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Abstract
Notions of counterfactual invariance have proven
essential for predictors that are fair, robust, and
generalizable in the real world. We propose sim-
ple graphical criteria that yield a sufficient con-
dition for a predictor to be counterfactually in-
variant in terms of (conditional independence in)
the observational distribution. Any predictor that
satisfies our criterion is provably counterfactu-
ally invariant. In order to learn such predictors,
we propose a model-agnostic framework, called
Counterfactual Invariance Prediction (CIP), build-
ing on a kernel-based conditional dependence
measure called Hilbert-Schmidt Conditional Inde-
pendence Criterion (HSCIC). Our experimental
results demonstrate the effectiveness of CIP in en-
forcing counterfactual invariance across various
simulated and real-world datasets including scalar
and multi-variate settings.

1. Introduction and Related Work
Invariance, or equivariance to certain transformations of
data, has proven essential in numerous applications of ma-
chine learning (ML), since it can lead to better generaliza-
tion capabilities (Arjovsky et al., 2019; Chen et al., 2020;
Bloem-Reddy & Teh, 2020).

Many real-world applications in modern ML, however, call
for an arguably stronger notion of invariance based on
causality, called counterfactual invariance. These appli-
cations require predictors to exhibit invariance with respect
to hypothetical manipulations of the data generating process
(DGP) (Peters et al., 2016; Heinze-Deml et al., 2018; Rojas-
Carulla et al., 2018; Arjovsky et al., 2019; Bühlmann, 2020).
Counterfactual invariance has the advantage that it incorpo-
rates structural knowledge of the DGP. However, enforcing
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counterfactual invariance is challenging in practice, because
it is typically untestable in real-world observational settings
unless strong prior knowledge of the DGP is available.

Inspired by problems in natural language processing (NLP),
(Veitch et al., 2021) analyze two specific causal graphs
(dubbed causal and anticausal, which we replicate in Fig-
ure 1(b,c)) with the goal of “stress-testing” models for spuri-
ous correlations. They develop necessary, but not sufficient,
criteria to achieve counterfactual invariance in these two set-
tings based only on the observational distribution. These cri-
teria are enforced in practice for discrete conditioning vari-
ables via distribution matching using the maximum mean
discrepancy (MMD). Our work differs in that we provide
graphical criteria for any given causal graph and develop a
sufficient (potentially not necessary) criterion for counter-
factual invariance, again based on the observational distribu-
tion only. Hence, unlike (Veitch et al., 2021), our approach
guarantees counterfactual invariance. Finally, we propose a
model-agnostic learning framework, called Counterfactual
Invariance Prediction (CIP), building on a kernel-based con-
ditional dependence measure called Hilbert-Schmidt Condi-
tional Independence Criterion (HSCIC) (Park & Muandet,
2020). CIP thus allows for mixed categorical and continuous
multivariate variables.

2. Preliminaries
We denote with Y ⊂ V the outcome (or prediction tar-
get), and with Ŷ a predictor for that target. Each Structural
Causal Model (SCM) implies a unique observational distri-
bution over V, but it also entails interventional distributions
(Pearl, 2000). Given a variable A ∈ V, an intervention
A ← a amounts to replacing fA in F with the constant
function setting A to a. This yields a new SCM, which
induces the interventional distribution under intervention
A← a. Similarly, we can intervene on multiple variables
V ⊇ A ← a. We then write Y∗

a for the outcome in the
intervened SCM, also called potential outcome. Note that
the interventional distribution PY∗

a
(y) differs in general

from the conditional distribution PY|A(y | a).1This is typi-
cally the case when Y and A have a shared parent, i.e., are
confounded. We can also condition on a set of variables
W ⊆ V in the (observational distribution of the) original

1We use P for distributions (common in the kernel literature)
and the notation Y∗

a instead of Y | do(a) for conciseness.
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SCM before performing an intervention, which we denote
by PY∗

a|W(y | w). This is a counterfactual distribution:
“Given that we have observed W = w, what would Y have
been had we set A← a, instead of the value A has actually
taken?”. Note that the sets A and W need not be disjoint.

3. Counterfactual Invariance Prediction (CIP)
3.1. Sufficient Criterion for Counterfactual Invariance

We start with the definition of counterfactual invariance.
Definition 3.1 (Counterfactual invariance). Let A, W be
(not necessarily disjoint) sets of nodes in a given SCM.
Then, Y is counterfactually invariant in A w.r.t. W if
PY∗

a |W(y | w) = PY∗
a′ |W

(y | w) almost surely, for all
a,a′ in the domain of A and all w in the domain of W.2

A counterfactually invariant predictor Ŷ can then be viewed
as robust to changes of A in the sense that the (conditional)
post-interventional distribution of Ŷ does not change for
different values of the intervention. We now discuss some
properties of our Definition 3.1 in comparison to other no-
tions of counterfactual invariance. First, we can condition
on observations W, which allows us to model true counter-
factuals including the abduction step where we condition on
observed evidence. For example, enforcing counterfactual
fairness requires modeling true counterfactual (Kusner et al.,
2017). This sets our definition apart, for example, from Def.
1.1 of (Veitch et al., 2021), who require Ŷ∗

a = Ŷ∗
a′ almost

surely for all a,a′ in the domain of A. While this condition
appears stronger by enforcing equality of random variables
instead of equality of distributions, in practice (Veitch et al.,
2021) also enforces equality of distributions (via MMD).
Moreover, since Ŷ∗

a, Ŷ
∗
a′ are (deterministic) functions of

the same exogenous (unobserved) random variables, dis-
tributional equality is a natural choice for counterfactual
invariance. Def. 1 of (Mouli & Ribeiro, 2022) instead de-
fine counterfactually invariant representations of some data
as being invariant under a family of pre-specified symmetry
transformations of the data (based on equivalence relations).

Next, we establish a simple graphical criterion to express
counterfactual invariance as conditional independence in the
observational distribution of an SCM, rendering it estimable
from observational data. Crucially, our main result provides
sufficient conditions for counterfactual invariance.
Theorem 3.2. Let G be a causal graph, A, W be two (not
necessarily disjoint) sets of nodes in G, such that (A∪W)∩
Y = ∅, let S be a valid adjustment set for (A∪W,Y), and
define Z := (S ∪W) \A. Then, in all SCMs compatible
with G, if the variable Y satisfies Y ⊥⊥ A | Z, then Y is
counterfactually invariant in A with respect to W.
Note that the conditioning set Z in Theorem 3.2 depends on

2With an abuse of notation, if W = ∅ then the require-
ment of conditional counterfactual invariance becomes PYa(y) =
PYa′ (y) almost surely, for all a,a′ in the domain of A.

A, W, and the given valid adjustment set S. In particular,
the conditioning set Z need not itself be a valid adjustment
set. The proof is deferred to Section 7. Crucially, our proof
does not rely on the identification of the counterfactual
distributions (e.g., via the do-calculus (Pearl, 2000)).

Theorem 3.2 provides a sufficient condition for Y to be
counterfactually invariant (Definition 3.1). If a predictor Ŷ
satisfies Ŷ ⊥⊥ A | Z, this is a counterfactually invariant
predictor. We illustrate Theorem 3.2 with an example in
Figure 1(a).

In the following, we will develop an operator denoted by
HSCIC(Ŷ,A | Z) that is efficiently estimable from obser-
vational data, differentiable, serves as a measure of condi-
tional dependence, and is zero if and only if Ŷ ⊥⊥ A | Z.
We can then use this operator as a model-agnostic objec-
tive to train counterfactually invariant predictors. Some
background is required.

3.2. HSCIC for Conditional Independence

Consider two random variables Y and A, and denote with
(ΩY,FY) and (ΩA,FA) the respective measurable spaces.
Suppose that we are given two RKHSs HY, HA over
the support of Y and A respectively. The tensor product
space HY ⊗ HA is defined as the space of functions of
the form (f ⊗ g)(y,a) := f(y)g(a), for all f ∈ HY and
g ∈ HA. The tensor product space yields a natural RKHS
structure, with kernel k defined by k(y ⊗ a,y′ ⊗ a′) :=
kY(y,y′)kA(a,a′). We refer the reader to (Szabó & Sripe-
rumbudur, 2017) for more details on tensor product spaces.

Definition 3.3 (HSCIC). For (sets of) random variables
Y, A, Z, the HSCIC between Y and A given Z is defined
as the real-valued random variable HSCIC(Y,A | Z) =
HY,A|Z ◦ Z where HY,A|Z is a real-valued deterministic
function, defined asHY,A|Z(z) := ∥µY,A|Z=z−µY|Z=z⊗
µA|Z=z∥ with ∥·∥ the norm induced by the inner product of
the tensor product spaceHX ⊗HA.

Our Definition 3.3 is heavily motivated by, but differs
slightly from Def. 5.3 of (Park & Muandet, 2020), which
relies on the Bochner conditional expected value. While it
is functionally equivalent (with the same implementation,
see Section 11), ours has the benefit of bypassing some
technical assumptions required by (Park & Muandet, 2020)
(see Section 9-Section 10 for details). The HSCIC has the
following important property.

Theorem 3.4 (Theorem 5.4 by (Park & Muandet, 2020)). If
the kernel k ofHX⊗HA is characteristic3, HSCIC(Y,A |
Z) = 0 almost surely if and only if Y ⊥⊥ A | Z.

A proof is in Section 8. We remark that “most interesting”
kernels such as the Gaussian and Laplacian kernels are char-

3The tensor product kernel k is characteristic if the mapping
PY,A 7→ Ey,a [k( · ,y ⊗ a)] is injective.
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Figure 1. (a) An example for Theorem 3.2. Any predictor Ŷ such that Ŷ ⊥⊥ A | Z with Z = X ∪ S is counterfactually invariant in A
with respect to X. (b)-(c) Causal and anti-causal structure as in (Veitch et al., 2021). The variable X is decomposed in three parts. X⊥

A

is the part of X that is not causally influenced by A, X⊥
Y is the part that does not causally influence Y, and X∧ is the remaining part that

is both influenced by A and that influences Y. (d) Causal structure for the synthetic experiments (see Section 4.1).

acteristic. Furthermore, if kernels are translation-invariant
and characteristic, then their tensor product is also a charac-
teristic kernel (Szabó & Sriperumbudur, 2017). Hence, this
natural assumption is non-restrictive in practice. Combining
Theorems 3.2 and 3.4, we can now use HSCIC to reliably
achieve counterfactual invariance.

Corollary 3.5. Consider an SCM with causal diagram G
and fix two (not necessarily disjoint) sets of nodes A, W.
Let Z be a set of nodes as in Theorem 3.2. Then, if it
holds HSCIC(Y,A | Z) = 0 almost surely, then Y is
counterfactually invariant in A with respect to W.

In Section 11, the estimation of HSCIC from samples is
introduced. We emphasize that this procedure allows us to
consistently estimate the HSCIC from observational i.i.d.
samples, without prior knowledge of the counterfactual dis-
tributions.

3.3. Learning Counterfactually Invariant Predictors

Corollary 3.5 justifies our proposed objective, namely to
minimize the following loss

LCIP(Ŷ) = L(Ŷ) + γ · HSCIC(Ŷ,A | Z) , (1)

where L(Ŷ) is a task-dependent loss function (e.g., cross-
entropy for classification, or mean squared error for regres-
sion) and γ ≥ 0 is a parameter that regulates the trade-off
between predictive performance and counterfactual invari-
ance.

The meaning of γ. The second term in Equation (1) does
not act as a regularizer, i.e., we do not aim at overcoming an
ill-posedness of, e.g., multiple models with equal training
loss L. Instead, it is an additional objective, typically in
conflict with L. As a result, γ does not need to decay to
zero as the sample size increases and it is impossible to
select an “optimal value” based on data alone. In practice,
driving HSCIC to zero to ensure perfect counterfactual
invariance typically deteriorates the predictive performance
on observational data useless compared to an unconstrained
model. Typical use-cases either have strict requirements on
predictive performance (e.g., at most 5% loss in accuracy
compared to an unconstrained model) and/or may tolerate
small violations of invariance (which cannot be avoided
in a finite data setting in any case). Hence, a practically
useful approach consists of: (i) learn a collection of CIP
models on the Pareto frontier of invariance and predictive

performance using different values of γ; (ii) choose one
of these models depending on pre-specified criteria in the
application context such as the most invariant model within
a required predictive performance, or the most predictive
model within a certain tolerance regarding invariance.

Measuring counterfactual invariance. Besides predictive
performance, e.g., mean squared error (MSE) for regression
or accuracy for classification, our key metric of interest is the
level of counterfactual invariance achieved by the predictor
Ŷ. Such a measure must capture how the distribution of
Ŷ∗

a changes for different values of a across all conditioning
values w. We quantify this in a single scalar, which we call
the Variance of CounterFactuals (VCF)

VCF(Ŷ) = Ew∼PW

[
vara′∼PA

[EŶ∗
a′ |W=w[ŷ | w]]

]
. (2)

That is, we look at how the average outcome varies with the
interventional value a at conditioning value w and average
this variance over w. For deterministic predictors, i.e., point
estimators, which we use in all our experiments, Ŷ is con-
stant and we can drop the inner expectation of Equation (2).
In this case, the variance term in Equation (2) is zero if and
only if PŶ∗

a |W
(y | w) = PŶ∗

a′ |W
(y | w) almost surely.

Since the variance is non-negative, the outer expectation is
zero if and only if the variance term is zero almost surely.
Hence, VCF(Ŷ) = 0 almost surely is equivalent to coun-
terfactual invariance.

Crucially, VCF requires access to ground-truth counterfac-
tual distributions, which by their very nature are unavailable
in practice (neither for training nor at test time). Hence,
we can only assess VCF, as a direct measure of counter-
factual invariance, in synthetic scenarios. Our experiments
demonstrate that HSCIC (estimable from the observed data)
empirically serves as a proxy for VCF.

4. Experiments
In this section, we aim to demonstrate the effectiveness of
the proposed method in enforcing counterfactual invariance
across different simulated datasets. We compare CIP with
established baselines to showcase its competitive results
in preserving counterfactual invariance. In Section 13.3
and Section 13.4, the method is also respectively applied to
image and real-world datasets.

Baselines Since counterfactually invariant training has not
received much attention yet, our choice of baselines for ex-
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Figure 2. (Top-left) trade-off between the accuracy and coun-
terfactual invariance. We observe that the VCF decreases, as
the MSE increases. Vertical bars denote standard errors over 10
different random seeds. (Top-right) Correspondence between
the HSCIC and the VCF, for increasing γ. Again, vertical bars
denote standard errors over 10 different random seeds. (Bottom)
Performance of CIP against baselines CF1 and CF2 on a syn-
thetic dataset (see Section 13.2). Notably, the HSCIC-MSE
frontier traced out for different values of the trade-off parameter
(which is available in purely observational settings) can guide the
desired choice of γ as it closely mimics the VCF-MSE frontier.
CF2 is Pareto-dominated by this frontier, i.e., we can pick γ to
outperform CF2 in both MSE and VCF simultaneously.

perimental comparison is limited. We benchmarked CIP
against (Veitch et al., 2021) in the specific causal and anti-
causal settings of Figure 3(b-c) in Section 13.5, showing
that our method performs on par with theirs. Since counter-
factual fairness is a special case of counterfactual invariance,
we also compare against two methods proposed by (Kusner
et al., 2017) (in applicable settings). We compare to the
Level 1 (only use non-descendants of A as inputs to Ŷ) and
the Level 2 (assume an additive noise model and in addition
to non-descendants, only use the residuals of descendants
of A after regression on A as inputs to Ŷ) approaches of
(Kusner et al., 2017). We refer to these two baselines as CF1
and CF2 respectively.

4.1. Synthetic Experiments

We begin our empirical assessment of HSCIC, by gener-
ating various synthetic datasets following the causal graph
in Figure 1(d). The datasets are composed of four sets of
observed continuous variables: (i) the prediction target Y,
(ii) the variable(s) we want to be counterfactually invariant
in A, (iii) covariates that mediate effects from A on Y, and
(iv) confounding variables S. The goal is to learn a predic-
tor Ŷ that is counterfactually invariant in A with respect to
W := A ∪X ∪ S. Following the notation of Theorem 3.2,
we have Z = X∪S. We consider various synthetic datasets
for this case, which mainly differ in the dimension of the
observed variables and their correlations. All datasets are
described in detail in Section 13.

Model performance. We first perform a set of experiments
to study the effect of the HSCIC, and to highlight the trade-

off between accuracy and counterfactual invariance. For this
set of experiments, we generate a dataset as described in
Section 13.1. Figure 2 (top-left) shows the values attained
by the VCF and MSE for increasing γ, demonstrating the
expected trade-off in raw predictive performance and enforc-
ing counterfactual invariance. Finally, Figure 2 (top-right)
highlights the usefulness of HSCIC as a measure of coun-
terfactual invariance, being in strong agreement with VCF
(see discussion after Equation (2)).

Comparison with baselines. We compare CIP against
baselines in different simulated settings. In Figure 2(bot-
tom), the results for a non-additive noise model data-
generating mechanism are shown. For a suitable choice
of γ, CIP outperforms the baseline CF2 in both MSE and
VCF simultaneously. While CF1 satisfies counterfactual
invariance perfectly by construction (VCF = 0), its MSE
is generally higher in comparison to other possible choices
of the parameter γ that still achieve high levels of counter-
factual invariance. Our method provides to flexibly trade
predictive performance for counterfactual invariance via a
single tuning knob λ and Pareto-dominates existing meth-
ods. In Section 13.2, the results in another simulated setting
are presented.

5. Discussion and Future Work
We developed a method to learn counterfactually invari-
ant predictors Ŷ, i.e., predictors that remain invariant in
changes of certain covariates (conditioned on observed evi-
dence). First, we presented a novel sufficient graphical cri-
terion to characterize counterfactual invariance and reduce
it to conditional independence in the observational distri-
bution. Our method (CIP) does not require identifiability
of the counterfactual distribution. We then built on ker-
nel mean embeddings and the Hilbert-Schmidt Conditional
Independence Criterion to devise an efficiently estimable,
model-agnostic objective to practically train counterfactu-
ally invariant predictors. This choice allowed us to deal with
mixed continuous/categorical, multi-dimensional variables.
We demonstrated the efficacy of CIP in regression and clas-
sification tasks involving simulation studies, images, and in
a fairness application on tabular data, where it outperforms
existing baselines.

The main limitation of our work, shared by all studies in this
domain, is the assumption that the causal graph is known.
Another limitation is that our methodology is applicable
only when our graphical criterion is satisfied, requiring a
certain set of variables to be observed (albeit unobserved
confounders are not generally excluded).

An important direction for future work is to assess the sen-
sitivity of CIP to misspecifications of the causal graph or
insufficient knowledge of the required blocking set. Lastly,
our graphical criterion and KME-based objective can also
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be useful for causal representation learning, where one aims
to isolate causally relevant, autonomous factors underlying
the data-generating process of a given dataset.
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Figure 3. (a) A causal graph G, which embeds information for the random variables of the model in the pre-interventional world.
(b) The corresponding graph G′ for the set W = {A,X}. The variables A and X are copies of A and X respectively. (c) The
post-interventional graph G′a. By construction, any intervention of the form A← a does not affect the group W = {A,X}.

7. Proof of Theorem 3.2
7.1. Overview of the proof techniques

We restate the main theorem for completeness.
Theorem 3.2. Let G be a causal graph, A, W be two (not necessarily disjoint) sets of nodes in G, such that (A∪W)∩Y = ∅,
let S be a valid adjustment set for (A∪W,Y), and define Z := (S∪W) \A. Then, in all SCMs compatible with G, if the
variable Y satisfies Y ⊥⊥ A | Z, then Y is counterfactually invariant in A with respect to W.

Our proof technique generalizes the work of (Shpitser & Pearl, 2009). To understand the proof technique, note that
conditional counterfactual distributions of the form PY∗

a |W(y | w) involve quantities from two different worlds. The
variables W belong to the pre-interventional world, and the interventional variable Y∗

a belongs to the world after performing
the intervention A← a. Hence, we study the identification of conditional counterfactual distributions using a diagram that
embeds the causal relationships between the pre- and the post-interventional world. After defining this diagram, we prove
that some conditional measures in this new model provide an estimate for PY∗

a |W(y | w). We then combine this result with
the properties of Z to prove the desired result.

7.2. Identifiability of counterfactual distributions

In this section, we discuss a well-known criterion for the identifiability of conditional distributions, which we will then
use to prove Theorem 3.2. To this end, we use the notions of a blocked path and valid adjustment set, which we restate for
clarity.
Definition 7.1. Consider a path π of causal graph G. A set of nodes Z blocks π, if π contains a triple of consecutive nodes
connected in one of the following ways: Ni → Z → Nj , Ni ← Z → Nj , with Ni, Nj /∈ Z, Z ∈ Z, or Ni → M ← Nj

and neither M nor any descendent of M is in Z.

Using this definition, we define the concept of a valid adjustment set.
Definition 7.2. Let G be a causal graph and let X, Y be disjoint (sets of) nodes in G. A set of nodes S is a valid adjustment
set for (X,Y), if (i) No element in S is a descendant in GX of any node W /∈ X which lies on a proper causal path from X
to Y. (ii) S blocks all non-causal paths from X to Y in G.

Definition 7.2 is a useful graphical criterion for the identifiability of counterfactual distributions. In fact, following Corollary
1 by (Shpitser et al., 2010), if S satisfies the adjustment criterion relative to (A,Y), then it holds

PY∗
a
(y) =

∫
PY|A,S(y | a, s)dPS. (3)

Furthermore, this identifiability criterion is complete. That is, consider any graph G and a set of nodes S that do not fulfill
the valid adjustment criterion with respect to (A,Y). Then, there exists a model inducing G such that Equation (3) does not
hold (see Theorem 3 by (Shpitser et al., 2010)).

7.3. d-separation and conditional independence

In this section, we discuss a well-known criterion for conditional independence, which we will then use to prove Theorem 3.2.
We use the notion of a blocked path, as in Definition 7.3 and the concept of d-separation as follows.
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Definition 7.3 (d-Separation). Consider a causal graph G. Two sets of nodes X and Y of G are said to be d-separated by a
third set S if every path from any node of X to any node of Y is blocked by S.

We use the notation X ⊥⊥G Y | S to indicate that X and Y are d-separated by S in G. We use Definition 7.3 as a graphical
criterion for conditional independence (Pearl, 2000).

Lemma 7.4 (Markov Property). Consider a causal graph G, and suppose that two sets of nodes X and Y of G are
d-separated by S. Then, X is independent of Y given S in any model induced by the graph G.

The Markov Property is also referred to as d-separation property. We use the notation X ⊥⊥G Y | S to indicate that X and
Y are d-separated by S in G.

7.4. A graphical characterization of conditional counterfactual distributions

We study the relationships between the pre-interventional model corresponding to a causal diagram G and the post-
interventional model, inducing a diagram Ga after an intervention A← a. A natural way to study this relationship is to use
the counterfactual graph (Shpitser & Pearl, 2008). However, the construction of the counterfactual graph is rather intricate.
For our purposes it is sufficient to consider a simpler construction, generalizing the work by (Shpitser & Pearl, 2009).

Consider an SGM with causal graph G, and fix a set of observed random variables of interest W. Denote with de(A) all
descendants of A in G. Furthermore, for each node N of G, denote with an(N) the set of all its ancestral variables. We
define the corresponding graph G′A∪W in the following steps:

1. Define G′A∪W to be the same graph as G.

2. For each node N ∈ A ∪W, add a new duplicate node N to G′A∪W.

3. For each node N ∈ A ∪W and for each ancestral variable P ∈ an(N) \ (A ∪W) such that P ∈ de((A ∪W)), add
a new duplicate node P to G′A∪W.

4. For each duplicate node N and for each parent P ∈ pa(N), if a duplicate node P was added in steps 2-3, then add an
edge P → N ; otherwise add an edge P → N .

5. For each duplicate node N , add an edge UN → N .

An illustration of this graph is presented in Figure 3. We denote with H the set of duplicate nodes that were added to G′A∪W.
We can naturally define structural equations for the new variables N as

N = fN (pa(N), UN ),

with fN the structural equation for N in the original model, and pa(N) the parents of N in the newly define graph G′A∪W.
Note that each random variable N is a copy of the corresponding N , in the sense that N = N almost surely. Importantly,
the following lemma holds.

Lemma 7.5. Suppose that a set of nodes S satisfies the adjustment criterion relative to (A ∪W,Y) in G. Then, S satisfies
the adjustment criterion relative to (A ∪W,Y) in G′A∪W.

Proof. We prove the claim, by showing that all non-causal paths in G′A∪W from A ∪W to Y are blocked by S. Indeed, if
S satisfies the adjustment criterion relative to (A ∪W,Y) in G, then condition (i) of the adjustment criterion Definition 7.2
relative to (A ∪W,Y) in G′A∪W is satisfied. Let π be any such non-causal path in G′A∪W from A ∪W to Y. If π does
not cross any duplicate node, then it is blocked by S. Otherwise, without loss of generality, we can decompose π in three
paths, which we refer to as π1, π2, and π3. The path π1 starts from a node in A ∪W of G, and it terminates in H. The
path π2 only contains nodes in a node in H, and the path π3 starts from a node of H, and it terminates in Y. The paths π1
and π3 necessarily contain paths of the form N ← P or N ← UN → N , with N ∈ H, P and N nodes of G, and UP a
latent variable. By construction, no node N ∈H belongs to the adjustment set S. Hence, the path π contains a fork of three
nodes, with the central node, or any descendants of the central node, are included in S. Hence, the path π is blocked.
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We further prove the following lemma.
Lemma 7.6 (Following Theorem 4 by (Shpitser et al., 2010)). Define the sets X = W \A and X = W \A. Suppose that
a set of nodes S satisfies the adjustment criterion relative to (A ∪W,Y) in G. Then, it holds Y∗

a,x ⊥⊥ A,X | S for any
intervention intervention A,X← a,x.

Proof. By Lemma 7.5, S satisfies the adjustment criterion relative to (A ∪W,Y) in G′A∪W. Equivalently, S satisfies the
adjustment criterion relative to (A ∪X,Y) in G′A∪W. Hence, by the sufficiency of the adjustment criterion (Theorem 4
by (Shpitser et al., 2010)), it hold Y ⊥⊥ A,X | S in the graph (G′A∪W)a,x, which is obtained from G′A∪W by performing
an intervention A,X ← a,x. By definition, the group of random variables A and X in (G′A∪W)a,x are copies of the
pre-interventional variables A, X in (G′A∪W)a,x. It follows that Y ⊥⊥ A,X | S in the graph (G′A∪W)a,x or, equivalently,
that Y∗

a,x ⊥⊥ A,X | S, as claimed.

7.5. Proof of Theorem 3.2

We can identify conditional counterfactual distributions in G, by identifying distributions on G′. We can combine this
observation with the notion of a valid adjustment set to derive a closed formula for the identification of the distributions of
interest.

Proof of Theorem 3.2. Following the notation of Lemma 7.6, define the sets X = W \A, X = W \A, and let G′A∪W be
the augmented graph obtained by adding duplicate nodes. Note that, using this notation, the assumption that Y ⊥⊥ A | Z
can be written as Y ⊥⊥ A | X,S. Denote with P the induced measure on G′A∪W. Suppose that it holds

PY∗
a′,x|A,X(y | a,x) =

∫
PY|A,X,S(y | a′,x, s)dPS|A,X(s | a,x) (4)

for any intervention A← a, and for any possible value w attained by W. Assuming that Equation (4) holds, we have that

PY∗
a′,x|A,X(y | a,x) =

∫
PY|A,X,S(y | a′,x, s)dPS|A,X(z | a,x) (assuming Equation (4))

=

∫
PY|A,X,S(y | a,x, s)dPS|A,X(s | a,x) (Y ⊥⊥ A | X,S)

= PY∗
a,x|A,X(y | a,x). (assuming Equation (4)) (5)

To conclude, define the set T = A \W. It follows that

PY∗
a′,x|W

(y | w) =

∫
PY∗

a′,x|A,X(y | a,x)dPT|W(t | w) (by conditioning)

=

∫
PY∗

a,x|A,X(y | a,x)dPT|W(t | w) (by Equation (5))

= PY∗
a,x|W

(y | w). (by unconditioning)

Since X ⊆W, from the inequalities above it holds

PY∗
a′ |W

(y | w) = PY∗
a′,x|W

(y | w) = PY∗
a′,x|W

(y | w) = PY∗
a,x|W

(y | w) = PY∗
a |W(y | w),

as claimed. The proof of Theorem 3.2 thus boils down to proving Equation (4). To this end, we use the valid adjustment
property of S. Note that by Lemma 7.6 it holds Y∗

a′,x ⊥⊥ A,X | S. Hence,

PY∗
a′,x|A,X(y | a,x)

=

∫
PY∗

a′,x|A,X,S(y | a,x, s)dPS|A,X(s | a,x) (by conditioning)

=

∫
PY∗

a′,x|S
(y | s)dPS|A,X(s | a,x) (Y∗

a′,x ⊥⊥ A,X | S)

=

∫
PY|A,X,S(y | a′,x, s)dPS|A,X(s | a,x), (by Lemma 7.5)

and Equation (4) follows.
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8. Proof of Theorem 3.4
We prove that the HSCIC can be used to promote conditional independence, using a similar technique as (Park & Muandet,
2020). The following theorem holds.
Theorem 3.4 (Theorem 5.4 by (Park & Muandet, 2020)). If the kernel k ofHX ⊗HA is characteristic4, HSCIC(Y,A |
Z) = 0 almost surely if and only if Y ⊥⊥ A | Z.

Proof. By definition, we can write HSCIC(Y,A | Z) = HY,A|Z◦Z, whereHY,A|Z is a real-valued deterministic function.
Hence, the HSCIC is a real-valued random variable, defined over the same domain ΩZ of the random variable X.

We first prove that if HSCIC(Y,A | Z) = 0 almost surely, then it holds Y ⊥⊥ A | Z. To this end, consider an event
Ω′ ⊆ ΩX that occurs almost surely, and such that it holds (HY,A|X ◦X)(ω) = 0 for all ω ∈ Ω′. Fix a sample ω ∈ Ω′, and
consider the corresponding value zω = Z(ω), in the support of Z. It holds∫

k(y ⊗ a, · )dPY,A|Z=zω
= µY,A|Z=zω

(by definition)

= µY|Z=zω
⊗ µA|Z=zω

(since ω ∈ Ω′)

=

∫
kY(y, · )dPY|Z=zω

⊗
∫
kA(a, · )dPA|Z=zω

(by definition )

=

∫
kY(y, · )⊗ kA(a, · )dPY|Z=zω

PA|Z=zω
, (by Fubini’s Theorem)

with kY and kA the kernels of HY and HA respectively. Since the kernel k of the tensor product space HY ⊗ HA is
characteristic, then the kernels kY and kA are also characteristic. Hence, it holds PY,A|Z=zω

= PY|Z=zω
PA|Z=zω

for all
ω ∈ Ω′. Since the event Ω′ occurs almost surely, then PY,A|Z=zω

= PY|Z=zω
PA|Z=zω

almost surely, that is Y ⊥⊥ A | Z.

Assume now that Y ⊥⊥ A | Z. By definition there exists an event Ω′′ ⊆ ΩZ such that PY,A|Z=zω
= PY|Z=zω

PA|Z=zω
for

all samples ω ∈ Ω′′, with zω = Z(ω). It holds

µY,A|Z=zω
=

∫
k(y ⊗ a, · )dPY,A|Z=zω

(by definition)

=

∫
k(y ⊗ a, · )dPY|Z=zω

PA|Z=zω
(since ω ∈ Ω′)

=

∫
kY(y, · )kA(a, · )dPY|Z=zω

PA|Z=zω
(by definition of k)

=

∫
kY(y, · )dPY|Z=zω

⊗
∫
kA(a, · )dPA|Z=zω

(by Fubini’s Theorem)

= µY|Z=zω
⊗ µA|Z=zω

. (by definition)

The claim follows.

9. Conditional kernel mean embeddings and the HSCIC
The notion of conditional kernel mean embeddings has already been studied in the literature. We show that, under stronger
assumptions, our definition is equivalent to the definition by (Park & Muandet, 2020).

9.1. Conditional kernel mean embeddings and conditional independence

We show that, under stronger assumptions, the HSCIC can be defined using the Bochner conditional expected value. The
Bochner conditional expected value is defined as follows.
Definition 9.1. Fix two random variables Y, Z taking value in a Banach space H, and denote with (Ω,F ,P) their joint
probability space. Then, the Bochner conditional expectation of Y given Z is anyH-valued random variable X such that∫

E

YdP =

∫
E

XdP

4The tensor product kernel k is characteristic if the mapping PY,A 7→ Ey,a [k( · ,y ⊗ a)] is injective.
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for all E ∈ σ(Z) ⊆ F , with σ(Z) the σ-algebra generated by Z. We denote with E [Y | Z] the Bochner expected value.
Any random variable X as above is a version of E [Y | Z].

The existence and almost sure uniqueness of the conditional expectation are shown in (Dinculeanu, 2000). Given a RKHSH
with kernel k over the support of Y, (Park & Muandet, 2020) define the corresponding conditional kernel mean embedding
as

µY|Z := E [k(·,y) | Z] .

Note that, according to this definition, µY|Z is an H-valued random variable, not a single point of H. (Park & Muandet,
2020) use this notion to define the HSCIC as follows.

Definition 9.2 (The HSCIC according to (Park & Muandet, 2020)). Consider (sets of) random variables Y, A, Z, and
consider two RKHSHY,HA over the support of Y and A respectively. The HSCIC between Y and A given Z is defined
as the real-valued random variable

ω 7→
∥∥µY,A|Z(ω)− µY|Z(ω)⊗ µA|Z(ω)

∥∥ ,
for all samples ω in the domain ΩZ of Z. Here, ∥·∥ the metric induced by the inner product of the tensor product space
HY ⊗HZ.

We show that, under more restrictive assumptions, Definition 9.2 can be used to promote conditional independence. To this
end, we use the notion of a regular version.

Definition 9.3 (Regular Version, following Definition 2.4 by (Çinlar & ðCınlar, 2011)). Consider two random variables
Y, Z, and consider the induced measurable spaces (ΩY,FY) and (ΩZ,FZ). A regular version Q for PY|Z is a mapping
Q : ΩZ × FY → [0,+∞] : (ω,y) 7→ Qω(y) such that: (i) the map ω 7→ Qω(x) is FA-measurable for all y; (ii) the map
y 7→ Qω(y) is a measure on (ΩY,FY) for all ω; (iii) the function Qω(y) is a version for E

[
⊮{Y=y} | Z

]
.

The following theorem shows that the random variable as in Definition 9.2 can be used to promote conditional independence.

Theorem 9.4 (Theorem 5.4 by (Park & Muandet, 2020)). With the notation introduced above, suppose that the kernel k of
the tensor product spaceHX ⊗HA is characteristic. Furthermore, suppose that PY,A|X admits a regular version. Then,∥∥µY,A|Z(ω)− µY|Z(ω)⊗ µA|Z(ω)

∥∥ = 0 almost surely if and only if Y ⊥⊥ A | Z.

Note that the assumption of the existence of a regular version is essential in Theorem 9.4. In this work, HSCIC is not used
for conditional independence testing but as a conditional independence measure.

9.2. Equivalence with our approach

The following theorem shows that under the existence of a regular version, conditional kernel mean embeddings can be
defined using the Bochner conditional expected value. To this end, we use the following theorem.

Theorem 9.5 (Following Proposition 2.5 by (Çinlar & ðCınlar, 2011)). Following the notation introduced in Definition 9.3,
suppose that PY|Z(· | Z) admits a regular version Qω(y). Consider a kernel k over the support of Y. Then, the mapping

ω 7→
∫
k(·,y)dQω(y)

is a version of E [k(·,y) | Z].

As a consequence of Theorem 9.5, we prove the following result.

Lemma 9.6. Fix two random variables Y, Z. Suppose that PY|Z admits a regular version. Denote with ΩZ the domain of
Z. Then, there exists a subset Ω ⊆ ΩZ that occurs almost surely, such that µY|Z(ω) = µY|Z=Z(ω) for all ω ∈ Ω. Here,
µY|Z=Z(ω) is the embedding of conditional measures as in Section 2.

Proof. Let Qω(y) be a regular version of PY|Z. Without loss of generality we may assume that it holds PY|Z(y | {Z =
Z(ω)}) = Qω(y). By Theorem 9.5 there exists an event Ω ⊆ ΩZ that occurs almost surely such that

µY|Z(ω) = E[k(y, · ) | Z](ω) =
∫
k(y, · )dQω(y), (6)
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for all ω ∈ Ω. Then, for all ω ∈ Ω it holds

µY|Z(ω) =

∫
k(x, · )dQω(x) (it follows from Equation (6))

=

∫
k(x, · )dPX|A(x | {A = A(ω)}) (Qω(y) = PY|Z(y | {Z = Z(ω)}))

= µX|{A=A(ω)}, (by definition as in Section 2)

as claimed.

As a consequence of Lemma 9.6, we can prove that the definition of the HSCIC by (Park & Muandet, 2020) is equivalent to
ours. The following corollary holds.

Corollary 9.7. Consider (sets of) random variables Y, A, Z, and consider two RKHSHY,HA over the support of Y and
A respectively. Suppose that PY,A|Z(· | Z) admits a regular version. Then, there exists a set Ω ⊆ ΩA that occurs almost
surely, such that ∥∥µX,A|Z(ω)− µX|Z(ω)⊗ µA|Z(ω)

∥∥ = (HY,A|Z ◦ Z)(ω).

Here, HY,A|Z is a real-valued deterministic function, defined as

HY,A|Z(z) :=
∥∥µY,A|Z=z − µY|Z=z ⊗ µA|Z=z

∥∥ ,
and ∥·∥ is the metric induced by the inner product of the tensor product spaceHX ⊗HA.

We remark that the assumption of the existence of a regular version is essential in Corollary 9.7.

10. Conditional independence and the cross-covariance operator
In this section, we show that under additional assumptions, our definition of conditional KMEs is equivalent to the definition
based on the cross-covariance operator, under more restrictive assumptions.

The definition of KMEs based on the cross-covariance operator requires the use of the following well-known result.

Lemma 10.1. Fix two RKHSHX andHZ, and let {φi}∞i=1 and {ψj}∞j=1 be orthonormal bases ofHX andHZ respectively.
Denote with HS(HX,HZ) the set of Hilbert-Schmidt operators betweenHX andHZ. There is an isometric isomorphism
between the tensor product spaceHX ⊗HZ and HS(HX,HZ), given by the map

T :

∞∑
i=1

∞∑
j=1

ci,jφi ⊗ ψj 7→
∞∑
i=1

∞∑
j=1

ci,j⟨ · , φi⟩HX
ψj .

For proof of this result see i.e., (Park & Muandet, 2020). This lemma allows us to define the cross-covariance operator
between two random variables, using the operator T .

Definition 10.2 (Cross-Covariance Oprator). Consider two random variables X, Z. Consider corresponding mean embed-
dings µX,Z, µX and µZ, as defined in Section 3. The cross-covariance operator is defined as ΣX,Z := T (µX,Z − µX ⊗ µZ).
Here, T is the isometric isomorphism as in Lemma 10.1.

It is well-known that the cross-covariance operator can be decomposed into the covariance of the marginals and the
correlation. That is, there exists a unique bounded operator ΛY,Z such that

ΣY,Z = Σ
1/2
Y,Y ◦ ΛY,Z ◦ Σ1/2

Z,Z

Using this notation, we define the normalized conditional cross-covariance operator. Given three random variables Y, A,
Z and corresponding kernel mean embeddings, this operator is defined as

ΛY,A|Z := ΛY,A − ΛY,Z ◦ ΛZ,A. (7)

This operator was introduced by (Fukumizu et al., 2007). The normalized conditional cross-covariance can be used to
promote statistical independence, as shown in the following theorem.
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Theorem 10.3 (Theorem 3 by (Fukumizu et al., 2007)). Following the notation introduced above, define the random
variable Ä := (A,Z). Let PZ be the distribution of the random variable Z, and denote with L2(PZ) the space of the
square integrable functions with probability PZ. Suppose that the tensor product kernel kY ⊗ kA ⊗ kZ is characteristic.
Furthermore, suppose thatHZ + R is dense in L2(PZ). Then, it holds

ΛY,Ä|Z = 0 if and only if Y ⊥⊥ A | X.

Here, ΛY,Ä|Z is an operator defined as in Equation (7).

By Theorem 10.3, the operator ΛY,Ä|Z can also be used to promote conditional independence. However, CIP is more
straightforward since it requires less assumptions. In fact, Theorem 10.3 requires to embed the variable Z in an RKHS. In
contrast, CIP only requires the embedding of the variables Y and A.

11. Estimating the HSCIC from samples.
Given n samples {(ŷi,ai, zi)}ni=1, denote with K̂Ŷ the kernel matrix with entries [K̂Ŷ]i,j := kY(ŷi, ŷj), and let K̂A be
the kernel matrix for A. We estimate the HŶ,A|X ≡ HŶ,A|X(·) as

Ĥ2
Ŷ,A|Z = ŵT

Ŷ,A|Z

(
K̂Ŷ ⊙ K̂A

)
ŵŶ,A|Z (8)

− 2
(
ŵT

Ŷ|ZK̂YŵŶ,A|X

)(
ŵT

A|XK̂AŵŶ,A|Z

)
+
(
ŵT

Ŷ|ZK̂ŶŵŶ|Z

)(
ŵT

A|ZK̂AŵA|Z

)
, (9)

where ⊙ is element-wise multiplication. The functions ŵŶ|Z ≡ ŵŶ|Z(·), ŵA|Z ≡ ŵA|Z(·), and ŵŶ,A|Z ≡ ŵŶ,A|Z(·) are

found via kernel ridge regression. (Caponnetto & Vito, 2007) provide the convergence rates of the estimand Ĥ2
Ŷ,A|Z under

mild conditions. In practice, computing the HSCIC approximation by the formula in Equation (8) can be computationally
expensive. To speed it up, we can use random Fourier features to approximate the matrices K̂Ŷ and K̂A (Rahimi & Recht,
2007; Avron et al., 2017).

12. Random Fourier features
Random Fourier features is an approach to scaling up kernel methods for shift-invariant kernels (Rahimi & Recht, 2007).
Recall that a shift-invariant kernel is a kernel of the form k(z, z′) = hk(z− z′), with hk a positive definite function.

Fourier features are defined via the following well-known theorem.
Theorem 12.1 (Bochner’s Theorem). For every shift-invariant kernel of the form k(z, z′) = hk(z− z′) with hk(0) = 1,
there exists a probability probability density function Pk(η) such that

k(z, z′) =

∫
e−2πiηT (z−z′)dPk.

Since both the kernel k and the probability distribution Pk are real-valued functions, the integrand in Theorem 12.1 ca be
replaced by the function cosηT (z− z′), and we obtain the following formula

k(z, z′) =

∫
cosηT (z− z′)dPk = E

[
cosηT (z− z′)

]
, (10)

where the expected value is taken with respect to the distributionPk(η). This equation allows to approximate the kernel
k(z, z′), via the empirical mean of points η1, . . . ,ηl sampled independently according to Pk. In fact, it is possible to prove
exponentially fast convergence of an empirical estimate for E

[
cosηT (z− z′)

]
, as shown in the following theorem.

Theorem 12.2 (Uniform Convergence of Fourier Features, Claim 1 by (Rahimi & Recht, 2007)). Following the notation
introduced above, fix any compact subset Ω in the domain of k, and consider points η1, . . . ,ηl sampled independent
according to the distribution Pk. Define the function

k̂(z, z′) :=
1

l

l∑
j=1

cosηT
j (z− z′),
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for all (z, z′) ∈ Ω. Then, it holds

P
(
sup
z,z′

∣∣∣k̂(z, z′)− k(z, z′)∣∣∣ ≥ ε) ≤ 28σk
diam(Ω)

ε
exp

{
− ε2l

4(d+ 1)

}
.

Here σ2
k is the second moment of the Fourier transform of the kernel k, and d is the dimension of the arrays z and z′.

By Theorem 12.2, the estimated kernel k̂ is a good approximation of the true kernel k on the set Ω.

Similarly, we can approximate the Kernel matrix using Random Fourier features. Following the notation introduced above,
define the function

ζk,l(z) :=
1√
l

[
cosηT

1 z, . . . , cosη
T
l z

]
(11)

with η1, . . . ,ηl sampled independent according to the distribution Pk.

We can approximate the Kernel matrix using the functions defined as in Equation (11). Consider n samples z1, . . . , zn, and
denote with Z the n× l matrix whose i-th row is given by ζk,l(zi). Similarly, denote with Z∗ the l × n matrix whose i-th
column is given by ζ∗k,l(zi). Then, we can approximate the kernel matrix as K̂Z ≈ ZZ∗.

We can also use this approximation to compute the kernel ridge regression parameters as in Section 3 using the formula
ŵY|Z(·) ≈ (ZZ∗ − nλI)−1

[
kZ(·, z1), · · · , kZ(·, zn)

]T
. (Avron et al., 2017) argue that the approximate kernel ridge

regression, as defined above, is an accurate estimate of the true distribution. Their argument is based on proving that the
matrix ZZ∗ − nλI is a good approximation of K̂Z − nλI . The notion of good approximation is clarified by the following
definition.

Definition 12.3. Fix two Hermitian matrices A and B of the same size. We say that a matrix A is a γ-spectral approximation
of another matrix B, if it holds (1 − γ)B ⪯ A ⪯ (1 + γ)B. Here, the ⪯ symbol means that A − (1 − γ)B is positive
semi-definite, and that (1 + γ)B −A is positive semi-definite.

(Avron et al., 2017) prove that ZZ∗ − nλI is a γ- approximation of K̂Z − nεI , if the number of samples η1, . . . ,ηl is
sufficiently large.

Theorem 12.4 (Theorem 7 by (Avron et al., 2017)). Fix a constant γ ≤ 1/2. Consider n samples z1, . . . , zn, and denote
with K̂Z the corresponding kernel matrix. Suppose that it holds ∥K̂Z∥2 ≥ nλ for a constant λ > 0. Fix η1, . . . ,ηl samples
with

l ≥ 8

3γ2λ
ln

16 trλ(K̂Z)

γ

Then, the matrix ZZ∗ − nλI is a γ- approximation of K̂Z − nλI with probability at least 1− γ, for all γ ∈ (0, 1). Here,
trλ(K̂Z) is defined as the trace of the matrix K̂Z(K̂Z + nλI)−1.

We conclude this section by illustrating the use of random Fourier features to approximate a simple Gaussian kernel. Suppose
that we are given a kernel of the form

k(z, z′) := exp

{
−1

2
σ∥z− z′∥22

}
.

Then, k(z, z′) can be estimated as in Theorem 12.2, with η1, . . . ,ηl ∼ N (0,Σ), with Σ := σ−1I , with I the identity matrix.
The functions ζk,l(z) can be defined accordingly.

13. Experiment settings
Model choices and parameters. For all synthetic experiments, we train fully connected neural networks (MLPs) with
MSE loss LMSE(Ŷ) as the predictive loss L in Equation (1) for continuous outcomes Y. We generate 10k samples from the
observational distribution in each setting and use an 80 to 20 train to test split. All metrics reported are on the test set. We
perform hyper-parameter tuning for MLP hyperparameters based on a random strategy (see Section 13 for details). The
HSCIC(Ŷ,A | Z) term is computed as in Equation (8) using a Gaussian kernel with amplitude 1.0 and length scale 0.1.
The regularization parameter λ for the ridge regression coefficients is set to λ = 0.01. We set d = 1000 and k = 500 in the
estimation of VCF. Additional information on the experiments is now provided.
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13.1. Dataset for model performance with the use of the HSCIC

The data-generating mechanism corresponding to the results in Figure 2 is the following:

Z ∼ N (0, 1) A = Z2 + εA

X = exp

{
−1

2
A2

}
sin (2A) + 2Z

1

5
εX

Y =
1

2
exp {−XZ} · sin (2XZ) + 5A+

1

5
εY,

where εA ∼ N (0, 1) and εY, εX
i.i.d.∼ N (0, 0.1).

In the first experiment, Figure 2 shows the results of feed-forward neural networks consisting of 8 hidden layers with 20
nodes each, connected with a rectified linear activation function (ReLU) and a linear final layer. Mini-batch size of 256 and
the Adam optimizer with a learning rate of 10−3 for 300 epochs were used.
The kernel ridge regression estimation generally requires O(n3) and O(n2) complexity, with n the size of the dataset.
However, these bounds can be significantly improved by using, i.e., Fourier Features (see, 12). By using Fourier features,
the resulting approximate kernel ridge regression estimator can be computed in O(ns2) and O(ns) memory. Here, s is
a parameter determining the accuracy of the approximation. In practice, s can be set to be significantly smaller than the
problem size, resulting in a dramatic speed-up. Other methods for efficient kernel computation include the popular Nystrom
approximation (Drineas et al., 2005), (Chen et al., 2020), and Memory-Efficient Kernel Approximation (MEKA) (Si et al.,
2014).

13.2. Datasets and results for comparison with baselines

The comparison of our method CIP with the CF1 and CF2 is done on different simulated datasets. These will be referred to
as Scenario 1 and Scenario 2. The data generating mechanism corresponding to the results in Figure 2 (Scenario 1) is the
following:

Z ∼ N (0, 1) A = exp

{
1

2
Z2

}
· sin (2Z) + εA

X = exp

{
1

2
A2

}
· εX + 2Z

Y =
1

2
exp {−XZ} · sin (2XZ) + 5A+

1

5
εY,

where εA, εX
i.i.d.∼ N (0, 1) and εY

i.i.d.∼ N (0, 0.1). The data generating mechanism for Scenario 2 is the following:

Z ∼ N (0, 1) A = exp

{
1

2
Z2

}
· sin (2Z) + εA

X =

(
1

2
Z+A

)
· εX

Y = sin (Z) +A+X+
1

5
εY,

where εA, εX
i.i.d.∼ N (0, 1) and εY

i.i.d.∼ N (0, 0.1). Figure 4 shows the performance of CIP against baselines CF1 and CF2
in Scenario 2. In Table 1, the results of MSE, HSCIC and VCF are presented. In this table, both Scenario 1 and Scenario 2
were considered. The results shown in Figure 4 and Table 1 are the average and standard deviation resulting from 9 random
seeds runs. For CIP, the same hyperparameters as in the previous setting are used. The MLPs implemented in CF1 and CF2
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Figure 4. Results of MSE, HSCIC operator and VCF in comparison with CF1 and CF2 for Scenario 2. The plot shows the results
for 10 different seeds, along with the mean and standard deviations. CF2 is Pareto-dominated by the VCF-MSE frontier, we can hence
pick a γ value to outperform CF2 in both accuracy and counterfactual invariance simultaneously.
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Figure 5. Results of MSE, HSCIC operator and VCF for multi-dimensional variable experiment with dimA = 5.

used for the prediction of Ŷ and the one used for the prediction of the X residuals in CF2 are all designed with similar
architecture and training method. The MLP models consist of 8 hidden layers with 20 nodes each, connected with a rectified
linear activation function (ReLU) and a linear final layer. During training, mini-batch size of 64 and the Adam optimizer
with a learning rate of 10−3 for 200 epochs were used.
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Figure 6. Results of MSE, HSCIC operator and VCF for multi-dimensional variable experiment with dimA = 10.

13.3. Image Experiment

We consider the image classification task on the dSprites dataset (Matthey et al., 2017). Since this dataset is fully synthetic
and labelled, we consider a causal model as depicted in Figure 10(right). The full structural equations are provided later,
where we assume a causal graph over the determining factors of the image, and essentially look up the corresponding image
in the simulated dataset. This experiment is particularly challenging due to the mixed categorical and continuous variables
in C (shape, y-pos) and X (color, orientation), continuous A (x-pos). Our goal is to learn a predictor Ŷ that
is counterfactually invariant in the x-position with respect to all other observed variables. Following Theorem 3.2, we seek
to achieve Ŷ ⊥⊥ x-pos | {shape,y-pos,scale} via the HSCIC operator. To accommodate the mixed input types, Ŷ
puts an MLP on top of features extracted from the images via convolutional layers concatenated with features extracted
from the remaining inputs via an MLP. Figure 8 demonstrates that HSCIC achieves improved VCF as γ increases up to a
certain point while affecting MSE, an inevitable trade-off.
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Table 1. Performance of the HSCIC against baselines CF1 and CF2 on two synthetic datasets. Notably, for γ within [1, 5] in Scenario
1 CIP outperforms CF2 in MSE and VCF simultaneously. Similarly, in Scenario 2 this holds for γ within [1, 2].

Scenario 1 Scenario 2
MSE ×103 HSCIC ×103 VCF×103 MSE×103 HSCIC ×102 VCF×102

γ = 0 0.01± 0.00 35.22± 0.87 30.37± 0.94 0.01± 0.01 4.12± 0.05 13.39± 1.35
γ = 0.1 0.05± 0.01 34.54± 0.85 29.32± 1.74 0.04± 0.01 4.10± 0.06 13.34± 1.41
γ = 0.2 0.24± 0.07 33.50± 1.10 27.67± 0.88 0.10± 0.02 4.07± 0.06 12.67± 0.68
γ = 0.3 0.61± 0.08 32.01± 1.11 25.93± 1.88 0.21± 0.04 4.03± 0.06 12.64± 0.72
γ = 0.4 1.28± 0.10 30.36± 1.13 24.20± 1.72 0.49± 0.05 4.01± 0.07 12.44± 1.20
γ = 0.5 2.36± 0.25 28.13± 1.10 20.32± 2.08 0.59± 0.13 3.97± 0.09 12.44± 0.73
γ = 0.6 3.70± 0.20 25.69± 0.78 20.01± 2.60 0.84± 0.15 3.90± 0.07 12.12± 0.80
γ = 0.7 5.10± 0.26 23.56± 0.62 18.96± 2.44 1.24± 0.27 3.87± 0.08 12.09± 0.74
γ = 0.8 6.39± 0.30 21.86± 0.75 18.08± 3.01 1.73± 0.35 3.81± 0.08 11.93± 0.70
γ = 0.9 7.72± 0.60 22.00± 0.83 16.57± 3.22 2.21± 0.46 3.76± 0.08 11.90± 0.70
γ = 1.0 9.11± 0.60 18.87± 0.81 14.58± 1.62 2.96± 0.42 3.69± 0.08 11.28± 1.30
γ = 2.0 17.29± 0.92 13.05± 0.43 4.03± 1.67 14.09± 1.91 2.90± 0.10 10.22± 0.73
γ = 3.0 20.73± 0.77 11.60± 0.30 1.46± 1.11 25.42± 1.62 2.42± 0.11 8.29± 0.67
γ = 4.0 22.27± 0.99 11.17± 0.32 0.76± 0.24 33.80± 4.52 2.20± 0.05 7.25± 0.86
γ = 5.0 23.17± 0.98 10.94± 0.30 0.50± 0.22 39.16± 5.15 2.09± 0.10 7.27± 1.59
γ = 7.0 24.48± 1.07 10.70± 0.32 0.46± 0.13 49.90± 3.67 1.90± 0.11 5.89± 0.86
γ = 10.0 25.40± 1.09 10.58± 0.32 0.24± 0.08 56.49± 3.88 1.82± 0.07 5.79± 1.27
γ = 50.0 28.70± 1.13 10.37± 0.32 0.13± 0.09 98.23± 4.53 1.61± 0.03 3.39± 1.03
γ = 100.0 29.54± 1.27 10.36± 0.32 0.01± 0.01 114.3± 6.67 1.58± 0.03 2.46± 0.50
CF1 25.50± 0.98 14.68± 0.05 0 125.8± 5.64 2.98± 0.05 0
CF2 23.39± 1.39 16.57± 0.10 6.45± 4.32 28.71± 2.38 3.16± 0.05 10.96± 1.56
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Figure 7. Results of MSE, HSCIC operator and VCF for multi-dimensional variable experiment with dimA = 20.

The simulation procedure for the results shown in Section 13.3 is the following.

shape ∼ P(shape)
y-pos ∼ P(y-pos)
color ∼ P(color)

orientation ∼ P(orientation)
x-pos = round(x), where x ∼ N (shape+ y-pos, 1)

scale = round
((x-pos

24
+
y-pos

24

)
· shape+ ϵS

)
Y = eshape · x-pos+ scale2 · sin(y-pos) + ϵY ,

where ϵS ∼ N (0, 1) and ϵY ∼ N (0, 0.01). The data has been generated via a matching procedure on the original dSprites
dataset.

In Table 3, the hyperparameters of the layers of the convolutional neural network are presented. Each of the convolutional
groups also has a ReLU activation function and a dropout layer. Two MLP architectures have been used. The former takes
as input the observed tabular features. It is composed by two hidden layers of 16 and 8 nodes respectively, connected
with ReLU activation functions and dropout layers. The latter takes as input the concatenated outcomes of the CNN and
the other MLP. It consists of three hidden layers of 8, 8 and 16 nodes, respectively. In Figure 9 the results are presented
for higher values of γ, with a specific emphasis on the interplay between accuracy and counterfactual invariance. The
means and standard deviations corresponding to 8 seeds can be found in Table 2. As evidenced by the results for γ = 500,
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Figure 8. Results of MSE, HSCIC operator and VCF for the dSprites image dataset experiment. The HSCIC operator decreases
steadily with higher values of γ. Similarly, a necessary increase of MSE can be observed. For both γ = 1 and γ = 10 an overall decrease
of VCF is observed compared to the unconstrained setting. Boxes represent the interquartile range (IQR), the horizontal line is the median,
and whiskers show the minimum and maximum values, excluding outliers. Outliers are represented as dots. The results correspond to 12
seeds.
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Figure 9. Results of MSE, HSCIC operator and VCF for the dSprites image dataset experiment. The HSCIC operator decreases
with higher values of γ. Similarly, a necessary increase of MSE can be observed. A decrease of VCF is observed compared to the
unconstrained setting.

there is a clear trade-off between these two factors, with a notable loss in accuracy leading to a significant improvement in
counterfactual invariance, as indicated by the low VCF metric.

13.4. Fairness with continuous protected attributes

We then apply CIP to the widely-used UCI Adult dataset (Kohavi & Becker, 1996) and we compare it against CF1 and
CF2. The goal of this task is to predict whether an individual’s income is above a certain threshold based on demographic
information, including protected attributes. We follow (Nabi & Shpitser, 2018; Chiappa, 2019), where a subset of variables
are selected from the dataset and a causal structure is assumed as in Figure 1(e) (see Section 13.4 and Figure 10 for details).
We choose gender (considered binary in this dataset) and age (considered continuous) as the protected attributes A. We
denote the marital status, level of education, occupation, working hours per week, and work class jointly by X and combine
the remaining observed attributes in C.

We use an MLP with binary cross-entropy loss for Ŷ. Since this experiment is based on real data, the true counterfactual
distribution cannot be known. Hence, we follow (Chiappa & Pacchiano, 2021) and estimate a possible true SCM by inferring
the posterior distribution over the unobserved variables using variational autoencoders (Kingma & Welling, 2014). Figure 11
(left) highlights once more that the HSCIC operator is in agreement with the VCF, again trading off accuracy. Furthermore,
we observe that that the HSCIC has better accuracy than CF1 and CF2, and better VCF then CF2. Figure 11 (right) presents
the counterfactual distribution (i.e., Equation (2) before taking the outer expectation) for one seed for different trade-off
parameters. It shows that CIP achieves more counterfactually fair outcome distributions (more mass of the VCF distribution
near zero) than an unconstrained classifier (γ = 0).

The pre-processing of the UCI Adult dataset was based upon the work of (Chiappa & Pacchiano, 2021). Referring to the
causal graph in Figure 10, a variational autoencoder (Kingma & Welling, 2014) was trained for each of the unobserved
variables Hm, Hl and Hr. The prior distribution of these latent variables is assumed to be standard Gaussian. The posterior
distributions P(Hm|V ), P(Hr|V ), P(Hl|V ) are modeled as 10-dimensional Gaussian distributions, whose means and
variances are the outputs of the encoder.

The encoder architecture consists of a hidden layer of 20 hidden nodes with hyperbolic tangent activation functions, followed
by a linear layer. The decoders have two linear layers with a hyperbolic tangent activation function. The training loss of the
variational autoencoder consists of a reconstruction term (Mean-Squared Error for continuous variables and Cross-Entropy
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Figure 10. (Left) Assumed causal graph for the Adult dataset, as in (Chiappa & Pacchiano, 2021). The variables Hm, Hl, Hr are
unobserved, and jointly trained with the predictor Ŷ. (Right) Causal structure for the constructed dSprites ground truth, where
A = {Pos.X}, U = {Scale}, C = {Shape, Pos.Y}, X = {Color,Orientation}, and Y = {Outcome}.

Table 2. Results of MSE, HSCIC and VCF for the dSprites image dataset experiment. The results present the mean and standard
deviation for 8 seeds.

MSE ×101 HSCIC ×103 VCF ×102
γ = 0 6.07± 0.26 35.79± 0.31 3.15± 0.43
γ = 1 6.15± 0.23 35.55± 0.24 2.98± 0.35
γ = 10 6.24± 0.17 35.44± 0.25 2.80± 0.44
γ = 100 6.57± 0.27 35.17± 0.13 2.77± 0.30
γ = 500 8.95± 0.64 35.13± 0.18 1.82± 0.33

Loss for binary ones) and the Kullback–Leibler divergence between the posterior and the prior distribution of the latent
variables. For training, we used the Adam optimizer with learning rate of 10−2, 100 epochs, mini-batch size 128.

The predictor Ŷ is the output of a feed-forward neural network consisting of a hidden layer with a hyperbolic tangent
activation function and a linear final layer. In the training we used the Adam optimizer with learning rate 10−3, mini-batch
size 128, and trained for 100 epochs. The choice of the network architecture is based on the work of (Chiappa & Pacchiano,
2021).

The estimation of counterfactual outcomes is based on a Monte Carlo approach. Given a data point, 500 values of
the unobserved variables are sampled from the estimated posterior distribution. Given an interventional value for A, a
counterfactual outcome is estimated for each of the sampled unobserved values. The final counterfactual outcome is
estimated as the average of these counterfactual predictions. In this experimental setting, we have k = 100 and d = 1000.

In the causal graph presented in Figure 10(Left), A includes the variables age and gender, C includes nationality and race,
M marital status, L level of education, R the set of the working class, occupation, and hours per week and Y the income
class. Compared to (Chiappa & Pacchiano, 2021), we include the race variable in the dataset as part of the baseline features
C. The loss function is the same as Equation (1) but Binary Cross-Entropy loss (LBCE) is used instead of Mean-Squared
Error loss:

LCIP(Ŷ) = LBCE(Ŷ) + γ · HSCIC
(
Ŷ, {Age,Gender}

∣∣∣Z) , (12)

where the set S = {Race,Nationality} blocks all the non-causal paths from W ∪A to Y and Z = (S ∪W) \A. In this
example we have W = {C ∪M ∪ L ∪R}. The results in Figure 11 (center, right) refer to one run with conditioning set
S = {Race,Nationality}. The results in Figure 11 (left) are the average and standard deviation of four random seeds.
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Accuracy (%) HSCIC ×102 VCF×102
γ = 0 83.8± 0.2 3.65± 0.05 6.53± 0.96
γ = 0.5 82.7± 0.4 3.53± 0.01 5.96± 0.92
γ = 1 82.9± 0.4 3.54± 0.01 4.39± 0.62
γ = 10 82.0± 0.5 3.09± 0.01 0.29± 0.01
CF1 75.02± 0.0 0.02± 0.00 0.00± 0.00
CF2 75.81± 0.0 0.03± 0.00 0.54± 0.00 0.00 0.02 0.04 0.06 0.08
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Figure 11. (Left) Results on accuracy, HSCIC and VCF, showing a strong decrease in VCF as γ increases at the cost of only a moderate
drop in accuracy. We further observe that that the HSCIC has overall better accuracy, and better VCF then CF2. (Right) Distribution
of VCF values (unnormalized) for different choices of γ for one seed. We observe less variance and more mass near zero for γ ≥ 0.
Notably, for γ = 10 we have substantial increase in counterfactual invariance, as evidenced by the values in the Table.

Table 3. Architecture of the convolutional neural network used for the image dataset.
layer # filters kernel size stride size padding size

convolution 16 5 2 2
max pooling 1 3 2 0
convolution 64 5 1 2
max pooling 1 1 2 0
convolution 64 5 1 2
max pooling 1 2 1 0
convolution 16 5 1 3
max pooling 1 2 2 0

13.5. Baseline Experiments

We provide an experimental comparison against the method by (Veitch et al., 2021). To this end, we consider the following
data-generating mechanism for the causal structure (see Figure 1(b)):

Z ∼ N (0, 1) A = sin (0.1Z) + εA

X = exp

{
−1

2
A

}
sin (A) +

1

10
εX

Y =
1

10
exp {−X} · sin (2XZ) +AA+

1

10
εY,

where εX, εA
i.i.d∼ N (0, 1) and εY

i.i.d∼ N (0, 0.1). The data-generating mechanism of the anti-causal structure is the
following (see Figure 1(c)):

Z ∼ N (0, 1) A =
1

5
sin (Z) + εA

Y =
1

10
sin (Z) + εY

X = A+Y +
1

10
εX

where εY, εA
i.i.d∼ N (0, 0.1) and εX

i.i.d∼ N (0, 1). We compare our method (CIP) against the method by (Veitch et al.,
2021) using different values for the trade-off parameter γ. In Figure 1(b-c) the causal and anti-causal graphical settings
proposed by (Veitch et al., 2021) are presented. In both of these settings there is an unobserved confounder Z between
A and Y. The graphical assumptions outlined in Theorem 3.2 of the CIP are not met in the graphical structures under
examination, as the confounding path is not effectively blocked by an observed variable (Z is unobserved). In light of this,
it is assumed in our implementation that there is no unobserved confounder. In the graphical structure Figure 1(b), CIP
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Table 4. Results of the MSE, HSCIC, VCF of CIP and the baseline (Veitch et al., 2021) applied to the causal and anti-causal
structure in Figure 1(b-c). Although the graphical assumptions are not satisfied, CIP shows an overall decrease of HSCIC, VCF in
both of the graphical structures, performing on par with the baseline. (Veitch et al., 2021) in terms of accuracy and counterfactual invariance.

CIP (Veitch et al., 2021)
MSE ×102 HSCIC ×102 VCF MSE×102 HSCIC ×103 VCF

γ = 0.5 4.48± 0.31 3.60± 0.21 0.19± 0.02 4.50± 0.40 4.54± 0.15 0.19± 0.02
γ = 1.0 5.00± 0.36 3.43± 0.12 0.17± 0.01 5.45± 0.41 4.42± 0.13 0.18± 0.02

CIP (Veitch et al., 2021)
MSE ×102 HSCIC ×102 VCF MSE×102 HSCIC ×103 VCF

γ = 0.5 1.16± 0.01 3.22± 0.16 1.49± 0.16 1.01± 0.01 4.55± 0.22 1.71± 0.26
γ = 1.0 1.37± 0.02 3.20± 0.16 1.28± 0.19 0.99± 0.01 4.54± 0.22 1.88± 0.28

Table 5. Results of MSE and VCF (all times 102 for readability) on synthetic data of CIP with trade-off parameters γ = 1
2

and γ = 1
with the heuristic methods data augmentation and causal-based data augmentation.

VCF ×102 MSE ×102
data augmentation 3.12± 0.16 0.003± 0.001
causal-based data augmentation 3.04± 0.16 0.013± 0.012
CIPγ=0.5 1.550± 0.13 0.044± 0.022
CIPγ=1 0.95± 0.19 0.19± 0.072

enforces HSCIC(Ŷ,A | X) to become small, gradually enforcing Ŷ ⊥⊥ A|X. Differently, (Veitch et al., 2021) enforces as
independence criterion HSIC(Ŷ,A). HSIC is the Hilbert-Schmidt Independence Criterion, which is commonly used to
promote independence (see, i.e., (Gretton et al., 2005; Fukumizu et al., 2007)). In the anti-causal graphical setting presented
in Figure 1(c), the objective term used in CIP is again HSCIC(Ŷ,A | X), while in the method of (Veitch et al., 2021) is
HSCIC(Ŷ,A | Y). In Table 4, the results of accuracy, HSCIC(Ŷ,A | X,Z) and VCF are presented.

In the experiments, the predictor Ŷ is a feed-forward neural network consisting of 8 hidden layers with 20 nodes each,
connected with a rectified linear activation function (ReLU) and a linear final layer. Mini-batch size of 256 and the Adam
optimizer with a learning rate of 10−4 for 500 epochs were used.

13.6. Comparison Heuristic Methods Experiments

We provide an experimental comparison of the proposed method (CIP) with some heuristic methods, specifically data-
augmentation-based methods. We consider the same data-generating procedure and causal structure as presented in
Section 13. The heuristic methods considered are data augmentation and causal-based data augmentation. In the former,
data augmentation is performed by generating N = 50 samples for every data-point by sampling new values of A as
a1, ..., aN

i.i.d∼ PA and leaving Z,X,Y unchanged. Differently, in the latter causal-based data augmentation method,
we also take into account the causal structure given by the known DAG. Indeed, when manipulating the variable A, its
descendants (in this example X) will also change. In this experiment, a predictor for X as X̂ = fθ(A,Z) is trained on 80%
of the original dataset. In the data augmentation mechanism, for every data-point {a, x, z, y}, N = 50 samples are generated
by sampling new values of A as a1, ..., aN

i.i.d∼ PA, estimating the values of X as x1 = fθ(a1, z), ..., xN = fθ(aN , z),
while leaving the values of Z and Y unchanged. Heuristic methods such as data-augmentation methods do not theoretically

Table 6. Results of MSE and HSCIC of the benchmarks CF1 and CF2 on the UCI Adult dataset for three random seeds.
MSE HSCIC VCF

Kusner Level 1 75.02 0.02 0
Kusner Level 2 75.81 0.03 0.54
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guarantee to provide counterfactually invariant predictors. The results of an empirical comparison are shown in Table 5. It
can be shown that these theoretical insights are supported by experimental results, as the VCF metric measure counterfactual
invariance is lower in both of the two settings of the CIP (γ = 1

2 and γ = 1).

In these experiments, a dataset of n = 3000 is used, along with k = 500 and d = 500. The architecture used for predicting
X and Y are feed-forward neural networks consisting of 8 hidden layers with 20 nodes each, connected with a rectified
linear activation function (ReLU) and linear final layer. Mini-batch size of 256 and the Adam optimizer with a learning rate
of 10−3 for 100 epochs were used.
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