18]
DeepZ [NeurIPS’18]

11

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

Exact [Katz et al., CAV’17]

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

Box [Gehr el al. S&P’18]

ReLU activation: 𝑥𝑗 ≔ max(0, 𝑥𝑖)

Triangle [Ehlers et al. ATVA’17]

CROWN [NeurIPS’18]
DeepPoly [POPL’19]

CROWN [NeurIPS’18]
DeepPoly [POPL’19]

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

Wong et al. [ICML’18]
FastLin [ICML’18]
DeepZ [NeurIPS’18]

12

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

Exact [Katz et al., CAV’17]

𝒍𝒊 𝒖𝒊
𝑥𝑖

𝑥𝑗

Box [Gehr el al. S&P’18]

• The choice of DeepPoly shape depends on area (heuristic)

• Note that both approximations are smaller area-wise than the Zonotope

Applying DeepPoly ReLU relaxation

13

𝑥3 𝑥5

𝑥4 𝑥6

max(0, 𝑥3)

max(0, 𝑥4)
DeepPoly [POPL’19]

𝒍𝒙 𝒖𝒙
𝑥𝑖

𝑥𝑗

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,
𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,
𝑙4 = −2,
𝑢4 = 2

Constant runtime with DeepPoly

Applying DeepPoly ReLU relaxation

14

𝑥3 𝑥5

𝑥4 𝑥6

max(0, 𝑥3)

max(0, 𝑥4)

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

DeepPoly [POPL’19]

𝒍𝒙 𝒖𝒙
𝑥𝑖

𝑥𝑗

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,
𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,
𝑙4 = −2,
𝑢4 = 2

Constant runtime with DeepPoly

Applying DeepPoly ReLU relaxation

15

𝑥3 𝑥5

𝑥4 𝑥6

max(0, 𝑥3)

max(0, 𝑥4)

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

DeepPoly [POPL’19]

𝒍𝒙 𝒖𝒙
𝑥𝑖

𝑥𝑗

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,
𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,
𝑙4 = −2,
𝑢4 = 2

Constant runtime with DeepPoly

𝑥5

𝑥7

𝑥6

−0.5

1

1

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ 𝑥5 + 𝑥6 − 0.5,
𝑥7 ≤ 𝑥5 + 𝑥6 − 0.5,

𝑙7 =? ,
𝑢7 =?

16

Affine transformation after ReLU

𝑥5

𝑥7

𝑥6

−0.5

1

1

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ 𝑥5 + 𝑥6 − 0.5,
𝑥7 ≤ 𝑥5 + 𝑥6 − 0.5,

𝑙7 =? ,
𝑢7 =?

17

Affine transformation after ReLU

𝑥7 ≤ 𝑥5 + 𝑥6 − 0.5
≤ 2 + 2 − 0.5 = 3.5

Computing upper bound for
neuron 𝑥7:

𝑥5

𝑥7

𝑥6

−0.5

1

1

Imprecise upper bound 𝑢7 by substituting 𝑢5, 𝑢6 for 𝑥5 and 𝑥6 in 𝑎7
≥

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ 𝑥5 + 𝑥6 − 0.5,
𝑥7 ≤ 𝑥5 + 𝑥6 − 0.5,

𝑙7 = −0.5,
𝒖𝟕 = 𝟑. 𝟓

18

𝑥7 ≤ 𝑥5 + 𝑥6 − 0.5
≤ 2 + 2 − 0.5 = 3.5

Computing upper bound for
neuron 𝑥7:

Affine transformation after ReLU

19

𝑥5

𝑥7

𝑥6

−0.5

1

1

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ 𝑥5 + 𝑥6 − 0.5,
𝑥7 ≤ 𝑥5 + 𝑥6 − 0.5,

𝑙7 =? ,
𝒖𝟕 =?

Replace the bounds for 𝑥7 using
the ones from the previous layer

Backsubstitution

20

𝑥5

𝑥7

𝑥6

−0.5

1

1

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ −0.5,
𝑥7 ≤ 0.5 ⋅ 𝑥3 + 0.5 ⋅ 𝑥4 + 1.5,

𝑙7 =? ,
𝑢7 =?

Replace the bounds for 𝑥7 using
the ones from the previous layer

Backsubstitution

𝑥5

𝑥7

𝑥6

−0.5

1

1
𝑥3

𝑥4

max(0, 𝑥3)

max(0, 𝑥4)

0

0

𝑥1

𝑥2

1

−1

1

1

𝑥1 ≥ −1,
𝑥1 ≤ 1,
𝑙1 = −1,
𝑢1 = 1

𝑥2 ≥ −1,
𝑥2 ≤ 1,
𝑙2 = −1,
𝑢2 = 1

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,
𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,
𝑙4 = −2,
𝑢4 = 2

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ −0.5,
𝑥7 ≤ 0.5 ⋅ 𝑥3 + 0.5 ⋅ 𝑥4 + 1.5,

𝑙7 =? ,
𝑢7 =?

21

Replace the bounds for 𝑥7 using
the ones from the previous layer:

𝑥7≤ 0.5𝑥3 + 0.5𝑥4 + 1.5
≤ 0.5 𝑥1 + 𝑥2 + 0.5 𝑥1 − 𝑥2 + 1.5
= 𝑥1 + 1.5 ≤ 2.5

Backsubstitution

Affine transformation with backsubstitution is pointwise, complexity: Ο 𝑤𝑚𝑎𝑥
2 𝐿

𝑥5

𝑥7

𝑥6

−0.5

1

1
𝑥3

𝑥4

max(0, 𝑥3)

max(0, 𝑥4)

0

0

𝑥1

𝑥2

1

−1

1

1

𝑥1 ≥ −1,
𝑥1 ≤ 1,
𝑙1 = −1,
𝑢1 = 1

𝑥2 ≥ −1,
𝑥2 ≤ 1,
𝑙2 = −1,
𝑢2 = 1

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,
𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,
𝑙4 = −2,
𝑢4 = 2

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6 ≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ −0.5,
𝑥7 ≤ 𝑥1 + 1.5,
𝑙7 = −0.5,
𝒖𝟕 = 𝟐.5

22

Backsubstitution

𝑥12 ≥ 𝑥10,
𝑥12 ≤ 𝑥10,
𝑙12 = 0,
𝑢12 = 2

𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 −1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 −0.5 3

0 0 0

𝑥1 ≥ −1,
𝑥1 ≤ 1,
𝑙1 = −1,
𝑢1 = 1

𝑥2 ≥ −1,
𝑥2 ≤ 1,
𝑙2 = −1,
𝑢2 = 1

𝑥3 ≥ 𝑥1 + 𝑥2,
𝑥3 ≤ 𝑥1 + 𝑥2,
𝑙3 = −2,
𝑢3 = 2

𝑥4 ≥ 𝑥1 − 𝑥2,
𝑥4 ≤ 𝑥1 − 𝑥2,
𝑙4 = −2,
𝑢4 = 2

𝑥5 ≥ 0,
𝑥5 ≤ 0.5 ⋅ 𝑥3 + 1,

𝑙5 = 0,
𝑢5 = 2

𝑥6 ≥ 0,
𝑥6
≤ 0.5 ⋅ 𝑥4 + 1,

𝑙6 = 0,
𝑢6 = 2

𝑥7 ≥ 𝑥5 + 𝑥6 − 0.5,
𝑥7 ≤ 𝑥5 + 𝑥6 − 0.5,

𝑙7 = −0.5,
𝑢7 = 2.5

𝑥8 ≥ 𝑥5 − 𝑥6,
𝑥8 ≤ 𝑥5 − 𝑥6,
𝑙8 = −2,
𝑢8 = 2

𝑥9 ≥ 0,

𝑥9 ≤
5

6
⋅ 𝑥7 +

5

12
𝑙9 = 0,
𝑢9 = 2.5

𝑥10 ≥ 0,
𝑥10 ≤ 0.5 ⋅ 𝑥8 + 1,

𝑙10 = 0,
𝑢10 = 2

𝑥11 ≥ −𝑥9 + 𝑥10 + 3,
𝑥11 ≤ −𝑥9 + 𝑥10 + 3,

𝑙11 = 0.5,
𝑢11 = 5

23

𝑥2

𝜙

𝑥1

Proving the robustness property

Goal: Prove 𝑥11 − 𝑥12 > 0 for all inputs in −1,1 × [−1,1]

𝑥11 ≥ −𝑥9 + 𝑥10 + 3,
𝑥11 ≤ −𝑥9 + 𝑥10 + 3,

𝑙11 = 0.5,
𝑢11 = 5

𝑥12 ≥ 𝑥10,
𝑥12 ≤ 𝑥10,
𝑙12 = 0,
𝑢12 = 2

24

Proving the robustness property

Goal: Prove 𝑥11 − 𝑥12 > 0 for all inputs in −1,1 × [−1,1]

Computing lower bound for 𝑥11 − 𝑥12 using 𝑙11, 𝑢12 gives -1.5 which is an imprecise result

𝑥11 ≥ −𝑥9 + 𝑥10 + 3,
𝑥11 ≤ −𝑥9 + 𝑥10 + 3,

𝑙11 = 0.5,
𝑢11 = 5

𝑥12 ≥ 𝑥10,
𝑥12 ≤ 𝑥10,
𝑙12 = 0,
𝑢12 = 2

25

Proving the robustness property

Goal: Prove 𝑥11 − 𝑥12 > 0 for all inputs in −1,1 × [−1,1]

Computing lower bound for 𝑥11 − 𝑥12 using 𝑙11, 𝑢12 gives -1.5 which is an imprecise result

With backsubstitution, one gets 0.5 as the lower bound for 𝑥11 − 𝑥12, proving the property

𝑥11 ≥ −𝑥9 + 𝑥10 + 3,
𝑥11 ≤ −𝑥9 + 𝑥10 + 3,

𝑙11 = 0.5,
𝑢11 = 5

𝑥12 ≥ 𝑥10,
𝑥12 ≤ 𝑥10,
𝑙12 = 0,
𝑢12 = 2

26

By now we have defined several incomplete verifiers and their

approximations and the corresponding transformers: Box, Zonotope and

DeepPoly. We also introduced a complete method based on MILP.

Before we concude our discussion on deterministic certification of neural

networks, it is useful to be aware of the more general theory that these

relaxations are an instance of. In particular, in this theory, a particular

attention is paid to what sound means and what optimal means.

Program
(neural net)

Property
(e.g., robustness)

counter
example

Automated
Verifier

valid

Minor issue  : general problem is undecidable

Hence: approximation

Why Approximation in the first place?
(high-level view)

The theory of abstract interpretation is a theory of approximation

Probably one of the most elegant theories in computer science

• an elegant theoretical framework

• systematic way to build automated analyzers

• a way to think about approximation

• theory invented in late 70s

• started gaining popularity in the 90s

• all commercial tools use some form of A.I.

The principles of approximation are fundamental to reasoning about computation

with infinite or very large state spaces.

Abstract Interpretation: a primer

Patrick and Radhia Cousot
Inventors

A.I. concerns itself with questions such as:

• What is it that we are approximating?

• What does it mean for the approximation to be optimal (or to

approximate)?

• What does it mean for an approximation to be sound?

• How do we actually build a correct and efficient verifier?

• Can the process of building an analyzer be automated?

30

Abstract Interpretation: a primer

A.I. cheat sheet

1. A concrete element x is a set of concrete values.

2. An abstract (symbolic) element z semantically represents a set of concrete values.

3.  is a concretization: it defines the concrete values an abstract element z represents (the points inside

the polygon).

4. F is the concrete transformer. Because the set x is infinite or finite but very large, we generally cannot

compute the transformed output set F(x).

5. F is the abstract transformer. F(z) applies F to abstract element z.

6. F must be sound (formula on top of slide and visualized in diagram above).

z
F(z)F

F

F(x)
points inside:
(z) = x

(F (z)) ⊇ F(x) = F((z))

blue: abstract orange: concrete

Important (soundness):

Soundness of Transformers

That is, applying the transformer F on an abstract element z, and then

obtaining the set of concrete values corresponding to the result has to include

more points than first concretizing the abstract element and then applying the

concrete function F.

z . F((z)) ⊆ (F(z))

Exactness of Transformers

z . F((z)) = (F(z))

That is, applying the transformer F on an abstract element z, and then obtaining

the set of concrete values corresponding to the result produces the same set of

points as first concretizing the abstract element and then applying the concrete

function F..

As we already saw, both, Box and Zonotope transformers are not exact for ReLU.

For affine, Box loses precision, while Zonotope is exact.

Optimality of Transformers

z . (F’(z)) ⊄ (Fbest(z))

A sound transformer Fbest is called a best transformer if for all sound

transformers F’, F’ is not more precise than Fbest :

For Box, both affine and ReLU are optimal. For Zonotope, affine is exact

(and optimal) but there is no single best transformer for ReLU.

• We saw several instances of A.I., enough to get a working intuition with it.

• Abstract Interpretation is a rich area with many branches and applications.

• A particular branch we use when analyzing neural networks is numerical
domains (e.g., Zonotope, Box, Octagons, Polyhedra, DeepPoly, etc), which
trade-off completeness for scalability (while being sound).

• Abstract transformers of these domains can be very tricky to implement
efficiently and correctly!

• Good abstract transformers are typically defined for the application-specific
operators (e.g., ReLU, sigmoid)

• Scalable and precise verifier is a combination of careful math (e.g.,
zonotope ReLU) + efficient algorithms and coding.

• Note that in practice we need to ensure floating-point soundness as well!

Summary

• Another incomplete method, the DeepPoly approximation.

• Its abstract transformers for affine and ReLU for DeepPoly.

• Like Zonotope, DeepPoly is exact for affine and is its ReLU transformer

produces a smaller area than the Zonotope ReLU transformer.

• A brief look at abstract interpretation and mathematical definition of

soundness, exactness and optimality of abstract transformers.

