
Reliable and Interpretable Artificial Intelligence

Martin Vechev

ETH Zurich

Fall 2020

Lecture 9: Certified Robustness to Geometric Transformations

http://www.sri.inf.ethz.ch

http://www.sri.inf.ethz.ch/

Beyond Lp robustness

Limitations of threat model based on Lp perturbations:

• Less likely to occur naturally in real world scenarios

• There are many transformations which preserve semantic meaning of the
original image while not being covered by a small Lp ball

Geometric adversarial examples

revolver mousetrap

Exploring the Landscape of Spatial Robustness, ICML 2019

Natural transformations such as

rotation and translation are

enough to cause misclassification

Geometric Transformations
We represent geometric transformation as a bijective function 𝑇𝜿: ℝ

2 → ℝ2

Scaling: 𝑇𝜆 𝑥, 𝑦 = (𝜆𝑥, 𝜆𝑦)

Translation: 𝑇𝛿𝑥, 𝛿𝑦 𝑥, 𝑦 = 𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦

Rotation: 𝑇𝜙 𝑥, 𝑦 = (𝑥𝑐𝑜𝑠 𝜙 − 𝑦𝑠𝑖𝑛 𝜙 , 𝑥𝑠𝑖𝑛 𝜙 + 𝑦𝑐𝑜𝑠 𝜙)

Interpolation
Pixel values in the original image are
defined only at integer coordinates

Credits: Wikipedia

To compute pixel value at non-integer
coordinate 𝑥, 𝑦 we perform
bilinear interpolation 𝐼:ℝ2 → ℝ,

𝐼 𝑥, 𝑦 = 𝑝𝑥1,𝑦1 𝑥2 − 𝑥 𝑦2 − 𝑦

+ 𝑝𝑥1,𝑦2 𝑥2 − 𝑥 𝑦 − 𝑦1
+ 𝑝𝑥2,𝑦1 𝑥 − 𝑥1 𝑦2 − 𝑦

+ 𝑝𝑥2,𝑦2 𝑥 − 𝑥1 𝑦 − 𝑦1

where 𝑥1 ≤ 𝑥 ≤ 𝑥2, 𝑦1 ≤ 𝑦 ≤ 𝑦2
and 𝑥2 = 𝑥1 + 1, 𝑦2 = 𝑦1 + 1.

Computing pixel values

To compute pixel value at the coordinate 𝑥, 𝑦 after transformation 𝑇𝜿 we need to:

1) compute the preimage of the point 𝑥, 𝑦 under the transformation 𝑇𝜿

2) interpolate the resulting coordinate to obtain the pixel value

Computing pixel values

We define function 𝐼𝜿 ∶ ℝ
2 → ℝ

as a composition of interpolation 𝐼 and inverse of

geometric transformation 𝑇 parametrized by 𝜿
𝐼𝜿 𝑥, 𝑦 = 𝐼 ◦ 𝑇

𝜿

−1 𝑥, 𝑦

To compute pixel value at the coordinate 𝑥, 𝑦 after transformation 𝑇𝜿 we need to:

1) compute the preimage of the point 𝑥, 𝑦 under the transformation 𝑇𝜿

2) interpolate the resulting coordinate to obtain the pixel value

An example of 𝐼𝜿

Original image Rotated image by 𝜋/4

Computing pixel value at the
coordinate (5, 1) shown in red:

1. Apply inverse rotation R-1 to
the point (5, 1):

𝐴 = 𝑅𝜋/4
−1 (5, 1) = (2 2, 3 2)

2. As (2 2, 3 2) is at non-
integer coordinate we need to
perform interpolation

I(2 2, 3 2) which results in
the pixel value 0.3

Our goal now will be to certify geometric robustness

Certifying Geometric Robustness of Neural Networks, NeurIPS’2019
Balunovic, Baader, Singh, V

Certifying geometric robustness

Original image O

Exact region
𝑅𝜙(O) for 𝜙 ∈ [-30, 30]

Certifying geometric robustness

Original image O

Exact region
𝑅𝜙(O) for 𝜙 ∈ [-30, 30]

Certifying geometric robustness

Exact region
𝑅𝜙(O) for 𝜙 ∈ [-30, 30]

Original image O Convex relaxation
𝐶(𝑅𝜙(O)) for 𝜙 ∈ [-30, 30]

Certifying geometric robustness

Exact region
𝑅𝜙(O) for 𝜙 ∈ [-30, 30]

Original image O Convex relaxation
𝐶(𝑅𝜙(O)) for 𝜙 ∈ [-30, 30]

Key challenge: How to compute convex relaxation 𝐶(𝑅𝜙(O))?

DeepPoly constraints for capturing 𝐶(𝑅𝜙(O))

• To certify robustness, we will use the DeepPoly convex relaxation shape (but not
its transformers – we will see why later).

• A possible baseline: we can compute interval bounds on 𝐼𝜿 𝑥, 𝑦 by pushing
hyperrectangle 𝜿 via Box to compute lower and upper bounds for the pixel value.

• For geometric transformations, there is relationship between pixels through the
transformation parameters 𝜿. As interval bounds do not capture this relationship,
we can benefit from a more precise relaxation than Box.

Sound lower and upper constraints

To compute sound lower and upper constraints we want to find a pair
of hyperplanes (𝒘𝑙,𝑏𝑙), (𝒘𝑢,𝑏𝑢) which satisfy

𝒘𝑙
𝑇𝜿 + 𝑏𝑙 ≤ 𝐼𝜿 𝑥, 𝑦 ≤ 𝒘𝑢

𝑇𝜿 + 𝑏𝑢

for all 𝜿 in the parameter space 𝐷.

Sound lower and upper constraints

To compute sound lower and upper constraints we want to find a pair
of hyperplanes (𝒘𝑙,𝑏𝑙), (𝒘𝑢,𝑏𝑢) which satisfy

𝒘𝑙
𝑇𝜿 + 𝑏𝑙 ≤ 𝐼𝜿 𝑥, 𝑦 ≤ 𝒘𝑢

𝑇𝜿 + 𝑏𝑢

for all 𝜿 in the parameter space 𝐷.

The key challenge is to find sound constraints which are actually

reasonably tight (we also need to define how to measure tightness)

Measure of tightness for a convex relaxation

2-dim case (reminder): DeepPoly relaxation for ReLU has minimum
area in the 2-dimensional input-output plane

Measure of tightness for a convex relaxation

K-dim case: Measure volume between relaxation and the exact function

𝐿 𝒘𝑙,𝑏𝑙 ∶= න
𝜿∈𝐷

𝐼𝜿 𝑥, 𝑦 − 𝒘𝑙
𝑇𝜿 + 𝑏𝑙 𝑑𝜿

𝑈 𝒘𝑢,𝑏𝑢 ∶= න
𝜿∈𝐷

𝒘𝑢
𝑇𝜿 + 𝑏𝑢 − 𝐼𝜿 𝑥, 𝑦 𝑑𝜿

2-dim case (reminder): DeepPoly relaxation for ReLU has minimum
area in the 2-dimensional input-output plane

Two Optimization problems

Find 𝒘𝑙 ,𝑏𝑙 and 𝒘𝑢,𝑏𝑢 which minimize the volume

𝐿 𝒘𝑙 ,𝑏𝑙 ∶= න
𝜿∈𝐷

𝐼𝜿 𝑥, 𝑦 − 𝒘𝑙
𝑇𝜿 + 𝑏𝑙 𝑑𝜿

𝑈 𝒘𝑢,𝑏𝑢 ∶= න
𝜿∈𝐷

𝒘𝑢
𝑇𝜿 + 𝑏𝑢 − 𝐼𝜿 𝑥, 𝑦 𝑑𝜿

subject to the soundness constraints:

𝒘𝑙
𝑇𝜿 + 𝑏𝑙 ≤ 𝐼𝜿 𝑥, 𝑦 ≤ 𝒘𝑢

𝑇𝜿 + 𝑏𝑢, ∀𝜿 ∈ 𝐷

Can’t even compute
the objective function

Need to ensure constraint
holds for uncountable
set of 𝜿 values

Approximation of optimization problem

Step 1: Replace the intractable objective with a Monte Carlo approximation:

𝐿 𝒘𝑙,𝑏𝑙 ≈
1

𝑁

𝑖=1

𝑁

𝐼𝜿𝑖 − 𝒘𝑙
𝑇𝜿𝑖 + 𝑏𝑙

Step 2: Replace the uncountable set of constraints with finite set of constraints:

𝒘𝑙
𝑇𝜿𝑖 + 𝑏𝑙 ≤ 𝐼𝜿𝑖 𝑥, 𝑦 , ∀𝑖 ∈ {1, 2,… ,𝑁}

We can solve this exactly in polynomial time using linear programming

(LP) and obtain approximate solutions to the original problem ෝ𝒘𝑙 , 𝑏𝑙

Running example

We sample random angle points

for our parameter 𝜙 ∈ [0, 𝜋/4] and

evaluate I ◦ 𝑅𝜙
−1 5, 1 to obtain

pixel values, shown as blue points.

This approximation is unsound!

Solving the LP in yields 𝑏𝑙= 1.07 and

ෝ𝒘𝑙= −0.9. Together with the upper

constraint, it forms the orange

enclosure in the figure.

Computing sound constraints

So far, our constraints are sound at a finite set of points:

ෝ𝒘𝑙
𝑇𝜿𝑖 + 𝑏𝑙 ≤ 𝐼𝜿𝑖 𝑥, 𝑦 ≤ ෝ𝒘𝑢

𝑇𝜿𝑖 + 𝑏𝑢, ∀𝑖 ∈ {1, 2, … , 𝑁}

Computing sound constraints

So far, our constraints are sound at a finite set of points:

ෝ𝒘𝑙
𝑇𝜿𝑖 + 𝑏𝑙 ≤ 𝐼𝜿𝑖 𝑥, 𝑦 ≤ ෝ𝒘𝑢

𝑇𝜿𝑖 + 𝑏𝑢, ∀𝑖 ∈ {1, 2, … , 𝑁}

We would like to modify the constraints so that they are sound on the entire parameter space 𝐷:

𝒘𝑙
𝑇𝜿 + 𝑏𝑙 ≤ 𝐼𝜿 𝑥, 𝑦 ≤ 𝒘𝑢

𝑇𝜿 + 𝑏𝑢 , ∀𝜿 ∈ 𝐷

Computing sound constraints

So far, our constraints are sound at a finite set of points:

ෝ𝒘𝑙
𝑇𝜿𝑖 + 𝑏𝑙 ≤ 𝐼𝜿𝑖 𝑥, 𝑦 ≤ ෝ𝒘𝑢

𝑇𝜿𝑖 + 𝑏𝑢, ∀𝑖 ∈ {1, 2, … , 𝑁}

We would like to modify the constraints so that they are sound on the entire parameter space 𝐷:

𝒘𝑙
𝑇𝜿 + 𝑏𝑙 ≤ 𝐼𝜿 𝑥, 𝑦 ≤ 𝒘𝑢

𝑇𝜿 + 𝑏𝑢 , ∀𝜿 ∈ 𝐷

Key idea:
Suppose we have an upper bound 𝛿 on the maximum soundness violation on the entire parameter space 𝐷

ෝ𝒘𝑙
𝑇𝜿 + 𝑏𝑙 − 𝐼𝜿 𝑥, 𝑦 ≤ 𝛿𝑙, ∀𝜿 ∈ 𝐷

𝐼𝜿 𝑥, 𝑦 − ෝ𝒘𝑢
𝑇𝜿 + 𝑏𝑢 ≤ 𝛿𝑢, ∀𝜿 ∈ 𝐷

Then, the constraints 𝒘𝑙 = ෝ𝒘𝑙, 𝑏𝑙 = 𝑏𝑙 − 𝛿𝑙 and 𝒘𝑢 = ෝ𝒘𝑢, 𝑏𝑢 = 𝑏𝑢 + 𝛿𝑢 are sound.

Bounding the maximum violation

We need to compute an upper bound to the function 𝑓 defined as (in domain 𝐷):

𝑓 𝜿 = ෝ𝒘𝑙
𝑇𝜿 + 𝑏𝑙 − 𝐼𝜿 𝑥, 𝑦

Bounding the maximum violation

We need to compute an upper bound to the function 𝑓 defined as (in domain 𝐷):

𝑓 𝜿 = ෝ𝒘𝑙
𝑇𝜿 + 𝑏𝑙 − 𝐼𝜿 𝑥, 𝑦

Option I: bound function 𝑓 by running box propagation to obtain 𝑙, 𝑢 such that 𝑓 𝜿 ∈ 𝑙, 𝑢 , ∀𝜿 ∈ 𝐷. This gives:

𝑓 𝜿 ≤ 𝑢, ∀𝜿 ∈ 𝐷

Bounding the maximum violation

We need to compute an upper bound to the function 𝑓 defined as (in domain 𝐷):

𝑓 𝜿 = ෝ𝒘𝑙
𝑇𝜿 + 𝑏𝑙 − 𝐼𝜿 𝑥, 𝑦

Option I: bound function 𝑓 by running box propagation to obtain 𝑙, 𝑢 such that 𝑓 𝜿 ∈ 𝑙, 𝑢 , ∀𝜿 ∈ 𝐷. This gives:

𝑓 𝜿 ≤ 𝑢, ∀𝜿 ∈ 𝐷

Option II: bound function 𝑓 using mean-value theorem and Lipschitz continuity:

𝑓 𝜿 = 𝑓 𝜿𝑐 + 𝛻𝑓(𝜿′)𝑇 𝜿 − 𝜿𝑐 ≤ 𝑓 𝜿𝑐 + 𝑳 𝑇 𝜿 − 𝜿𝑐 ≤ 𝑓
𝟏

𝟐
(𝒉𝒖 + 𝒉𝒍) +

𝟏

𝟐
𝑳 𝑇 (𝒉𝒖− 𝒉𝒍)

where 𝜕𝑖𝑓 𝜿′ ≤ |𝐿𝑖| for any 𝜿′ ∈ 𝐷. Assuming 𝐷 = [𝒉𝒍, 𝒉𝒖]

Refinement via branch and bound on 𝐷

We partition the domain 𝐷 into a set

of hyperrectangles and compute an

upper bound for each hyperrectangle

If upper bound in some hyperrectangle

is not tight enough, we refine it into

smaller rectangles and then continue

with the same algorithm

Running example

In the first phase, we computed
unsound region (orange); we had 𝑏𝑙=
1.07 and ෝ𝒘𝑙 = −0.9.

We then compute the maximum
violation 𝛿𝑙 as follows:

1.07 − 0.9𝜙 − 𝐼 𝑅𝜙
−1 5, 1 ≤ 𝟎. 𝟏

Sound lower bound is then given by
𝑏𝑙= 𝑏𝑙 − 0.1 and 𝒘𝑙 = ෝ𝒘𝑙, shown in
green in the figure (together with
upper bound).

How well does this work?
To evaluate how tight is our relaxation, we
compare:

• Interval relaxation: does not capture
relationship between pixel and parameters

• Custom DeepPoly transformers: the classic
approach which computes relaxations one by
one for each operation in the transformation.

• DeepG [this lecture]: captures relationship and
computes the constraint for all operations at
the same time

DeepG relaxation is significantly tighter
than both DeepPoly and Interval (in one dimension)

Certifying Geometric Robustness with DeepPoly

Consider rotation by angle 𝜙 where 𝜙 ∈ 0, 5 : 𝐼𝜙 𝑥, 𝑦 = 𝐼 ◦ 𝑅
𝝓

−1 𝑥, 𝑦

Prove 𝑥11 − 𝑥12 > 0 for all 𝜙 ∈ 0, 5

Certifying Geometric Robustness with DeepPoly

𝑥1

𝑥2

𝜙 ≤ 𝑥1 ≤ 1.1𝜙 + 1

1.2𝜙 ≤ 𝑥2 ≤ 1.2𝜙 + 2

𝑥1 = 𝐼𝝓 1, 1

𝑥2 = 𝐼𝝓 0, 1

Consider rotation by angle 𝜙 where 𝜙 ∈ 0, 5 : 𝐼𝜙 𝑥, 𝑦 = 𝐼 ◦ 𝑅
𝝓

−1 𝑥, 𝑦

Prove 𝑥11 − 𝑥12 > 0 for all 𝜙 ∈ 0, 5

5 ≤ 𝑥1 ≤ 6.5

5 ≤ 𝑥2 ≤ 8

Certifying Geometric Robustness with DeepPoly

𝑥1

𝑥2

𝜙 ≤ 𝑥1 ≤ 1.1𝜙 + 1

1.2𝜙 ≤ 𝑥2 ≤ 1.2𝜙 + 2

𝑥1 = 𝐼𝝓 1, 1

𝑥2 = 𝐼𝝓 0, 1

Consider rotation by angle 𝜙 where 𝜙 ∈ 0, 5 : 𝐼𝜙 𝑥, 𝑦 = 𝐼 ◦ 𝑅
𝝓

−1 𝑥, 𝑦

Prove 𝑥11 − 𝑥12 > 0 for all 𝜙 ∈ 0, 5

Assume that backsubstitution with DeepPoly yields:

𝑥11 − 𝑥12 ≥ 𝑥2 − 𝑥1 + 1.2

Substituting interval bounds 𝑥1 ≤ 6.5, 𝑥2 ≥ 5 we get:

𝑥11 − 𝑥12 ≥ 𝑥2 − 𝑥1 + 1.2 ≥ 5 − 6.5 + 1.2 = −0.3

5 ≤ 𝑥1 ≤ 6.5

5 ≤ 𝑥2 ≤ 8

Certifying Geometric Robustness with DeepPoly

𝑥1

𝑥2

𝜙 ≤ 𝑥1 ≤ 1.1𝜙 + 1

1.2𝜙 ≤ 𝑥2 ≤ 1.2𝜙 + 2

𝑥1 = 𝐼𝝓 1, 1

𝑥2 = 𝐼𝝓 0, 1

Consider rotation by angle 𝜙 where 𝜙 ∈ 0, 5 : 𝐼𝜙 𝑥, 𝑦 = 𝐼 ◦ 𝑅
𝝓

−1 𝑥, 𝑦

Prove 𝑥11 − 𝑥12 > 0 for all 𝜙 ∈ 0, 5

Assume that backsubstitution with DeepPoly yields:

𝑥11 − 𝑥12 ≥ 𝑥2 − 𝑥1 + 1.2

Substituting interval bounds 𝑥1 ≤ 6.5, 𝑥2 ≥ 5 we get:

𝑥11 − 𝑥12 ≥ 𝑥2 − 𝑥1 + 1.2 ≥ 5 − 6.5 + 1.2 = −0.3

5 ≤ 𝑥1 ≤ 6.5

5 ≤ 𝑥2 ≤ 8

Substituting DeepPoly bounds 𝑥1 ≤ 1.1𝜙 + 1, 𝑥2 ≥ 1.2𝜙 we get:

𝑥11 − 𝑥12 ≥ 𝑥2 − 𝑥1 + 1.2 ≥ 1.2𝜙 − 1.1𝜙 + 1 + 1.2
≥ 0.1𝜙 − 1 + 1.2 ≥ 0.1 ⋅ 0 − 1 + 1.2

= 0.2

Summary

• We studied the problem of certifying neural networks to geometric
transformations.

• Towards that, we presented methods to approximate the values a
pixel can take after the transformation (which is in some range),
captured via DeepPoly constraints.

• These DeepPoly constraints can then be fed to a standard neural
network verifier in order to complete the certification.

