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Abstract
Many works have been devoted to evaluating the
robustness of a classifier in the neighborhood of
single points of input data. Recently, in particular,
probabilistic settings have been considered, where
robustness is defined in terms of random pertur-
bations of input data. In this paper, we consider
robustness on the entire input domain as opposed
to single points of input. For the first time, we
provide formal guarantees on the probability of
robustness, given a random input and a random
perturbation, based only on sampling or in com-
bination with existing pointwise methods. This
is applicable to any classification or regression
model and any random input perturbation. We
then illustrate the resulting bounds on classifiers
for the MNIST and CIFAR-10 datasets.

1. Introduction
Neural Networks have demonstrated unprecedented perfor-
mance for various tasks (Dosovitskiy et al., 2021; Vaswani
et al., 2017; Krizhevsky et al., 2017), yet they are suscep-
tible to adversarial perturbations (Goodfellow et al., 2014;
Szegedy et al., 2014). Several approaches for assessing and
mitigating this risk have been proposed (Madry et al., 2018;
Zhang et al., 2019; Gu & Rigazio, 2015; Moosavi-Dezfooli
et al., 2016). This work has, to a large degree, focused on
formal guarantees for worst-case robustness (Gehr et al.,
2018; Wang et al., 2018). In many cases we are dealing with
random input noise, generated by noisy sensors for example
and a worst-case approach is too strict. Proving the absence
of adversarial examples in large scale applications is usually
not feasible. It is, however, often sufficient to have a guaran-
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tee, that the probability of non-robustness is below a certain
threshold. Therefore, probabilistic notions of robustness are
better suited in these scenarios and corresponding methods
have been developed (Weng et al., 2019; Pautov et al., 2022;
Mangal et al., 2019). The work of (TIT et al., 2021) involves
sophisticated sampling methods and statistical tests. The
latter will be important for our methods as well.

All of the aforementioned works, however, focus on assess-
ing robustness for single, specific inputs. When faced with
the problem of certifying safety of a neural network based
method, e.g., an object classifier in a self-driving car, robust-
ness has to be assessed on the entire set of possible inputs.
Few works have considered this notion of global robustness.
The approach of ‘repairing’ the model with respect to non-
robust areas is pursued by (Fu et al., 2022). A method based
on mixed-integer linear programming and over approxima-
tion was created by (Wang et al., 2022). Like (Leino et al.,
2021; Katz et al., 2017), all of these approaches are based
on Lipschitz continuity-type definitions of global robustness
and the potential for applying them to classification prob-
lems is therefore limited. The reason is that a model with a
small Lipschitz constant still cannot be robust, e.g., for input
points for which the model is not very certain, i.e., there
are small differences between the predicted probabilities of
class labels.

The aforementioned methods cannot deal with randomness,
in contrast to the one developed by (Wang et al., 2021).
In this work risk measures are used to quantify robustness.
Theoretical bounds for the risk measures have been derived
but there are no bounds on the probability of robustness.
This, instead, is a major focus of our work. For the first time,
we provide formal guarantees on the probability of global
robustness. We propose two methods for doing so: the
first one being based on sampling and the second one using
existing local methods and elevating provided guarantees to
a global level. The main ingredient for this is a statistical test.
Our method can be applied to any classification or regression
model. We illustrate the resulting bounds, both obtained
merely by sampling and based on pointwise methods, on
classifiers for the MNIST and CIFAR-10 datasets.
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To summarize, our key contributions are as follows:

• We give two novel formal definitions of global prob-
abilistic robustness that can be applied to arbitrary
supervised machine learning models, arbitrary random
perturbations and, in case of the second definition, to
any method providing pointwise guarantees.

• For the first time, we provide methods to derive formal
guarantees on the probability of global robustness.

• These methods can be applied to arbitrary supervised
machine learning problems and thus, hold for both
classification and regression.

This paper is structured as follows: In Section 2 we give
a definition for global probabilistic robustness, derive a
method based only on sampling and prove the resulting
bounds. In Section 3 we give another definition of global
probabilistic robustness that is suited to include existing
pointwise methods. We derive a method to provide robust-
ness bounds in this setting and prove the resulting bounds.
In Section 4 we illustrate our methods with several exam-
ples. This paper closes with a discussion and an outlook on
future work in Section 5.

2. Formal Guarantees based on Sampling
To begin, we define our notion of global robustness. We
consider the general setting of a machine learning model
f : X → Y . In the case of f being, for example, a
classifier, Y might be a finite set. For regression, Y might
be equal to Rn. Let the input X : Ω → X of the model
be a random variable defined on the probability space
(Ω,F , D), so the probability of the input lying in a set
M ⊂ X is D(X ∈M). We consider a random perturbation
function T : X → X defined on the probability space
(X ,G, T ), so the perturbed input is given by T (X). For
example, we could add random noise δ to the input, yielding
T (X) = X + δ. Or, we could have a random brightness
adjustment T (X) given that the input X is an image, or any
other random perturbation. Let P := D ⊗ T denote the
product measure of D and T .

Definition 2.1. A classifier model f is said to be globally
robust with probability ϵ if the following bound is satisfied:

P (f(X) ̸= f(T (X))) ≤ ϵ .

The idea behind this definition is that we want to bound
the probability that the predicted class label changes due to
input perturbation, while both the input and the perturbation
are random. This is often the case in applications, e.g., when
dealing with noisy sensor data.

For regression, in the above definition, the property would
be

P (∥f(X)− f(T (X))∥ > c) ≤ ϵ

for a suitable norm and positive constant c. In the following,
we focus on the case of f being a classifier. All of the results,
however, apply to regression models as well.

Our goal now, for a given model f , is to find a real num-
ber ϵ as small as possible so that f is globally robust with
probability ϵ. In order to do this, we consider a random iid
sample X1, . . . , Xn, T1, . . . , Tn of input data and perturba-
tions, respectively. Denote p := P (f(X) ̸= f(T (X)) and,
for any set M , let 1M be defined as the indicator function
of M . We observe that

1{f(Xi )̸=f(Ti(Xi))} ∼ Ber(p)

holds for all i ∈ {1, . . . , n}, where Ber(p) denotes the
Bernoulli distribution with parameter p. These random
variables are independent, as we considered Xi and Ti to be
iid. It follows, defining

S := 1{f(X1) ̸=f(T1(X1))} + · · ·+ 1{f(Xn) ̸=f(Tn(Xn))} ,

that S ∼ Bin(n, p). Now the idea is to use this random
variable S to perform a statistical test on the parameter p.
This leads to our first of two main results, which we prove
in the Appendix, in Section A.

Theorem 2.2. Let x1, . . . , xn be an input sample, t1, . . . , tn
a sample of perturbations and s an observation of S. For
any 0 < ψ0 < 1 denote by p0 the result of Algorithm 1.
Then the model f is globally robust with probability p0, i.e.,
the inequality

P (f(X) ̸= f(T (X))) < p0

holds with a false positive error bound P (S ≤ s) ≤ ψ0 in
any case where p ≥ p0.

This theorem means that we can accept

P (f(X) ̸= f(T (X))) < p0 (1)

and the probability of being wrong is at most ψ0. Or put
in other words, we accept the hypothesis of the inequality
(1) being true by means of a statistical test with significance
level ψ0.

3. Two-Stage Verification
In this section, we are dealing with the question how to use
existing methods providing pointwise guarantees to elevate
these to a global level. Examples for pointwise methods
are (Pautov et al., 2022; Weng et al., 2019). We consider a
general setting, where the nature of the guarantees provided
by the underlying pointwise methods can be deterministic
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Algorithm 1 Sampling method providing a global robust-
ness bound
Require: Classifier f , set of input samples input data,

random perturbation function pert, p-value constraint
ψ0, parameter acc specifying maximal distance of the
output to the optimal solution

Ensure: Optimal bound for probability of global robust-
ness p0

1: pred← f(input data)
2: pred pert← f(pert(input data))
3: s← how many differ(pred,pred pert)
4: lower← 0
5: upper← 1
6: n← length(input data)
7: while upper− lower > acc do
8: m← (lower + upper)/2
9: if binomial cdf(s, n,m) > ψ0 then

10: lower← m
11: else
12: upper← m
13: end if
14: end while
15: p0 ← (lower + upper)/2

Algorithm 2 Two-stage method providing a global robust-
ness bound
Require: Classifier f , set of input samples input data, lo-

cal robustness assessment method r, local robustness
threshold c, p-value constraint ψ0, parameter acc spec-
ifying maximal distance of the output to the optimal
solution

Ensure: Optimal bound for probability of global robust-
ness p0

1: s← 0
2: for d in input data do
3: if r(d) > c then
4: s← s+ 1
5: end if
6: end for
7: lower← 0
8: upper← 1
9: n← length(input data)

10: while upper− lower > acc do
11: m← (lower + upper)/2
12: if binomial cdf(s, n,m) > ψ0 then
13: lower← m
14: else
15: upper← m
16: end if
17: end while
18: p0 ← (lower + upper)/2

or probabilistic. Let the model f : X → Y and it’s input X
be defined as in Section 2. In order to specify our notion of
global robustness in this setting, we require the following
definition.

Definition 3.1. A robustness score is a function r : X → R.

A robustness score r can be the output of a method providing
rather vague estimates of robustness or formal guarantees
of deterministic or probabilistic nature. In any case r as-
sesses robustness only on single inputs x ∈ X . For example,
r could be the result of a method based on mixed-integer
linear programming such that r(x) = 1, if there is an ad-
versarial example in a neighborhood of x and r(x) = 0,
otherwise. To give another example, r could be the result of
a method, that provides an upper bound on the probability
that robustness fails for the input x.

Definition 3.2. A model f is said to be globally robust with
probability ϵ, with respect to the robustness score r and
deviation level c, if the following bound is satisfied:

D(r(f(X)) > c) < ϵ

The deviation level c can be viewed as the level of local
robustness that we are willing to accept. So if a model f
satisfies Definition 3.2, this means the probability of encoun-
tering an input for which the model is not ‘robust enough’
is smaller than ϵ.

Denote p := D(r(f(X)) > c) and S := 1{r(f(X1))>c} +
· · · + 1{r(f(Xn))>c}. The second main result of this pa-
per, which we prove in the Appendix, in Section A, is the
following

Theorem 3.3. Let x1, . . . , xn be an input sample, r a ro-
bustness score, s an observation of S and c > 0. For any
0 < ψ0 < 1 denote by p0 the result of Algorithm 2. Then the
model f is globally robust with probability p0, with respect
to r and c with the false positive error bound

sup
D:p≥p0

D(S < s) < ψ0 .

4. Experiments
In the following, we apply the methods previously intro-
duced to classifiers on the MNIST and CIFAR-10 dataset,
which we describe in more detail in the Appendix. For
the two-stage method, in terms of the pointwise methods,
we use one that provides a deterministic bound and one
that provides a probabilistic bound, namely interval bound
propagation (IBP) and the CC-Cert algorithm (Pautov et al.,
2022). For both methods we used our own implementations.

In all experiments, we make the assumption that the test sets
of MNIST and CIFAR-10 are samples from an iid sequence
of random variables according to the input distribution and
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Figure 1. Sampling, CIFAR-10, Gaussian noise

we use the entire test sets containing 105 images each. We
have conducted every random experiment 20 times and we
provide confidence intervals in all respective plots. The
confidence intervals in the plots represent the 2σ range. All
experiments were conducted with the constraint ψ0 = 10−5.

According to the law of large numbers the average number
of input points where robustness fails, converges to the true
failure probability p. For large enough samples we would
expect p0 to be a good approximation of p.

Depending on the specific robustness problem one is facing
in applications, a two-stage approach might be more suitable.
For example, in case of self-driving cars, beside the issue
of signal noise, one might also face purposefully placed
adversarial patches on walls or road signs. In this case an
approach based only on sampling might not be accurate
enough and a worst-case robustness guarantee is necessary.
This can be achieved by using pointwise worst-case meth-
ods such as IBP, which we demonstrate in Figure 2 using
Algorithm 2. The verification approach IBP of propagating
interval bounds through a neural network is described in
(Albarghouthi, 2021).

5. Discussion and Future Work
We proposed two notions for global probabilistic robust-
ness of arbitrary supervised machine learning models and
two methods for providing corresponding guarantees. Both
methods can deal with all sorts of random perturbations on
the input data and work with arbitrary models. We might ex-
pect that a two-stage approach based on sophisticated point-
wise methods obtains tighter bounds. However, depending
on the size of the input space and the performance of the
pointwise method, gathering a large enough sample can be
computationally demanding. Here lies one of the major
advantages of the sampling method. It requires only simple
model evaluations and is therefore computationally very
efficient. This can be helpful, since high computation times
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Figure 2. Two-stage, IBP (deterministic, so no confidence inter-
vals), MNIST
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Figure 3. Two-stage, CC-Cert, MNIST, critical level c = 0.01,
Gaussian noise

are a known bottleneck for many robustness verification
methods. A direct comparison is, however, difficult because
the resulting probabilities of the respective approaches refer
to different probability measures. Our method can also pro-
vide a good balance between taking worst-case robustness
into account and making the certification feasible by intro-
ducing randomness when we use the two stage approach
with a sound deterministic pointwise method. A limitation,
however, is that when safety requirements are so high that
probabilities are not acceptable, our approach cannot be
applied.

In terms of future work, experiments are required to com-
pare our methods to existing ones, even though a direct
comparison might be somewhat difficult because of our dif-
ferent setting. Furthermore, two questions questions might
be addressed. The first one is, having a novel measure of
global robustness, how can training procedures be modified
to improve global robustness. The second open question
is, how the provided methods can be further improved to
tighten the resulting bounds, perhaps including more knowl-
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edge of the structure of the underlying machine learning
model.
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A. Proofs
Proof of Theorem 2.2. We consider a random iid sample X1, . . . , Xn, T1, . . . , Tn of input data and perturbations,
respectively. Denote p := P (f(X) ̸= f(T (X)) and the indicator function

1M (x) :=

{
1 x ∈M,

0 otherwise,

for any x, M . We then have
1{f(Xi )̸=f(Ti(Xi))} ∼ Ber(p)

for all i ∈ {1, . . . , n}, where Ber(p) denotes the Bernoulli distribution with parameter p. These random variables are
independent, as we considered Xi and Ti to be iid. It follows that

S := 1{f(X1) ̸=f(T1(X1))} + · · ·+ 1{f(Xn )̸=f(Tn(Xn))} ∼ Bin(n, p) .

Now the idea is to use this random variable S to perform a statistical test on the parameter p. The hypotheses are

H0 : p ≥ p0
HA : p < p0

for a given p0. Formally this means we split the set P of possible probability measures on Ω×X in two sets

P0 = {Q ∈ P | Q(f(X) ̸= f(T (X))) ≥ p0} ,
PA = {Q ∈ P | Q(f(X) ̸= f(T (X))) < p0} .

The binomial distribution Bin(n, p) describes the probability of a certain number of ‘successes’ when performing the same
experiment independently n times, each having a probability p of ‘success’. So when we observe a low enough number of
‘successes’, we reject the Hypothesis H0 : p ≥ p0. In our case ‘success’ means misclassification, i.e., f(X) ̸= f(T (X)).
Hence, we choose a set of the form K = {0, 1, 2, . . . , k}, so that H0 is rejected if S ∈ K. Denoting the test by ϕ, we
formalize this as ϕ = 1K(S).

The probability of rejecting H0, even though it is true, is naturally bounded by

sup
P∈P0

P (ϕ(S) = 1) = sup
P∈P0

P (S ≤ k)

= sup
p≥p0

Bin(n, p)([0, k])

= Bin(n, p0)([0, k]) .

The last equality follows from the fact that if the probability of ‘success’ takes its minimum at p0, the probability of having
at most k ‘successes’ is maximized.

The p-value ψ of an observation s of S is therefore

ψ = sup
P∈P0

P (S ≤ s) = Bin(n, p0)([0, s]) .

In applications we might want to choose a constraint of the form ψ ≤ ψ0, with ψ0 being a user-defined significance level,
and determine the smallest p0, for which HA can be accepted by this method, given an observation s. Formally, this can be
expressed as constrained optimization problem

min p0

s.t. ψ ≤ ψ0 .

Since ψ is monotonously decreasing as a function of p0, for a given s, this optimization problem can be easily solved by
bisection. This is described by Algorithm 1, which concludes the proof of Theorem 2.2.
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Proof of Theorem 3.3. Let a robustness score r and a critical deviation level c be given. We start by considering

E
[
1{r(f(X))>c}

]
= D(r(f(X)) > c) =: p .

Let X1, . . . , Xn be an iid input sample. Since we have

S := 1{r(f(X1))>c} + · · ·+ 1{r(f(Xn))>c} ∼ Bin(n, p) ,

as in the previous proof, we can use a binomial test. Analogously, for a given observation s of S and a p-value boundary ψ0

we get an optimal parameter p0 such that we can statistically prove

D(r(f(X)) > c) = p < p0

with a test ϕ having a false positive error bound

sup
D:p≥p0

D(ϕ(S) = 1) < ψ0 .

B. Calculating the Binomial Distribution
In many applications we might encounter large sample sizes and small probabilities. For instance, in safety-critical
applications like self-driving cars or aerospace it is common to have probabilities in the order of 10−7–10−4 (Brunton
et al., 2021). For both Algorithm 1 and 2 the question arises whether computing the cumulative distribution function (cdf)
FBin(n,p0) of the binomial distribution in Python using the package SciPy is feasible for the given parameters.

As an example of a realistic parameter setting, we consider a sample size of magnitude n = 105, a p-value constraint of
ψ0 = 10−4 and s = 1, 000. Since we have

FBin(n,p0)(s) =

s∑
k=0

(
n

k

)
pk0(1− p0)n−k ,

we encounter terms such as n! = 105! and ps0 = 10−4000.

Using the central limit theorem and Stein’s method we give two tests, that strongly suggest correctness of the SciPy
implementation of FBin(n,p0) .

Test based on central limit theorem. Let (Xn)n∈N be a sequence of iid Ber(p) distributed random variables. Define
Yn := X1 + · · ·+Xn. According to the central limit theorem we have

P

(
Yn − np
σ
√
n
≤ s

)
→ Φ(s)

for all s ∈ R, σ =
√
p(1− p) being the standard deviation of Xi, and Φ being the cdf of the standard Gaussian distribution.

On the other hand, it holds that

P

(
Yn − np
σ
√
n
≤ s

)
= P

(
Yn ≤

√
np(1− p)s+ np

)
= FBin(n,p)

(√
np(1− p)s+ np

)
.

The Berry-Esseen Theorem provides an error bound for the convergence according to the central limit theorem. Hence we
get ∣∣∣FBin(n,p)

(√
np(1− p)s+ np

)
− Φ(s)

∣∣∣ ≤ M√
n

1− 2p(1− p)√
p(1− p)

,

with M being a universal constant satisfying M < 0.41 . Extensive numerical experiments verify that the SciPy implemen-
tation of FBin(n,p) satisfies this inequality. The results are provided in the Appendix.
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Figure 4. Sampling, MNIST, Gaussian noise

Test based on Stein’s method. An implication of Stein’s method is

sup
A⊂N
|Bin(n, p)(A)− Pois(np)(A)| ≤ p

for all n ∈ N and p > 0. Here, Pois(λ) denotes the Poisson distribution with parameter λ. Extensive numerical experiments
again verify that the SciPy implementation of the binomial distribution satisfies this inequality.

The successful evaluations should give us confidence that the SciPy implementation is reasonably accurate.

Numerical experiments. We performed the test based on the Berry-Esseen bound for n ∈ {106, 107} and s in the range
from 0 to n with a stepsize of n10−4. For p we chose two ranges. First we set p in the range from 0.05 to 0.95 with a step
size from 0.05 and then p in the range from 10−5 to 0.05 with a step size of 5 ∗ 10−5. There were no violations of the
Berry-Esseen bound or the bound derived from Stein’s method, e.g.∣∣∣FBin(n,p)

(√
np(1− p)s+ np

)
− Φ(s)

∣∣∣ ≤ M√
n

1− 2p(1− p)√
p(1− p)

,

and
|FBin(n,p)(s)− FPois(np)(s)| < p

was satisfied for all specified parameters. Here FPois(np) denotes the cumulative distribution function of the Poisson
distribution with parameter np.

C. Further Experiments and Training Details
As a classifier for the MNIST dataset we use a neural network with one hidden layer of 500 neurons and ReLu activation
functions. We have trained it for six epochs using the Adam optimizer with a learning rate of 10−3. For the CIFAR-10
dataset we have used a convolutional neural network (CNN). We have trained it for 86 epochs using cross entropy loss and
stochastic gradient descent with a learning rate of 0.01, momentum of 0.9 and weight decay of 10−4. We performed the
following transformations on the training data: Random crop with padding = 4, random horizontal flip, random rotation
with parameter degrees = 10. We used the respective implementations of PyTorch. The structure of the CNN is described
in Table 1. Again, all experiments were conducted with the constraint ψ0 = 10−5. Training and evaluation was performed
on a laptop with an Intel i7 CPU and an NVIDIA Quadro T2000 GPU.

We also did some experiments with different random perturbations as shown in Table 2.
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Table 1. CNN Architecture
Layer (type) Input Channels Output Channels Parameters

Conv2D 3 64 kernel size=3, padding=1
ReLU - - -
BatchNorm2D 64 64 -
Conv2D 64 64 kernel size=3, padding=1
ReLU - - -
BatchNorm2D 64 64 -
MaxPool2D - - kernel size=2, stride=2
Dropout - - p=0.2
Conv2D 64 128 kernel size=3, padding=1
ReLU - - -
BatchNorm2D 128 128 -
Conv2D 128 128 kernel size=3, padding=1
ReLU - - -
BatchNorm2D 128 128 -
MaxPool2D - - kernel size=2, stride=2
Dropout - - p=0.2
Conv2D 128 256 kernel size=3, padding=1
ReLU - - -
BatchNorm2D 256 256 -
Conv2D 256 256 kernel size=3, padding=1
ReLU - - -
BatchNorm2D 256 256 -
MaxPool2D - - kernel size=2, stride=2
Dropout - - p=0.2
Flatten - - -
Linear 4096 256 -
ReLU - - -
BatchNorm1D 256 256 -
Dropout - - p=0.5
Linear 256 10 -
Softmax - - dim=1

Figure 5. Examples of MNIST image perturbations. First row: additive Gaussian noise. Second row: random deletion. Third row:
brightness and contrast adjustment.
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Table 2. Evaluation of the sampling method (Algorithm 1) for the deletion as well as the brightness and contrast transformation.

dataset perturbation parameters p0 ± σ in %

MNIST deletion q = 0.01 0.54± 0.05
deletion q = 0.1 3.3± 0.15
deletion q = 0.3 8.5± 0.29

brightness & contrast q = 0.15 0.57± 0.06
brightness & contrast q = 1 21± 0.47
brightness & contrast q = 3 12± 0.38

CIFAR-10 deletion q = 6.7 ∗ 10−4 0.17± 0.02
deletion q = 0.013 1.5± 0.10
deletion q = 0.033 6.3± 0.25

brightness & contrast q = 0.001 0.17± 0.02
brightness & contrast q = 0.067 1.51± 0.12
brightness & contrast q = 0.67 30± 0.38


