
Reliable and Interpretable Artificial Intelligence

Martin Vechev

ETH Zurich

Fall 2020

Lecture 8: Certified Defenses

http://www.sri.inf.ethz.ch

http://www.sri.inf.ethz.ch/

Can certification methods benefit training?

Verifying networks which are not meant to be robust will certainly produce

worse results (smaller epsilon provability) than verifying networks which are

trained to be provably robust.

Note that there is a difference between training the network to be

experimentally robust (e.g., PGD defense) vs. training the network to be

provably robust (what we see next).

So, can we then use certification for training the network to be robust?

Recall: PGD Defense

find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [𝐦𝐚𝐱 𝐿 𝜃, 𝑥′, 𝑦]x, y ~𝐷
𝑥′ ∈ 𝑆(𝑥)

Inner
maximization

problem

Outer
minimization

problem

find 𝒙′ that achieves
high loss

find 𝜽 that minimizes
the high loss, aiming
to train a robust
classifier

Madry et.al, 2017

D is the underlying distribu7on

𝐄 is typically es7mated with the empirical risk

𝑆 𝑥 denotes the perturba7on region around point 𝑥, that is, we want all points
in 𝑆 𝑥 to classify the same as x . We can pick 𝑆 𝑥 to be:

𝑆 𝑥 = 𝒙! 𝒙 − 𝒙′
!
< 𝝐}

Lets Incorporate Provability

find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [𝐦𝐚𝐱 𝐿 𝜃, 𝑧, 𝑦]x, y ~𝐷
𝑧 ∈ 𝛾(𝑁𝑁# 𝑆(𝑥))

Inner
maximization

problem

Outer
minimization

problem

find 𝒛 that achieves
high loss under
abstraction

Lets keep this part

Differentiable Abstract Interpretation for Provably Robust Neural Networks
Mirman, Gehr, V. ICML 2018

Essentially: automatic differentiation of abstract interpretation

...

𝑺(𝒙) 𝛾(𝑵𝑵# 𝑺 𝒙)
backprop to update weights

𝑧 ∈

Visualization of Certified Training

find 𝒛 inside region
that achieves
high(est) loss

find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [𝐦𝐚𝐱 𝐿 𝜃, 𝒛, 𝑦]x, y ~𝐷
𝒛 ∈ 𝛾(𝑵𝑵# 𝑺 𝒙)

Certified Defense

find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [𝐦𝐚𝐱 𝐿 𝜃, 𝒙′, 𝑦]𝑥, 𝑦 ~𝐷
𝒙′ ∈ 𝑺(𝒙)

Adversarial Training

Find input 𝒙′ that achieves high loss Find output 𝒛 that achieves high loss
(under abstraction)

Certified Defenses: General Method

𝐦𝐚𝐱 𝐿 𝜃, 𝑧, 𝑦
𝑧 ∈ 𝛾(𝑁𝑁# 𝑆(𝑥))

𝑥

𝑆(𝑥)

𝑁𝑁#
Bound
propagation 𝛾Concretize

𝑆 𝑥 region captures possible
perturbations, e.g., L∞ball

z1

z2 z24232

...

z3

𝑧! = ⋯
𝑧" = ⋯

…
𝑧# = ⋯

zonotope

Let us examine the pa@ern in the concrete first.

The pa@ern works with any abstract relaxa7on.

Here we picked Zonotope, but
can be any relaxation

Differentiable Abstract Interpretation for Provably Robust Neural Networks
Mirman, Gehr, V. ICML 2018

𝐿Compute

Target
label 𝑦

Apply 𝐿 to each 𝑧,
then combine

0.55

Let us now pick a loss function 𝐿

𝐿(𝒛, 𝑦) = 𝐦𝐚𝐱 (z, − z-)q ≠ 𝑦

target
label

a vector
of logits q ranges over all

possible labels

Differentiable Abstract Interpretation for Provably Robust Neural Networks
Mirman, Gehr, V. ICML 2018

Certified Defenses with a given loss

𝑥

𝑆(𝑥)

𝑁𝑁#
Bound
propagation

𝑆 𝑥 region captures possible
perturbations, e.g., L∞ball

𝐿Compute

Target
label 𝑦

𝐿(𝒛, 𝑦) = 𝐦𝐚𝐱 (z- − z.)
q ≠ 𝑦

Lets define 𝐿 to be:

target
label

a vector
of logits

0.55

𝑧! = ⋯
𝑧" = ⋯

…
𝑧# = ⋯

zonotope

𝛾Concretize
z1

z2 z24232

...

z3

Differentiable Abstract Interpretation for Provably Robust Neural Networks
Mirman, Gehr, V. ICML 2018

Apply 𝐿 to each 𝑧,
then take max one

𝐦𝐚𝐱 𝐿 𝜃, 𝑧, 𝑦
𝑧 ∈ 𝛾(𝑁𝑁# 𝑆(𝑥))

Certified Defenses with a given loss

𝑆(𝑥)

𝑁𝑁#
Bound
propagation

𝑆 𝑥 region captures possible
perturbations, e.g., L∞ball

Key problem: set of vectors could
be infinite or very large, so we

cannot just enumerate.

How do we address this?

𝐿Compute
z1

z2 z24232

...

z3

Target
label 𝑦

𝐿(𝒛, 𝑦) = 𝐦𝐚𝐱 (z- − z.)
q ≠ 𝑦

Lets define 𝐿 to be:

a vector
of logits

Apply 𝐿 to each 𝑧,
then take max one

0.55

𝑧! = ⋯
𝑧" = ⋯

…
𝑧# = ⋯

zonotope

𝛾Concretize

target
label

𝑥

𝐦𝐚𝐱 𝐿 𝜃, 𝑧, 𝑦
𝑧 ∈ 𝛾(𝑁𝑁# 𝑆(𝑥))

Certified Defenses in the abstract

𝐿(𝒛, 𝑦) = 𝐦𝐚𝐱 (z- − z.)
q ≠ 𝑦

Lets define 𝐿 to be:

a vector
of logits

𝑑* = 𝑧* − 𝑧+ max(𝑏𝑜𝑥(𝑑*))

e.g. [0.1, 0.3]

0.3

𝑑, = 𝑧, − 𝑧+ max(𝑏𝑜𝑥(𝑑,))

e.g. [-0.4, -0.1]

-0.1

... 0.3

This is an affine transform

which is exact for zonotope.

Plug in lower and upper bounds

of epsilons into the expression

to get the interval.

𝑧! = ⋯
𝑧" = ⋯

…
𝑧# = ⋯ 𝑧! = ⋯

…
𝑧# = ⋯
𝑑! = ⋯

…
𝑑# = ⋯𝑆(𝑥)

𝑆 𝑥 region captures possible
perturbations, e.g., L∞ball

Bound
propagation

𝑁𝑁#

zonotope

target
label

𝑥

𝐦𝐚𝐱 𝐿 𝜃, 𝑧, 𝑦
𝑧 ∈ 𝛾(𝑁𝑁# 𝑆(𝑥))

De#ining max(𝑏𝑜𝑥(𝑑!))

𝑑0 = 3 + 𝜖1 − 2𝜖2

𝑑31,31 = 3 − 1 + 2 = 4

𝜖/ and 𝜖0 range over [−1,1]

plug in − 1 for both

𝑑789 = [0, 6]

𝑑31, 1 = 3 − 1 − 2 = 0 plug in − 1 for 𝜖/, and 1 for 𝜖0

𝑑1, 31 = 3 + 1 + 2 = 6 plug in 1 for 𝜖/, and − 1 for 𝜖0

𝑑1, 1 = 3 + 1 − 2 = 2 plug in 1 for both

max(𝑑789) =	6

Of course, to compute max, rather than
enumerating combinations, we pick the
value for the 𝜖 depending on its sign in 𝑑+.
If positive, pick 1, if negative, pick -1.

Let us keep the same pattern but now pick a

different loss, the cross-entropy loss 𝐶𝐸

𝐿 𝒛, 𝑦 = 𝐶𝐸(𝒛, 𝑦)

This is in the concrete, but we
need to work in the abstract.

On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models, 2018
Gowal, Dvijotham, Stanforth, Bunel, Qin, Uesato, Arandjelovic, Mann, Kohli

Let us keep the same pattern but now pick a

different loss, the cross-entropy loss 𝐶𝐸

𝐿 𝒛, 𝑦 = 𝐶𝐸(𝒛, 𝑦)

Abstract 𝒛#:

[𝑙!, 𝑢!]
[𝑙", 𝑢"]
[𝑙$, 𝑢$]
[𝑙%, 𝑢%]

[𝑙&, 𝑢&]
[𝑙', 𝑢']
[𝑙(, 𝑢(]
[𝑙), 𝑢)]
[𝑙#, 𝑢#]

[𝑙*, 𝑢*]

Pick 𝑢+ if 𝑦 ≠ 𝑖

Pick 𝑙+ if 𝑦 = 𝑖

𝑢!
𝑢"
𝑢$
𝑢%

𝑢&
𝑢'
𝑢(
𝑢)
𝑢#

𝑙*

Apply 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

Let 𝑦 = 4

Concrete
(unnormalized) 𝒛:

𝑢!′
𝑢"′
𝑢$′
𝑢%′

𝑢&’

𝑢'′
𝑢(′
𝑢)’
𝑢#’

𝑙*′

Concrete
(normalized) 𝒛:

𝐶𝐸(𝒛, 𝑦)
0.22

Few additional tricks in practice

• Annealing on the size of 𝑆(𝑥) – start with small region around 𝑥 (small 𝜖) and

gradually grow it during training. This was found to be most helpful heuristic.

• Even though the whole propagation is done via Box, IBP processes the last linear

layer exactly (e.g., zonotope).

• Dynamically weighing-in the standard CE loss and the correctness CE loss.

These and more implemented in the DiffAI certified training system:
https://github.com/eth-sri/diffai

https://github.com/eth-sri/diffai

Key observations when using DiffAI scheme in practice:

Using cheap relaxations (e.g., Box) scales to large networks. But the problem is, it

introduces a lot of garbage (infeasible points) in the final output shape, meaning

the deeper the network is, the more the capacity increases (potential for higher

accuracy), but the more we are training w.r.t. assigning labels to garbage points.

Thus, typically training with Box scales but accuracy drops substantially.

Naturally we would like to reduce the infeasible points w.r.t to which we are

training. However, it turned out that more precise relaxations (e.g., Zonotope) may

lead to worse results than Box! This is an unintuitive pathological situation where

more precise relaxations during training do not actually bring better results in

provability and where further loss tweaking is not enough.

Question I:
Is there a network with perfect accuracy s.t.

analyzing it with Box is exact?

Question I:
Is there a network with perfect accuracy s.t.

analyzing it with Box is exact?

Yes.

Universal Approximation with Certified Networks, ICLR’2020
Baader, Mirman, Vechev

(answers the existence question, but construction is still impractical, more work needed)

Question II:
Why are better relaxations not producing better results?

Question II:
Why are better relaxations not producing better results?

Hypothesis: More complex abstractions lead to more difficult

optimization problems.

Why? Intuitively, a relatively small number of weights in the network

need to control complex relaxations with many more parameters (than

weights). This is quite unlike normal training.

Question II:
Why are better relaxations not producing better results?

We need a training method that produces a simpler optimization problem

find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [𝐦𝐚𝐱 𝐿 𝜃, 𝒛, 𝑦]x, y ~𝐷
𝒛 ∈ 𝑵𝑵# 𝑺(𝒙)

Certified Defense
find 𝜃
minimize 𝜌 𝜃

where 𝜌 𝜃 = 𝐄 [𝐦𝐚𝐱 𝐿 𝜃, 𝒙′, 𝑦]𝑥, 𝑦 ~𝐷
𝒙′ ∈ 𝑺(𝒙)

Adversarial Training

Find input 𝒙′ that achieves high loss Find output 𝒛 that achieves high loss
(under abstraction)

Good accuracy

Worse verifiability

Easier optimization

Worse accuracy

Good verifiability

Harder optimization

Reminder: optimization problems

𝐿 𝑥,, 𝑦-./0

𝑥- ∈ 𝑆-

𝑥1 ∈ 𝑆1 𝑥2 ∈ 𝑆2 𝑥, ∈ 𝑆,

Key challenge:

Find point 𝑥1 ∈ 𝑆1 such that
loss 𝐿 in the final layer is maximized
Need projections again!

𝑥, = ℎ,(ℎ2 𝑥1)

min
3
max
4)∈6)

𝐿(ℎ, ℎ2 𝑥1 , 𝑦-./0)

(high-level view: PGD training but with
shapes arising in the middle of the network)

Optimization problem (after layer 1):

ℎ2 ℎ,ℎ1

Adversarial Training and Provable Defenses: Bridging the Gap
COLT: Balunovic and V, ICLR’20 (oral) COLT: stands for Convex Layerwise Adversarial Training

https://github.com/eth-sri/colt

https://github.com/eth-sri/colt

Instantiation of COLT with Zonotope

max
G∈H

𝐿 𝑥, 𝑦IJKL

Zonotope relaxation (reminder): 𝑍 = 𝐴 I −1, 1 1

Each 𝑥 ∈ 𝑍 has a corresponding 𝑒 ∈ −1, 1 1 such that 𝑥 = 𝐴𝑒

max
L∈ M,N 2

𝐿(𝐴𝑒, 𝑦IJKL) =

Solved via standard PGD (projection on Box) Projection on Zonotope solved via projection
on Box (via change of variables)

Lecture Summary

Certified defenses: using relaxations during training in order to
obtain more provable networks

We introduced the DiffAI method and showed how to instantiate
it with two loss functions and two relaxations

The DiffAI method and its follow-ups can produce complex
optimization problems. Towards that, we introduced COLT, a
certified defense that combines adversarial training and
relaxations to produce a simpler optimization problem where
better relaxations can lead to better results.

