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Abstract

Machine learning models often need to be robust
to noisy input data. The effect of real-world noise
(which is often random) on model predictions is
captured by a model’s local robustness, i.e., the
consistency of model predictions in a local region
around an input. However, the naive approach
to computing local robustness based on Monte-
Carlo sampling is statistically inefficient, leading
to prohibitive computational costs for large-scale
applications. In this work, we develop the first
analytical estimators to efficiently compute local
robustness of multi-class discriminative models
using local linear function approximation and the
multivariate Normal CDF. Through the derivation
of these estimators, we show how local robust-
ness is connected to concepts such as random-
ized smoothing and softmax probability. We also
confirm empirically that these estimators accu-
rately and efficiently compute the local robust-
ness of standard deep learning models. In addi-
tion, we demonstrate these estimators’ usefulness
for various tasks involving local robustness, such
as measuring robustness bias and identifying ex-
amples that are vulnerable to noise perturbation
in a dataset. By developing these analytical esti-
mators, this work not only advances conceptual
understanding of local robustness, but also makes
its computation practical, enabling the use of local
robustness in critical downstream applications.

1. Introduction

A desirable attribute of machine learning models is robust-
ness to perturbations of input data. One common notion
of robustness is adversarial robustness, a model’s ability
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to maintain its prediction under adversarial perturbations.
Although adversarial robustness can identify whether an
adversarial perturbation exists, real-world noise (e.g., mea-
surement noise) is rarely adversarial and often random. The
effect of such noise on model predictions is captured by lo-
cal robustness, the fraction of points in a local region around
an input for which the model provides consistent predictions.
This is a generalization of adversarial robustness — if this
fraction is less than 1, then an adversarial perturbation exists.
By capturing model behavior under average case noise, local
robustness provides a more comprehensive characterization
of real-world model behavior.

In this paper, we take the first steps towards measuring local
robustness. We show that the naive approach to estimating
local robustness is statistically inefficient, leading to pro-
hibitive computational costs for large-scale applications. To
address this problem, we develop the first analytical estima-
tors to efficiently compute local robustness. Specifically:

1. We derive a set of novel analytical estimators to effi-
ciently compute the local robustness of multi-class dis-
criminative models using local linear function approxi-
mation and the multivariate Normal CDF. Through the
derivation, we show how local robustness is connected
to randomized smoothing and softmax probability.

. We empirically confirm that these analytical estimators
accurately and efficient compute the local robustness
of standard deep learning models.

. We demonstrate the usefulness of our estimators for
various tasks involving local robustness, such as mea-
suring robustness bias and identifying examples that
are vulnerable to noise perturbation. Such dataset-level
analyses of local robustness are made practical only by
having these efficient analytical estimators.

To our knowledge, this work is the first to investigate lo-
cal robustness in a multi-class setting and develop efficient
analytical estimators. The analytical aspect of these estima-
tors not only advances conceptual understanding of local
robustness, but also enables local robustness to be used in
applications that require differentiability. The efficiency
of these estimators makes the computation of local robust-
ness practical, enabling tasks that assist in such important
objectives as debugging models and establishing user trust.
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2. Related Work

Linearization of neural networks. Prior works have used
local linear function approximation to obtain feature attribu-
tions (Ribeiro et al., 2016; Han et al., 2022) or counterfactual
explanations for binary classifiers (Pawelczyk et al., 2023).
In contrast to these prior works which apply local linear
function approximation to post hoc explainability, this work
applies it to local robustness and uses it to develop analytical
estimators for binary and multi-class classification.

Adversarial robustness. Prior works have proposed meth-
ods to generate adversarial attacks (Carlini and Wagner,
2017; Goodfellow et al., 2015; Moosavi-Dezfooli et al.,
2016) and to provide dataset-level guarantees of model ro-
bustness (Cohen et al., 2019; Carlini et al., 2022). In contrast
to these prior works on adversarial robustness, this work
investigates local robustness, a generalization of adversarial
robustness. Prior work has also studied robustness bias in
terms of vulnerability to adversarial attacks (Nanda et al.,
2021). In contrast, this work investigates robustness bias in
terms of local robustness.

Uncertainty estimation. Prior works have developed ap-
proaches to measuring prediction uncertainty, including cal-
ibration (Guo et al., 2017), Bayesian uncertainty (Kendall
and Gal, 2017), and conformal prediction (Shafer and Vovk,
2008). In contrast to these prior works in which uncertainty
is with respect to a calibration set or model parameters, this
work investigates local robustness, which can be thought of
as uncertainty with respect to input noise.

3. Our Framework: The Local Robustness
Estimator Family

In this section, we describe the mathematical problem of
local robustness estimation. Then, we present the naive
estimator and derive more efficient analytical estimators.
Lastly, we explore the connections between local robustness
and softmax probability.

3.1. Notation and Preliminaries

Assume there is a neural network f : R — R® with C
classes, and the model predicts class t € [1,...C] for a
given input x € R%, ie,t = arg maxiczl fi(x), where
fi denotes the logits for the ith class. Given this model,
the local robustness estimation problem is to compute the
probability of consistent classification (to class t) under
noise perturbation of the inputs.

Definition 1. We define the average local robustness of a

model f at a point x as the probability of being classified to
class ¢ under Normal noise A/(0, 02) added to the inputs:

robust

P (X, 1) = Peeunv(0,0%) |arg max fi(z + €) = ¢
(]

The higher pr°Pust is, the more robust the model is in the
local region around x. In this paper, given that local ro-
bustness is always with respect to the predicted class ¢, we
henceforth suppress the dependence on ¢ in the notation.
Note that pi°PUst generalizes adversarial robustness. Ad-
versarial robustness detects the presence of a perturbation
that leads to inconsistent classification (i.e., 1(pi°Pust< 1)),
while local robustness computes the probability of consis-
tent classification (i.e., pf,ObuSt). In the rest of this section,
we derive estimators for probust,

3.1.1. ESTIMATOR 0: THE MONTE-CARLO ESTIMATOR

robust ;

A naive estimator of p; is a Monte-Carlo estimator, i.e.,

robust

Py (%) = [Larg max, fi(a+e)=t]

E

e~N(0,02)

1M

~ 37 2 [Largma, i oeyy=e] = P3°(%)
j=1

In practice, p'° requires a large number of random samples
to converge. For example, for CIFAR10 CNNs, it takes
around M = 10, 000 samples per point for p3'° to converge,
which is computationally infeasible. Thus, we seek to ad-
dress this problem by developing more efficient estimators.

3.2. Analytical Estimators of Local Robustness
3.2.1. ESTIMATOR 1: THE TAYLOR ESTIMATOR

To derive efficient estimators of local robustness, we locally
linearize non-linear models and compute the local robust-
ness of the resulting linear models. However, even com-
puting the local robustness of linear models is challenging
due to the complex geometry of decision boundaries given
C classes. We derive the estimator for the linear model in
Appendix A.1. Using this, we derive the Taylor estimator.

Proposition 1. The Taylor estimator for a model f and point
x is given by linearizing f around x using w = Vy f(x) and
b = f(x), with decision boundaries g;(x) = f:(x) — fi(x),
Vi # t, leading to

g1(x) gc(x)

P () = OOy 0

! !

Vxg1(x Vxgc(x
[Vagr(x)]l277 IVxgo(x)'[l2

where U = {

The proof is in Appendix A.l. The smaller the o, the more
faithful the local linearization of the model, thus the more
accurate the Taylor estimator.

3.2.2. ESTIMATOR 2: THE MMSE ESTIMATOR

While the Taylor estimator is more efficient than the naive
one, it has a drawback: its linear approximation is less valid

oVagi(x)ll2” 7 o[ Vige(x)|l2

)

:| c R(C—l)xd
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farther away from x. To fix this, we use a linearization that
is faithful to the model on the entire noise distribution, not
just near x, using SmoothGrad (Smilkov et al., 2017) (which
has been described as the MMSE optimal linearization of
the model (Han et al., 2022; Agarwal et al., 2021)). We
propose the MMSE estimator as follows.

Proposition 2. The MMSE estimator for a model f and
point x is given by linearizing f around x using w =
Z;'V=1 Vxf(x +€) and b = Zjvzl f(x), with decision
boundaries g;(x) = fi(x) — fi(x), Vi # t, leading to

F i ax+e)
ollE SN Vagi(x + €l
x i go(x+e)
ol S Vage(x + €)l2

pglmse(x) — CDF/\/(Q,UUT)(

with U € R(€=D*d defined as in the Taylor estimator and
N as the number of perturbations.

The proof is in Appendix A.1. p*™"¢ creates a randomized

smooth model (Cohen et al., 2019) from the base model
and then computes the decision boundaries of this smooth
model. We show, for the first time, that performing such
randomization helps compute robustness information for
the original base model.

Like p¢, p3™s¢ also requires sampling over the input space.
However, due to p"™*®’s use of model gradients, it requires
far fewer samples to converge (we observed N = 5 — 10 to

suffice in practice), thus making it computationally efficient.

3.2.3. ESTIMATORS 3 & 4 : APPROXIMATE TAYLOR
AND MMSE ESTIMATORS

One drawback of the Taylor and MMSE estimators is their
use of the mvn-cdf which does not have a closed form so-
lution. As a result, these estimators can be slow when used
for a large number of classes C' and are non-differentiable
(which is inconvenient for applications which require dif-
ferentiating p:°"s*). Thus, we wish to approximate the
mvn-cdf with a closed-form expression. To this end, the
univariate Normal CDF is well-approximated by the sig-
moid function, and has been used to propose the GeLU
activation function (Hendrycks and Gimpel, 2016). Inspired
by this, we propose to approximate the mvn-cdf with the
multivariate-sigmoid function:

Definition 2. The multivariate sigmoid is defined as
mV—Singid(X) = m

We find experimentally that mv-sigmoid well-approximates
the mvn-cdf for practical values of the covariance matrix
UUT. Substituting mv-sigmoid for the mvn-cdf in pfayer

and p™se, we get estimators pi¥1oT-mvs and p

mimse_mvs
o o o *

3.3. Exploring the Connections Between Local
Robustness and Softmax Probability

3.3.1. ESTIMATOR 5: SOFTMAX ESTIMATOR

Lastly, for linear models with a specific o, the common
softmax function taken with respect to the output logits
can be viewed as an estimator of pf,"b“t, albeit in a very
restricted setting. Full discussion is in Appendix A.1.

4. Experimental Evaluation

We first evaluate the accuracy and efficiency of the analytical
estimators. Then, we analyze the relationship between local
robustness and softmax probability. Lastly, we demonstrate
the usefulness of the estimators in real-world applications.

Datasets and Models. We use four datasets: MNIST
(Deng, 2012), FashionMNIST (Xiao et al., 2017), CIFAR10
(Krizhevsky et al., 2009), and CIFAR100 (Krizhevsky et al.,
2009). For MNIST and FashionMNIST, we train linear
models and CNNs. For CIFAR10 and CIFAR100, we train
ResNet18 (He et al., 2016) models with varying levels of
gradient norm regularization (\) for varying levels of ro-
bustness. For experiments, we use 1,000 randomly-selected
points from each dataset’s test set. Details about datasets
and models are in Appendix A.3 and A 4.

4.1. Evaluation of the accuracy of analytical estimators

The analytical estimators accurately compute local ro-
bustness. We calculate pr°>ust for each model using all six
estimators for different o’s. Then, we measure the absolute
and relative difference between p3'¢ and the other estima-
tors (Figure 1). The results indicate that p™%¢-™® and
P are the best estimators of pi°Pst, followed closely by
plavior-mvs and ptavler and trailed by pSef*™a, The smaller
the o, the more accurate the estimators. In addition, for ro-
bust models, the analytical estimators are more accurate over
a larger o (Appendix A.2). The mv-sigmoid function also
approximates the mvn-cdf well in practice (Appendix A.2).
Consistent with the theory in Section 3, these results indicate
that the analytical estimators accurately compute probust,

| CPU: Intel x86.64 | GPU: Tesla V100

Estimator | Serial | Batched | Serial | Batched |
pa®(n = 10000) | 1:41:11 | 1:14:38 | 0:19:56 | 0:00:35
phavier 0:00:08 | 0:00:07 | 0:00:02 | < 0:00:01
Py (n = 5) 0:00:41 | 0:00:31 | 0:00:06 | 0:00:02

Table 1: Runtimes of pf,Ob”St estimators (H:M:S). Each esti-
mator computes p'2P35! for the CIFAR10 ResNet18 model
for 50 points using the minimum number of samples n neces-
sary for convergence. The analytical estimators (pf®¥'°" and
pa™se) are more efficient than the naive estimator (p3'©).
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Figure 1: Experimental validation of analytical estimators
(FashionMNIST CNN). pg™5¢ and p™%¢-"™® are the best
estimators of pr°Pust. The smaller the o, the more accurate
all of the estimators are.
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Figure 2: Local robustness bias among classes (CIFAR10
ResNet18). pioP"t reveals that the model is less locally
robust for some classes than for others. The analytical
estimator p;™*¢ properly captures this model bias.

4.2. Evaluation of the efficiency of analytical estimators

The naive estimator is statistically inefficient. We calcu-
late p© for each model using different sample sizes (n) over
different ¢’s, and measure the absolute and relative differ-
ence between p}'¢ at a given n and p'° at n = 50, 000 (Ap-
pendix A.2). The results indicate that p7’® requires around
10,000 samples per point to converge, which is impractical.

The analytical estimators are more efficient than the
naive estimator. We measure the runtimes of the estima-
tors when calculating pi2®st for the CIFAR10 ResNet18
model for 50 points (Table 1). Results indicate that ptaylolr
and p7"™"¢ perform at least 35x and 17x faster than p7*°
respectively.

4.3. Comparison of local robustness and softmax
probability

Local robustness and softmax probability are two dis-
tinct measures. Consistent with the theory in Section 3,
we find that pi°Pst and p$ef™ax are not strongly correlated,
indicating that in general settings, p$*f™#* is not a good
estimator for pi°PUst, Details are in Appendix A.2.

Lowest pss Highest p2m Lowest pseftmax Highest pipftmax

A -~

4
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§ TR -

Figure 3: Images with the lowest and highest p°>"** among
CIFARIO0 classes. Images with high p™°us* are brighter
with stronger object-background contrast (making them
more robust to random noise) than those with low pmb”“.
This difference is less evident for pSOftmax

4.4. Applications of local robustness

pLePUst detects local robustness bias. We calculate poPust
using p;"*¢ and examine its distribution across classes
(Figure 2). Results show that the models are more locally
robust for some classes than for others. Thus, pr°>us* can be
applied to detect local robustness bias, which is critical when

models are deployed in high-stakes, real-world settings.

p;"b“St identifies images that are robust to and images
that are vulnerable to random noise. We visualize images
with the highest and lowest p=°Pust and p$ef™ax in each
class (Figure 3). Images with low pi°P"! tend to have
neutral colors and low object-background contrast while
images with high p:°P"st tend to be brightly-colored with
high object-background contrast. These differences make
the prediction more and less likely to change, respectively,
when the image is perturbed. These differences are not as
evident for pseftmax,

For all experiments described above, additional results are
in Appendix A.S.

5. Conclusion

In this work, we take the first steps towards estimating
local model robustness. We show that the naive approach is
inefficient and develop efficient analytical estimators. We
empirically confirm the estimators’ accuracy and efficiency.
Then, we demonstrate the usefulness of these estimators in
performing various real-world tasks.

To our knowledge, this work is the first to investigate local
robustness in a multi-class setting and develop efficient ana-
lytical estimators. The analytical aspect of these estimators
not only advances conceptual understanding of local robust-
ness, connecting it to randomized smoothing and softmax
probability, but also enables local robustness to be used in
applications that require differentiability. In addition, the ef-
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ficiency of these estimators makes the computation of local
robustness practical.

One limitation of this work is its focus on classification.
Defining local robustness and developing efficient analytical
estimators for regression represent future research directions.
Other directions include exploring additional applications of
local robustness, such as uncertainty calibration and training
locally robust models.
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A. Appendix
A.1. Proofs
A.1.1. LOCAL ROBUSTNESS FOR LINEAR MODELS

Our goal is to derive analytical estimators which reduce the complexity of estimating local robustness. To this end, we first
locally linearize non-linear models and then compute the local robustness of the resulting linear models. However, even the
problem of computing the local robustness of linear models is more challenging than it appears due to the complex geometry
of linear decision boundaries given C' classes. In particular, the relative orientation and similarities of these class-wise
decision boundaries needs to be taken into account to compute local robustness.

Given a linear model for a three-class classification problem with weights wy, w2, w3 and biases b1, b, b3, such that y =
arg max; {w, x+b; | i € [1,2, 3]}, the decision boundary between classes 1 and 2 is given by y12 = (w;—ws) " x+(b;—ba).
This is easy to verify as for any x such that y;, = 0, we have w{ x + b; = wg x + bo, making it the decision boundary.
Thus, the relevant quantities are the pairwise difference terms among the weights and biases which characterize the decision
boundaries. We take this into account and provide the expression for the linear case below.

Lemma A.1. The local robustness of a multi-class linear model f(x) = w'x + b, with w € R*Y and b € R®, with
respect to a target class t is given by the following. Define the decision boundary weights w! = w; — w; € R4 Vi # t,

where wy, w; are rows of w and biases b, = (w}; — wg)TX + (bs — b;) €R, then

probust(x) — CDFN(O vUT < b/l b; b,C )
) 5 enn yeen
7 ollwillz” ollwills” ollwgl2
! / /
where U = [ w/l i uil . w,C } e R(CE-xd
lwilla” lwilla” lwell2

and CDF o yy) refers to the (C — 1)-dimensional Normal CDF with covariance Uu’.

The proof is below. The matrix U exactly captures the geometry of the linear decision boundaries and the covariance matrix
UU T encodes the relative similarity between pairs of decision boundaries. If the decision boundaries are all orthogonal to
each other, then the covariance matrix is the identity matrix. However, we find that, in practice, the covariance matrix is
strongly non-diagonal, indicating that the decision boundaries are not orthogonal to each other.

For diagonal covariance matrices, the multivariate Normal CDF (mvn-cdf) can be written as the product of univariate
Normal CDFs, which would be easy to compute. However, the strong non-diagonal nature of covariance matrices in practice
leads to the resulting mvn-cdf not having a simple closed form solution, with the only alternative being approximation of
the integral via sampling (Botev, 2017; Sci). However, this sampling is performed in the (C' — 1)-dimensional space as
opposed to the d-dimensional space that p'° performs. In practice, for classification problems, we often have C' << d,
making sampling in (C' — 1)-dimensions more efficient.

robust

Proof. First, we rewrite p.:

boundary function”.

in the following manner, by defining g;(x) = fi(x) — f;(x) > 0, which is the “decision

Z(_)bUSt = PENN(O,GQ) [max fi(X + 6) < ft(X + €>i| = Pew/\/’(O,cﬁ) U gl(x + 6) >0
i=1:it

Now, assuming that f, g are linear such that g;(x) = ngx + ¢(0), we have g;(x + €) = g;(x) + w! ¢, and obtain
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[ ¢
; T
p;obust — PGNN(O’G-Z) U w,; € > —gi(x)
| i=1si#t
- . / |
= P N(0,1) U sz 2> (),() (Rescaling and standardization)
i=Titt [[will2 ollwill2

We now make the following observations:

* For any matrix U € R®*? and a d-dimensional Gaussian random variable z ~ N (0, ;) € R?, we have Uz ~

N(0,UUT),i.e., an C-dimensional Gaussian random variable.
* CDF of a multivariate Gaussian RV is defined as P, [| J; z; < t;] for some input values ¢;

’

Using these observations, if we construct U = |

] € R(€=1)x4_and obtain

wy Wy Wo
lwillz? Tlwall2? " [lwi ll2

gi(x)

C
=P _ U w<=50
Probust u~N(0,UUT) g 0.Hw2||2

i=1yitt

g1(x) 92(x) go(x)
= CDF
N<07UUT>(L||w3||2’a||wg||2’ ol ls )

where g;(x) = ngX +¢:(0) = (w; — wg)Tx + (by — by)

A.1.2. TAYLOR ESTIMATOR

Proposition 3. The Taylor estimator for a model f and point x is given by linearizing f around x using w = V f(x) and
b = f(x), with decision boundaries g;(x) = f(x) — fi(x), leading to

g1(x) gi(x) gc(x) )

taylor _
P, (x) = CDF T s e -
() = COFx 000 (| S, 01T~ 7TVt o1V g (T

with U € R(€=1Xd defined as in the linear case.

Proof. Using the notations from the previous Lemma A.1, we can use g(x + €) ~ g(x) + Vxg(x) "€ using a first order
Taylor series expansion. Thus we use w; = Vxg;(x) and i’ = g(x), and plug it into the result of Lemma A.1. O
A.1.3. MMSE ESTIMATOR

Proposition 4. The MMSE estimator for a model f and point x is given by linearizing f around x using w = Zﬁvzl Vaf (x+
€)and b = Zivzl f(x), with decision boundaries g;(x) = f:(x) — f;(x), leading to

Y gix+e) S ¥ ge(x+e)
ol S Vegi(x+ o)l ol SN, Vage(x+6)]2

pglmse (X) — CDFN(()}UUT) (

with U € R(€=1Xd defined as in the linear case, where N is the number of perturbations.
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Proof. We would like to improve upon the Taylor approximation to g(x+¢) by using an MMSE local function approximation.
Essentially, we’d like the find w € R and b € R such that

w*(x),b*(x)) =argmin L r4e) —w'e—b)?
(w*(x),b"(x)) gwyme(oﬂz)(g( €) €= )

A straightforward solution by finding critical points and equating it to zero gives us the following:

w*(x) = [g(z + e)eT] Jo* = ]E [Vxg(x+€)] (Stein’s Lemma)

€

b*(x) =Eg(z +¢)

Plugging in these values of w*, b* into Lemma A.1, we have the result.

A.1.4. SOFTMAX ESTIMATOR

Lastly, we observe that for linear models with a specific noise perturbation o, the common softmax function taken with

. . . b \t . . . . .
respect to the output logits can be viewed as an estimator of p;°°"*", albeit in a very restricted setting. Specifically,

Lemma A.2. For linear models f(x) = w ' x + b, such that the decision boundary weight norms ||w}||s = ||w; 2 =
|lwll2, Vi, 4, we have

softmax taylor_mvs

T = ple where T = o||wl|2

Proof. Let us consider softmax with respect to the t*" output class and define g;(x) = f;(x) — f;(x), with f being the
linear model logits. Using this, we first show that softmax is identical to mv-sigmoid:

psjgftmaX(X) = softmax; (fl (x) /T, ..fc (X)/T)
exp(fi(x)/T)

~ S exp(fi(x)/T)
1

L+ 3 iz exp((fi(x) — f1(x))/T)
= mv-sigmoid [g1(x) /T, g2(x)/T, ...9c (x)/T)

Next, by denoting w; = w; — w;, each row has equal norm ||wy||2 = ||w}]|2, Vi, j, ¢ € [1,...C] which implies:

g1(x) go(x)
ollwill2” " ollwgll2

= mv-sigmoid [g1(x) /T’ g2(x) /T, .90 (x)/T] - T = o|wills

_ psjgftmax (X)

taylor_mvs
o

(x) = mv-sigmoid

O

This indicates that the temperature parameter 7' of softmax roughly corresponds to the o of the added Normal noise with
respect to which local robustness is measured. Overall, this shows that under the restricted setting where the local linear
model consists of decision boundaries with equal weight norms, the softmax outputs can be viewed as an estimator of the
pf,aylor*m"s estimator, which itself is an estimator of pf,ObuSt. However, due to the multiple levels of approximation, we can
expect the quality of pSef*™a*°s approximation of pi°"Us* to be poor in general settings (outside of the very restricted setting),

so much so that in general settings, p:°""s* and p$e™™a* would be unrelated.
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A.2. Experiments referenced in main paper

For robust models, the analytical estimators compute local robustness more accurately over a larger noise neigh-
borhood. The performance of p™*° for CIFAR10 ResNet18 models of varying levels of robustness is shown in Figure 4.
The results indicate that for more robust models (larger A), the estimator is more accurate over a larger ¢. This is because
gradient norm regularization leads to models that are more locally linear, making the estimator’s linear approximation of the
model around the input more accurate over a larger o.

The mv-sigmoid function approximates the multivariate Normal CDF well in practice. To examine mv-sigmoid’s

approximation of mvn-cdf, we compute both functions using the same inputs (z = |:<7'valg(1x()x)“2 s aHVgi](cx()x)Hg , as

described in Proposition 1) for the CIFAR10 ResNet18 model and its test set for different o’s. The plot of mv-sigmoid(z)
against mvn-cdf{z) for o = 0.1 is shown in Figure 5. The results indicate that the two functions are strongly positively
correlated, suggesting that mv-sigmoid approximates the mvn-cdf well in practice.

Local robustness and softmax probability are two distinct measures. To examine the relationship between probust
and pSTOftmaX, we calculate p7'™*¢ and p%?ftmax for CIFAR10 and CIFAR100 models of varying levels of robustness, and
measure the correlation of their values and ranks using Pearson and Spearman correlations. Results are in Appendix A.2.
For a non-robust model, p=°>"s* and p%of““ax are not strongly correlated (Figure 7). As model robustness increases, the two

quantities become more correlated (Figures 8 and 9). However, even for robust models, the relationship between the two

quantities is mild (Figure 9). That pr°Ps* and p$2®t™ma are not strongly correlated is consistent with the theory in Section 3:
in general settings, pSof™a% is not a good estimator for pioPust.
3.01 A
2 Il 0.0
o > 3 0.0001
€ 2.0{ == 0.001
| = 0.01
o151
£€b
Q
< 1.01
>
2 0.5
0.0 it il wl

S L P o* o V. )
00> 0% 07 0% 302 0% 0" §0° (07 o
ag

Figure 4: Experimental validation of analytical estimators. Figure shows results for the CIFAR10 ResNet18 model. For

more robust models, the estimators compute p°Us* more accurately over a larger noise neighborhood.
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A.3. Datasets

The MNIST dataset consists of images of gray-scale handwritten digits. The images span 10 classes: digits O through 9.
Each image is of size 28 pixels x 28 pixels. The training set consists of 60,000 images and the test set consists of 10,000
images.

The FashionMNIST dataset consists of gray-scale images of articles of clothing. The images span 10 classes: t-shirt, trousers,
pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot. Each image is of size 28 pixels x 28 pixels. The training set
consists of 60,000 images and the test set consists of 10,000 images.

The CIFAR10 dataset consists of color images of common objects and animals. The images span 10 classes: airplane, car,
bird, cat, deer, dog, frog, horse, ship, and truck. Each image is of size 3 pixels x 32 pixels x 32 pixels. The training set
consists of 50,000 images and the test set consists of 10,000 images.

The CIFAR100 dataset consists of color images of common objects and animals. The images span 100 classes: apple, bowl,
chair, dolphin, lamp, mouse, plain, rose, squirrel, train, etc. Each image is of size 3 pixels x 32 pixels x 32 pixels. The
training set consists of 50,000 images and the test set consists of 10,000 images.

For experiments, we use 1,000 randomly-selected test set images for each dataset.

A.4. Models

For the MNIST and FashionMNIST (FMNIST) datasets, we train a linear model and a convolutional neural network (CNN)
to perform 10-class classification. The linear model consists of one hidden layer with 10 neurons. The CNN consists of four
hidden layers: one convolutional layer with 5x5 filters and 10 output channels, one convolutional layer 5x5 filters and 20
output channels, and one linear layer with 50 neurons, and one linear layer 10 neurons.

For CIFAR10 and CIFAR100 datasets, we train a ResNetl18 model to perform 10-class and 100-class classification,
respectively. The model architecture is described in (He et al., 2016). We train the ResNet18 models using varying levels of
gradient norm regularization to obtain models with varying levels of robustness. The larger the weight of gradient norm
regularization (), the more robust the model.

All models were trained using stochastic gradient descent. Hyperparameters were selected to achieve decent model
performance. The emphasis is on analyzing the estimators’ estimates of local robustness of each model, not on high model
performance. Thus, we do not focus on tuning model hyperparameters. All models were trained for 200 epochs. The test set
accuracy (on each dataset’s full 10,000-point test set) for each model is shown in Table 2.

Dataset ‘ Model ‘ A ‘ Test set accuracy
MNIST Linear 0 92%
MNIST CNN 0 99%
FashionMNIST Linear 0 84%
FashionMNIST CNN 0 91%
CIFAR10 ResNet18 0 94%
CIFAR10 ResNet18 | 0.0001 93%
CIFAR10 ResNet18 | 0.001 90%
CIFAR10 ResNetl18 | 0.01 85%
CIFAR100 ResNet18 0 76%
CIFAR100 ResNet18 | 0.0001 74%
CIFAR100 ResNet18 | 0.001 69%
CIFAR100 ResNetl18 | 0.01 60%

Table 2: Accuracy of models on test set.
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A.5. Experiments

A.5.1. CONVERGENCE OF pX©
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Figure 10: Convergence of p3'°.

A.5.2. CONVERGENCE OF pJms¢
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A.5.4. ACCURACY OF p:°PUst ESTIMATORS
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A.5.5. ACCURACY OF p“’bust ESTIMATORS FOR ROBUST MODELS
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Figure 14: Accuracy of pi°PUs® estimators over o for robust models.

A.5.6. MV-SIGMOID FUNCTION’S APPROXIMATION OF MVN-CDF FUNCTION
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A.5.7. LOCAL ROBUSTNESS BIAS AMONG CLASSES
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A.5.8. RUNTIMES OF p’“)b“St ESTIMATORS

| CPU: Intel x86.64 | GPU: Tesla V100-PCIE-32GB

Estimator | # samples (n) | Serial Batched | Serial Batched
n =100 0:00:59 | 0:00:42 0:00:12 0:00:01
n = 1000 0:09:50 | 0:07:22 0:02:00 0:00:04
n = 10000 1:41:11 | 1:14:38 0:19:56 0:00:35
taylor | N/A | 0:00:08 | 0:00:07 | 0:00:02 | < 0:00:01
taylor-mvs | N/A | 0:00:08 | 0:00:07 | 0:00:01 | < 0:00:01
n = 0:00:08 | 0:00:10 0:00:02 0:00:02
n=>5 0:00:41 | 0:00:31 0:00:06 0:00:02
mmse n =10 0:01:21 | 0:01:02 0:00:11 0:00:02
Po n =25 0:03:21 | 0:02:44 | 0:00:26 | 0:00:03
n =50 0:06:47 | 0:05:38 0:00:51 0:00:04
n = 100 0:13:57 | 0:11:31 0:01:42 0:00:06
n=1 0:00:08 | 0:00:08 0:00:01 0:00:01
n=>5 0:00:41 | 0:00:32 0:00:05 0:00:01
mmse.mvs | 7= 10 0:01:21 | 0:01:00 0:00:10 0:00:02
Ps n =25 0:03:24 | 0:02:37 0:00:25 0:00:02
n = 50 0:06:47 | 0:05:35 0:00:51 0:00:03
n = 100 0:13:28 | 0:11:32 0:01:42 0:00:06
psoftmax | N/A | 0:00:01 | <0:00:01 | <0:00:01 | <0:00:01

Table 3: Runtimes of each pr°P"! estimator. Each estimator computes p:2°8 for the CIFAR10 ResNet18 model for 50
data points. For estimators that use sampling, the row with the minimum number of samples necessary for convergence is
italicized. The analytical estimators (pfavler, ptavior-mvs pmmse 5 d pymmse-mvs) are more efficient than the naive estimator

(p2©). Runtimes are in the format of hour:minute:second.

A.6. Broader Impact

This work is concerned with improving estimation of local robustness of machine learning models, and as such does not
have any immediate foreseeable negative societal impact. However, inexact estimation can affect downstream decisions, and
as such, estimator quality must always be taken into account to mitigate such cases.



