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Abstract
Analyzing the macroscopic traits of biological
molecules and protein complexes requires accu-
rate and specific descriptions of statistical en-
sembles. A notable challenge is the sampling
from subspaces of a state-space, either because
we have prior structural knowledge or only cer-
tain subsets of the state-space are of interest. We
introduce a method to samples from distributions
that formally satisfy sets of geometric constraints
in Euclidean spaces. This is accomplished by in-
corporating a constraint projection operator into
the well-established structure of Denoising Dif-
fusion Probabilistic Models. In deep learning-
based drug design, maintaining specific molecu-
lar interactions is essential for achieving desired
therapeutic effects and ensuring safety. This
starts a meaningful intersection between formal
verification principles and machine learning in
the realm of biochemical studies of compounds
and generative modeling. It offers a way to for-
mally verify the distributions from which sam-
ples are drawn.

1. Introduction
Infinitesimal Dynamics in classical mechanics is com-
monly formalized by Lagrangians. By solving for function-
als that extremize the Lagrangian one obtains equations of
motion. In molecular systems, e.g. Molecular Dynamics,
the EOM are: M d2x

dt2 = −∇U −
∑
a λa∇σa, where M is

the diagonal mass matrix, x the cartesian coordinates, t is
time, andU is the potential energy. The σa are a set of holo-
nomic constraints and λa are the Lagrange multiplier co-
efficients. To generalize from holonomic to nonholonomic
constraints, one can use slack variables to transform the lat-
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ter into the first. For example, we can add a slack variable
y ≥ 0 and define dj as the boundary of a nonholonomic
constraint. Then, we can express the constraint as:

σa := ||xaj−xak||22−dj ≤ 0 → ||xaj−xak||22−dj+y = 0.
Starting with zx, zh = f(x, h) = [x(0), h(0)] +∫ 1

0
ϕ(x(t), h(t))dt with z being a latent vector sampled

from gaussians and the indexes x and h indicate the la-
tent variables associated to the coordinates of each particle
and the vector embedding of each particle, ϕ is the parame-
terized transformation defined by a equivariant graph neu-
ral network. This defines a Neural ODE [Che+18] which
generalizes to Denoising Diffusion Probabilistic Models
[HJA20]. This form of transformation has the same in-
finitesimal nature as our previous EOM which makes it ac-
ceptable to apply sets of constraints via Langrange’s Mul-
tipliers, analogous to solving our EOM and thus one can
insure the continual satisfaction of a set of constraints us-
ing the SHAKE algorithm from Molecular Dynamics.

The study of constrained dynamics in Molecular Dynam-
ics and Machine Learning fields, has traditionally focused
on mostly linear constraints: e.g. removing high-frequency
oscillations by constraining bond distances in the first and
in-painting in the latter by thresholding certain pixel val-
ues to predetermined values. From a high level these can
be seen as linear constraint problems as the constrained
subset affects the unconstrained subset to minimal degrees.
In contrast, the problem we hope to model are non-linear
constraints where constrained subsets of atoms determine
the unconstrained subset to a high degree. We argue these
types of non-linear constraints are important in the field of
generative drug development where generated molecules
must satisfy certain structural or analytic properties a priori.
Take for instance, the optimization of lead molecules which
is crucial at the final stages of drug development pipeline
where off target interactions are attempted to be minimized.
Since these off-target reactions can be often be described
by structural or analytic properties, then we can generate
precisely molecules that satisfy a constraint profile of the
target of interest, while specifying the subspace of gener-
ated molecules to not lie within the subspace of off-target
interaction profiles.

In the following, we will give a summary of the SHAKE al-
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gorithm and segments of the equivariant normalaizing flow
necessary to elaborate on how to combine them. Next, it
will be elaborated that the spaces of latent embeddings and
output samples are generally of very different nature, and
constraints defined in one space will not necessarily be use-
ful in the other. We suggest a continuous transformation
of the constraints such that they are always satisfied in the
latent space, and become more restrictive throughout the
integration. Lastly, we show simple examples where com-
plex constraints are satisfied within small molecules. We
leave to future work the study of this methodology to larger
systems, and more application based studies.

2. Previous Research
Generative models of molecules and proteins have been a
subject of interest in recent years. A number of different
approaches have been proposed in the literature. [HN19]
introduced a method for generating valid Euclidean dis-
tance matrices. This method is important for the generation
of molecules, as it ensures the resulting molecular struc-
tures are physically realistic which are reconstructed in 3D
space with other algorithms. In the work by [Noé+19],
Boltzmann Generators were proposed to sample equilib-
rium states of many-body systems with deep learning. This
method is particularly useful for generating molecular con-
figurations that obey the laws of thermodynamics.

[SHW21] proposed Equivariant Graph Neural Networks,
which can be applied to model molecules and proteins. The
equivariance property of these networks ensures that their
predictions are consistent under different orientations and
permutations of the molecule.[Hoo+23] further extended
the concept of equivariant networks to the diffusion pro-
cess for 3D molecule generation. Their method maintains
the advantages of equivariance, while allowing more flex-
ibility in the generation process. [Cor+23] applied similar
modelling techniques to diffusion models on protein lig-
and complexes. Lastly, [Jin+23] devise a method of protein
generation models that diffuse over harmonic potentials.

The shake algorithm, described in a parallelized fashion by
[ERH11], enforces constraints on molecular dynamics sim-
ulations of chemicals and biomolecules. This algorithm is
conventionally used in simulations to get rid of high fre-
quency motions, i.e. those seen in bonds between atoms.
By incorporating the shake algorithm, our constraint de-
noising diffusion method effectively models more com-
plex constraint sets. These works together provide a solid
foundation for the development of generative models for
molecules and proteins. They highlight the importance of
incorporating physical principles and mathematical struc-
tures into these models.

3. Constrained Generative Processes
3.1. Geometric Constraints in Shake

First, we define the constraint functions for the pairwise
distance (not necessarily between bonded atoms), bond an-
gle, and dihedral angle. We can additionally create non-
holonomic constraints via slack variables as described be-
low.

σdij = (dij − dij,0)
2
= 0 (1)

σθijk = (θijk − θijk,0)
2
= 0 (2)

σψijkl
= (ψijkl − ψijkl,0)

2
= 0 (3)

These constraint functions compare the current pairwise
distance, bond angle, and dihedral angle with their target
values, and the goal is to minimize the difference.

Next, modify the constraint matrix in the SHAKE algo-
rithm to include pairwise distance, bond angle, and dihedral
angle constraints seen in equation 4, where ij, ijk, and ijkl
sum over the pairwise, bond angles, and torsion constraints
indicating the number of atoms in each type of constraint
type. The constraint matrix now accounts for the pairwise
distance, bond angle, and dihedral angle constraints by in-
cluding their second-order derivatives with respect to the
Cartesian coordinates by including their contributions to
the Lagrange multipliers. After solving for the Lagrange
multipliers, update the coordinates using the adjusted coor-
dinate set equation like before. It is also possible to try to
optimize the coordinates via other optimization algorithms
like ADAM or SGD.

In this section, we discuss the methods needed to under-
stand how constraints can be represented, and define a
novel diffusion process which projects the dynamics onto
the submanifold defined by arbitrary sets of geometric con-
straints.

3.2. Shake Algorithm

The SHAKE algorithm takes as input a set of coordinates
x of a molecular system and a set of constraints σ. At each
time step the coordinates are updated according to the equa-
tions of motion (EOM) at hand (without constraint terms)
and subsequently are corrected. In general, the EOM will
lead to dynamics that do not satisfy the constraints, and
thus this correction is mandatory.

Assuming masses of all the particles and delta time are unit
we have the following equation for updating xi iteratively
until the constraints are satisfied.

x
(n)
i = x

(n−1)
i −

∑
b

λ
(n−1)
b ∇σb(xi) (5)
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A
(n−1)
αβ =

∂2U

∂xα∂xβ
+
∑
ij

λ(n−1)dij
∂2σdij
∂xα∂xβ

+
∑
ijk

λ(n−1)θijk
∂2σθijk
∂xα∂xβ

+
∑
ijkl

λ(n−1)ψijkl
∂2σψijkl

∂xα∂xβ
(4)

where x(n)i is the updated coordinate after n iterations of
satisfying constraints at each time step, xi is the initial co-
ordinates at each time step, and λ(n−1)

b is the lagrange mul-
tiplier for each constraint σa. The equation to solve at each
iteration of each time step is∑

β

λ
(n−1)
β A

(n−1)
αβ = σα(x

(n−1)
i ) (6)

with

A
(n−1)
αβ = ∇σα(x(n−1)

i )∇σβ(xi). (7)

The matrix A
(n−1)
αβ is a symmetric matrix that describes

how changes in particle positions affect both potential en-
ergy and constraint violations. The elements of the matrix
are given by:

A
(n−1)
αβ =

∂2U

∂xα∂xβ
+

Nc∑
k=1

λ
(n−1)
k

∂2σk
∂xα∂xβ

(8)

where Nc is the number of constraints. The matrix A(n−1)
αβ

is used to solve for the Lagrange multipliers λ(n)β , which
are then used to adjust particle positions.

3.3. Constraint-Induced Diffusion Process

Suppose we want to incorporate a constraint, such as a dis-
tance constraint between two atoms. Let’s denote this con-
straint by f(x) = 0 for simplicity. We can modify the
diffusion process to satisfy this constraint by projecting the
noise term onto the nullspace of the gradient of the con-
straint function, analagous to theAmatrix in SHAKE. This
gives us:

dx =
√
2D(I −∇f(x)(∇f(x))T )dB −D∇ log pt(x)dt

where D is the diffusion constant, B is a standard Brow-
nian motion, and ∇ log pt(x) is the gradient of the log-
probability density, which is equivalent to the negative of
the potential energy function of the system. Here, I is the
identity matrix, and ∇f(x)(∇f(x))T is the outer product
of the gradient of the constraint function, which represents
the direction in which the constraint is changing. This pro-
jection ensures that the noise term does not push the system
out of the constraint-satisfying space.

The covariance matrix of the perturbed Gaussian distri-
bution of the denoising process can be understood for-
mally using the Schur complement method, available in

the Appendix. The key takeaway is the relation between
constraints and correlations via projecting out the con-
straints in the Covariance matrix of a Multivariate Gaus-
sian. This modified covariance matrix then defines the per-
turbed Gaussian distribution from which we can sample at
each time step of the diffusion process. This is a good ap-
proximation when the constraints are nearly linear or when
the changes in the variables are small. One note is that
in general, the order of projection and sampling does mat-
ter, but since we deal with linearized constraints or small
changes this is negligible as seen in the original SHAKE
formalism.

3.4. Nonholonomic Constraints

We are more interested in nonholonomic constraints where
each constraint has possibly a lower and upper bound.
As we mentioned earlier, by adding a slack variable one
can translate the nonholonomic constraints to holonomic
ones. To formalize this, one sees that a constraint having a
lower and upper bound will either be completely satisfied
or fail to satisfy a single boundary. Thus, we only have to
consider at most one holonomic constraint at each call to
SHAKE meaning each constraint with a lower and upper
bound may be replaced by a lower, upper, or no bound for
each call.

To calculate the slack variable y from σjk :=
∥xli − xlj∥ − djk which is ≤ or ≥ 0, one has

y =

{
max(0, ||xli − xlj || − dujk), if ≤
max(0, dljk − ||xli − xlj ||), if ≥ (9)

where djk is the lower or upper bound in case of nonholo-
nomic constriants and the defined constraint value for holo-
nomic constraints.

In the generative process, we define the initial values of djk
such that the constraints have little effects. The constraints
are then linearly interpolated throughout the ODE until the
predetermined boundary values of djk are reached.

3.5. Training and Sampling Algorithms

3.5.1. TRAINING PROCESS

During training, in Algorithm 2, we first sample a time
step t and noise vector ϵ from uniform and Gaussian dis-
tributions respectively. Then subtract the center of gravity
from the noise vector to ensure that it lies on a zero center
of gravity subspace. Then compute the latent variable zt
by scaling and adding the input coordinates [x, h] with the
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Figure 1: Molecules generated with 6 atom cyclic constraints between 1.3-1.5 Angstroms each with bounds of .1 Angstrom.
Atom types are generated as well, so we can not arbitrarily encode constraints between specific types of atoms in our current
implementation, but this will be possible in further developments.

Algorithm 1 Pseudo-Code for Training

t ∼ U(0, T ), ϵ ∼ N(0, I)
Subtract center of gravity from ϵ: ϵ̂ = [ϵ(x), 0]− [x, 0]
Compute zt = αt[x, h] + σtϵ̂
Update zt → x+ ϵs, where ϵs = shake(zt)− αtx
Compute ϵ′s = shake(φ(zt) + zt)− zt
Minimize Lc = |ϵs − ϵ′s|22

noise vector. Finally, minimize the difference between the
estimated noise vector and output of the neural network to
optimize EDM. For each molecule between 5 and 15 con-
straints are sampled from x for each batch element. The
constraints are uniformly sampled from the pairs, triples,
and quadruplets of the atom set of each molecule. This
adds an extra layer of complexity due to the constraint dis-
tribution which we need to sample from the true data dis-
tribution.

3.5.2. GENERATIVE PROCESS

In this algorithm, first sample a latent variable zT from a
Gaussian distribution. Then iterate backwards through time
and sample noise vectors ϵ at each step. Subtract the cen-
ter of gravity from the noise vector to ensure that it lies
on a zero center of gravity subspace. Then compute the

latent variable zs by scaling and adding the input coordi-
nates with the noise vector and previous latent variable.
Finally, sample the input coordinates [x, h] from a condi-
tional distribution given the initial latent variable z0. The
shake algorithm enforces the constraints, as in training, at
each sampling step during generation.

4. Experiments
In the experimental section of our study, we evaluate our
proposed method by generating molecules with cyclic con-
straints in Figure 1. The cyclic constraints impose specific
geometric relationships among atoms in a molecule, such
as the bond distances, bond angles, and torsional angles,
which are essential for maintaining the chemical stability
and physical plausibility of the generated molecules.

During the training phase, constraints are sampled from
the dataset. This approach encourages the model to learn
the distribution of constraints inherent in the training data,
which reduces the Kullback-Leibler (KL) divergence be-
tween the data distribution and the model distribution.
Consequently, the KL divergence during training is always
minimized, promoting the model to generate molecules that
closely resemble those in the training set.

For the practical implementation of this training procedure,
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we began with a pre-trained model provided by Welling et
al.Our methodology then fine-tuned this pre-existing model
using our constraint projection method. Due to time con-
siderations and simplicity, our training and experiments fo-
cused on molecules consisting of 21 atoms.

5. Discussion
Our method serves as a potent tool for incorporating com-
plex constraints in denoising diffusion processes, specifi-
cally when dealing with multi-constraint specifications. Its
iterative nature allows it to address nonlinear constraint
problems and extends the power of denoising diffusion
probabilistic models to work with constraints. Thus al-
lowing these models to leverage the structure inherent in
many physical systems. Indeed, many of these systems
come with prior structural knowledge, including geomet-
ric information like distances, torsions, bond angles, and
generalizeable to other piece-wise polynomial terms. Such
information can significantly enhance the training process
and enable explicit sampling of subsets of the state space.

Although constraints can guide generation towards more
physically plausible structures, there can be potential insta-
bility in the generation process. This instability may orig-
inate from discrepancies between constraints used during
training and those applied during generation. It underlines
the need for further work to establish robust training pro-
cedures that align more closely with the generation con-
straints. Especially, with application focused studies like
generating peptides or ligands with specific interaction pro-
files.
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6. Appendix A: Constraint Induced Diffusion
as Correlations

Consider, for instance, a scenario involving pairwise dis-
tance constraints between a set of variables denoted as d =
dij , where dij signifies the distance separating variables i
and j. These constraints can be mathematically expressed
through the set of functions Cij(ϵ) = ||ϵi − ϵj|| − dij =
0, which is applicable to all corresponding variable pairs
(i, j) ∈ d, influencing the samples drawn from a Multi-
variate Normal distribution.

The introduction of these geometric constraints essentially
interrelates variables that were initially independent in the
Gaussian distribution. In order to comprehend the implica-
tions of these constraints, the covariance matrix Σ′ of the
perturbed distribution p′(ϵ′) is worth examining:

Σ′ = Eϵ′∼p′ [ϵ
′(ϵ′)T ]− Eϵ′∼p′ [ϵ

′]Eϵ′∼p′ [ϵ
′]T , (10)

Here, the expectations are calculated over the perturbed
distribution. The covariance matrix Σ′ elucidates the cor-
relations among variables that emerge as a result of the ge-
ometric constraints.
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Importantly, these correlations, which are encoded within
the covariance matrix of a multivariate Gaussian distribu-
tion, represent the constraints in the distribution. This pro-
vides a way to naturally incorporate constraint-based infor-
mation into the model.

7. Appendix B: Generalized Schur
Complement for Multiple Constraints

To obtain a generalized approach of Schur Complement for
multiple distance constraints, let’s consider a set ofM pair-
wise constraints between atoms. We can express each con-
straint as a function of the positions of the corresponding
atoms:

fm(xi,xj) = ||xi − xj ||2 − d2ij = 0, m = 1, 2, . . . ,M,
(11)

where dij is the distance constraint between atoms i and j.

To incorporate all the constraints, we can form the com-
bined gradient and Hessian matrices by stacking the corre-
sponding matrices for each constraint:

∇f =
[
∇f1 ∇f2

... ∇fM
]
, (12)

∇2f =
[
∇2f1 ∇2f2

... ∇2fM

]
. (13)

To project the Gaussian distribution with the original co-
variance matrix Σ onto the space of distance constraints,
we can use the following generalized Schur complement:

Σ′ = Σ−Σ∇2fT (∇2fΣ∇2fT )−1∇2fΣ. (14)

While the Schur complement method can be implemented
iteratively for non-linear systems, it is computationally in-
tensive due to the inversion of the Hessian matrix. How-
ever, it serves as an excellent theoretical tool, providing a
precise representation of how constraints can be formally
incorporated into the diffusion process. On the other hand,
the Schur complement method provides a direct way to
project the covariance matrix of the atomic positions onto
the space that satisfies the distance constraints. It essen-
tially modifies the covariance matrix in a way that embeds
the constraints, without needing to adjust the atomic posi-
tions. This approach formally modifies the probability dis-
tribution of interest, and may be more useful for theoretic
insight.


