
DeepBern-Nets: Taming the Complexity of Certifying Neural Networks using
Bernstein Polynomial Activations and Precise Bound Propagation

Haitham Khedr 1 Yasser Shoukry 1

Abstract
Formal certification of Neural Networks (NNs)
is crucial for ensuring their safety, fairness, and
robustness. Unfortunately, on the one hand, sound
and complete certification algorithms of ReLU-
based NNs do not scale to large-scale NNs. On the
other hand, incomplete certification algorithms—
based on propagating input domain bounds to
bound the outputs of the NN—are easier to com-
pute, but they result in loose bounds that deterio-
rate with the depth of NN, which diminishes their
effectiveness. In this paper, we ask the follow-
ing question; can we replace the ReLU activation
function with one that opens the door to incom-
plete certification algorithms that are easy to com-
pute but can produce tight bounds on the NN’s
outputs? We introduce DeepBern-Nets, a class of
NNs with activation functions based on Bernstein
polynomials instead of the commonly used ReLU
activation. Bernstein polynomials are smooth and
differentiable functions with desirable properties
such as the so-called range enclosure and subdivi-
sion properties. We design a novel Interval Bound
Propagation (IBP) algorithm, called Bern-IBP, to
efficiently compute tight bounds on DeepBern-
Nets outputs. Our approach leverages the prop-
erties of Bernstein polynomials to improve the
tractability of neural network certification tasks
while maintaining the accuracy of the trained net-
works. We conduct comprehensive experiments
in adversarial robustness and reachability analysis
settings to assess the effectiveness of the proposed
Bernstein polynomial activation in enhancing the
certification process. Our proposed framework
achieves high certified accuracy for adversarially-

1Department of Electrical Engineering and Computer Sci-
ence, University of California, Irvine, USA. Correspondence
to: Haitham Khedr <hkhedr@uci.edu>, Yasser Shoukry
<yshoukry@uci.edu>.

Presented at the 2nd Workshop on Formal Verification of Machine
Learning, co-located with the 40 th International Conference of
Machine Learning, Honolulu, Hawaii, USA., 2023. Copyright
2023 by the author(s).

trained NNs, which is often a challenging task for
certifiers of ReLU-based NNs. Moreover, using
Bern-IBP bounds for certified training results in
NNs with state-of-the-art certified accuracy com-
pared to ReLU networks. This work establishes
Bernstein polynomial activation as a promising
alternative for improving neural network certifica-
tion tasks across various NNs applications.

1. Introduction
Deep neural networks (NNs) have revolutionized numer-
ous fields with their remarkable performance on various
tasks, ranging from computer vision and natural language
processing to healthcare and robotics. As these networks
become integral components of critical systems, ensuring
their safety, security, fairness, and robustness is essential.
It is unsurprising, then, the growing interest in the field
of certified machine learning, which resulted in NNs with
enhanced levels of robustness to adversarial inputs (Good-
fellow et al., 2014; Kurakin et al., 2016; Song et al., 2018;
Szegedy et al., 2013), fairness (Zhang et al., 2018; Xu et al.,
2018; Mehrabi et al., 2021; Khedr & Shoukry, 2022), and
correctness (Yang & Rinard, 2019).

While certifying the robustness, fairness, and correctness
of NNs with respect to formal properties is shown to be
NP-hard (Katz et al., 2017), state-of-the-art certifiers rely
on computing upper/lower bounds on the output of the NN
and its intermediate layers (Wang et al., 2021; Khedr et al.,
2021; Ferrari et al.; Bak, 2021; Henriksen & Lomuscio). Ac-
curate bounds can significantly reduce the complexity and
computational effort required during the certification pro-
cess, facilitating more efficient and dependable evaluations
of the network’s behavior in diverse and challenging sce-
narios. Moreover, computing such bounds has opened the
door for a new set of “certified training” algorithms (Zhang
et al., 2022; Lyu et al., 2021; Müller et al., 2022b) where
these bounds are used as a regularizer that penalizes the
worst-case violation of robustness or fairness, which leads
to training NNs with favorable properties. While computing
such lower/upper bounds is crucial, current techniques in
computing lower/upper bounds on the NN outputs are either

DeepBern-Nets

computationally efficient but result in loose lower/upper
bounds or compute tight bounds but are computationally
expensive. In this paper, we are interested in algorithms
that can be both computationally efficient and lead to tight
bounds.

This work follows a Design-for-Certifiability approach
where we ask the question; can we replace the ReLU ac-
tivation function with one that allows us to compute tight
upper/lower bounds efficiently? Introducing such novel acti-
vation functions designed with certifiability in mind makes
it possible to create NNs that are easier to analyze and cer-
tify during their training. Our contributions in this paper
can be summarized as follows:

1. We introduce DeepBern-Nets, a NN architecture with
a new activation function based on Bernstein polyno-
mials. Our primary motivation is to shift some of the
computational efforts from the certification phase to
the training phase. By employing this approach, we
can train NNs with known output (and intermediate)
bounds for a predetermined input domain which can
accelerate the certification process.

2. We present Bern-IBP, an Interval Bound Propaga-
tion (IBP) algorithm that computes tight bounds of
DeepBern-Nets leading to an efficient certifier.

3. We show that Bern-IBP can certify the adversarial ro-
bustness of adversarially-trained DeepBern-Nets on
MNIST and CIFAR-10 datasets even with large archi-
tectures with millions of parameters. This is unlike
state-of-the-art certifiers for ReLU networks, which
often fail to certify robustness for adversarially-trained
ReLU NNs.

4. We show that employing Bern-IBP during the training
of DeepBern-Nets yields high certified robustness on
the MNIST and CIFAR-10 datasets with robustness lev-
els that are comparable—or in many cases surpassing—
the performance of the most robust ReLU-based NNs
reported in the SOK benchmark.

We believe that our framework, DeepBern-Nets and Bern-
IBP, enables more reliable guarantees on NN behavior and
contributes to the ongoing efforts to create safer and more
secure NN-based systems, which is crucial for the broader
deployment of deep learning in real-world applications.

2. DeepBern-Nets: Deep Bernstein Polynomial
Networks

2.1. Bernstein polynomials preliminaries

Bernstein polynomials form a basis for the space of poly-
nomials on a closed interval (Farouki, 2012). These poly-

nomials have been widely used in various fields, such as
computer-aided geometric design (Farouki, 2012), approx-
imation theory (Qian et al., 2011), and numerical analysis
(Farouki & Rajan, 1987), due to their unique properties and
intuitive representation of functions. A general polynomial
of degree n in Bernstein form on the interval [l, u] can be
represented as:

P [l,u]
n (x) =

n∑
k=0

ckb
[l,u]
n,k (x), x ∈ [l, u] (1)

where ck ∈ R are the coefficients associated with the Bern-
stein basis b[l,u]n,k (x), defined as:

b
[l,u]
n,k (x) =

(
n
k

)
(u− l)n

(x− l)k(u− x)n−k, (2)

with
(
n
k

)
denoting the binomial coefficient. The Bernstein

coefficients ck determine the shape and properties of the
polynomial P [l,u]

n (x) on the interval [l, u]. It is important
to note that unlike polynomials represented in power basis
form, the representation of a polynomial in Bernstein form
depends on the domain of interest [l, u] as shown in equation
1.

2.2. Neural Networks with Bernstein activation
functions

We propose using Bernstein polynomials as non-linear acti-
vation functions σ in feed-forward NNs. We call such NNs
as DeepBern-Nets. Like feed-forward NNs, DeepBern-Nets
consist of multiple layers, each consisting of linear weights
followed by non-linear activation functions. Unlike conven-
tional activation functions (e.g., ReLU, sigmoid, tanh, ..),
Bernstein-based activation functions are parametrized with
learnable Bernstein coefficients c = c0, . . . , cn, i.e.,

σ(x; l, u, c) =

n∑
k=0

ckb
[l,u]
n,k (x), x ∈ [l, u], (3)

where x is the input to the neuron activation, and the poly-
nomial degree n is an additional hyper-parameter of the
Bernstein activation and can be chosen differently for each
neuron. Figure 1 shows a simplified computational graph
of the Bernstein activation and how it is used to replace
conventional activation functions.

Training of DeepBern-Nets. Since Bernstein polynomi-
als are defined on a specific domain (equation 2), we need
to determine the lower and upper bounds (l(k) and u(k))
of the inputs to the Bernstein activation neurons in layer k,
during the training of the network. To that end, we assume
that the input domain D is bounded with the lower and up-
per bounds (denoted as l(0) and u(0), respectively) known
during training. We emphasize that our assumption that D

DeepBern-Nets

y01

y02

y0n

...

y11

y12

y13

y1m

...

σ1

σ2

σ3

σm

...

y21

y22

y23

y2m

...

σ1

σ2

σ3

σm

...

y31

y32

y3k

...

Input
layer

Linear
layer

Bernstein
activation

Linear
layer

Bernstein
activation

Output
layer

x

b
[l,u]
n,0 (x)

b
[l,u]
n,n (x)

Σ σ(x; l, u, c0, ..., cn)l, u

c0

cn

Figure 1: (Left) shows the structure of a DeepBern-Nets with two hidden layers. DeepBern-Nets are similar to Feed Forward
NNs except that the activation function is a Bernstein polynomial. (Right) shows a simplified computational graph of a
degree n Bernstein activation. The Bernstein basis is evaluated at the input x using l and u computed during training, and the
output is then computed as a linear combination of the basis functions weighted by the learnable Bernstein coefficients ck.

is bounded and known is not conservative, as the input to
the NN can always be normalized to [0, 1], for example.

Algorithm 1 Training step of an L-layer DeepBern-Net
NN

1: Given: Training Batch (X , t) and input bounds [l(0),
u(0)]

2: Initialize all parameters
3: Set the learning rate α
4: Set y(0) = X
5: Set B(0) = [l(0), u(0)]
6: for i = 1....L do
7: if layer i is Bernstein activation then
8: l(i),u(i) ← B(i−1) {Store Input bounds of the

Bernstein layer}
9: for neuron z in layer i do

10: Let c(i)z be the Bernstein coefficients for neuron
z of the i-th layer

11: B(i)z ← [min
j

c
(i)
zj ,max

j
c
(i)
zj]

12: end for
13: B(i) ← [B(i)0 ,B(i)1 , ...,B(i)m] {m denotes the num-

ber of neurons in layer i}
14: else
15: B(i) ←IBP(B(i−1))
16: end if
17: y(i) ← forward(y(i−1)){Regular forward step}
18: end for
19: Compute the loss function: L(y(L), t)
20: Compute the gradients with respect to all model param-

eters (including Bernstein coefficients)
21: for Parameter θ do
22: {Weights, biases, and Bernstein coefficients ck}
23: θ ← θ − α∇θL
24: end for

Using the bounds on the input domain l(0) and u(0) and the
learnable parameters of the NNs (i.e., weights of the linear
layers and the Bernstein coefficients c for each neuron),
we will update the bounds l(k) and u(k) with each step of
training by propagating l(0) and u(0) through all the layers
in the network. Unlike conventional non-linear activation
functions where symbolic bound propagation relies on linear
relaxation techniques (Wang et al., 2018a;b), the Bernstein
polynomial enclosure property allows us to bound the output
of an n-th order Bernstein activation in O(n) operations
(Algorithm 1-line 1). We start by reviewing the enclosure
property of Bernstein polynomials as follows.
Property 1 (Enclosure of Range (Titi, 2019)). The enclosure
property of Bernstein polynomials states that for a given
polynomial P [l,u]

n (x) of degree n in Bernstein form on an
interval [l, u], the polynomial lies within the convex hull of
its Bernstein coefficients. In other words, the Bernstein
polynomial is bounded by the minimum and maximum
values of its coefficients ck regardless of the input x.

min
0≤k≤n

ck ≤ P [l,u]
n (x) ≤ max

0≤k≤n
ck, ∀x ∈ [l, u]. (4)

Algorithm 1 outlines how to use the enclosure property to
propagate the bounds from one layer to another for a single
training step in an L-layer DeepBern-Net. In contrast to
normal training, we calculate the worst-case bounds for the
inputs to all Bernstein layers by propagating the bounds
from the previous layers. Such bound propagation can be
done for linear layers using interval arithmetic (Liu et al.,
2021)—referred to in Algorithm 1-line 1 as Interval Bound
Propagation (IBP)—or using Property 1 for Bernstein layers
(Algorithm 1-Line 1). We store the resulting bounds for
each Bernstein activation function. Then, we perform the
regular forward step. The parameters are then updated using
vanilla backpropagation, just like conventional NNs. Dur-

DeepBern-Nets

ing inference, we directly use the stored layer-wise bounds
l(k) and u(k) (computed during training) to propagate any
input through the network. In Appendix C.3, we show that
the overhead of computing the bounds l(k) and u(k) during
training adds between 0.2× to 5× overhead for the train-
ing, depending on the order n of the Bernstein activation
function and the size of the network.

Stable training of DeepBern-Nets. Using polynomials
as activation functions in deep NNs has attracted several
researchers’ attention in recent years (Wang et al., 2022;
Gottemukkula, 2020). A major drawback of using polyno-
mials of arbitrary order is their unstable behavior during
training due to exploding gradients–which is prominent
with the increase in order (Gottemukkula, 2020). In par-
ticular, for a general nth order polynomial in power se-
ries fn(x) = w0 + w1x + . . . + wnx

n, its derivative is
dfn(x)/dx = w1 + . . .+ nwnx

n−1. Hence training a deep
NN with multiple polynomial activation functions suffers
from exploding gradients as the gradient scales exponen-
tially with the increase in the order n for x > 1.

Luckily, and thanks to the unique properties of Bernstein
polynomials, DeepBern-Net does not suffer from such a
limitation as captured in the next result, whose proof is
given in Appendix A.1.

Proposition 2.1. Consider the Bernstein activation function
σ(x; l, u, c) of arbitrary order n. The following holds:

1.
∣∣ d
dxσ(x; l, u, c)

∣∣ ≤ 2nmaxk∈{0,...,n} |ck|,

2.
∣∣∣ d
dci

σ(x; l, u, c)
∣∣∣ ≤ 1 for all i ∈ {0, . . . , n}.

Proposition 2.1 ensures that the gradients of the proposed
Bernstein-based activation function depend only on the
value of the learnable parameters c = (c0, . . . , cn). Hence,
the gradients do not explode for x > 1. This feature is not
enjoyed by the polynomial activation functions in (Gotte-
mukkula, 2020) and leads to better stable training properties
when the Bernstein polynomials are used as activation func-
tions. Moreover, one can control these gradients by adding
a regularizer–to the objective function–that penalizes high
values of ck, which is common for other learnable param-
eters, i.e., weights of the linear layer. Proof of Proposition
2.1 is in Appendix A.1

3. Bern-IBP: Certification using Bernstein
Interval Bound Propagation

3.1. Certification of global properties using Bern-IBP

We consider the certification of global properties of NNs.
Global properties need to be held true for the entire input
domain D of the network. For simplicity of presentation,

we will assume that the global property we want to prove
takes the following form:

∀y(0) ∈ D =⇒ y(L) = NN (y(0)) > 0 (5)

where y(L) is a scalar output and NN is the NN of interest.
Examples of such global properties include the stability of
NN-controlled systems (Wu et al., 2022) as well as global
individual fairness (Khedr & Shoukry, 2022).

In this paper, we focus on the incomplete certification of
such properties. In particular, we certify properties of the
form (5) by checking the lower/upper bounds of the NN. To
that end, we define the lower L and upper U bounds of the
NN within the domain D as any real numbers that satisfy:

L
(
NN (y(0)),D

)
≤ min

y(0)∈D
NN (y(0)),

U
(
NN (y(0)),D

)
≥ max

y(0)∈D
NN (y(0))

(6)

Incomplete certification of (5) is equivalent to checking if
L
(
NN (y(0)),D

)
> 0. Thanks to the Enclosure of Range

(Property 1) of DeepBern-Nets, one can check the condi-
tion L

(
NN (y(0)),D

)
> 0 in constant time, i.e., O(1), by

simply checking the minimum Bernstein coefficients of the
output layer.

3.2. Certification of local properties using Bern-IBP

Local properties of NNs are the ones that need to be held
for subsets S of the input domain D, i.e.,

∀y(0) ∈ S ⊂ D =⇒ y(L) = NN (y(0)) > 0 (7)

Examples of local properties include adversarial robustness
and the safety of NN-controlled vehicles (Sun et al., 2019;
Kochdumper et al., 2023; Santa Cruz & Shoukry, 2022).
Similar to global properties, we are interested in incomplete
certification by checking whether L

(
NN (y(0)), S

)
> 0.

The output bounds stored in the Bernstein activation func-
tions are the worst-case bounds for the entire input domain
D. However, for certifying local properties over S ⊂ D, we
need to refine these output bounds on the given sub-region
S. To that end, for a Bernstein activation layer k with input
bounds [l(k), u(k)] (computed and stored during training),
we can obtain tighter output bounds thanks to the following
subdivision property of Bernstein polynomials.

Property 2 (Subdivision (Titi, 2019)). Given a Bernstein
polynomial P [l,u]

n (x) of degree n on the interval [l, u], the
coefficients of the same polynomial on subintervals [l, α]
and [α, u] with α ∈ [l, u] can be computed as follows. First,
compute the intermediate coefficients ckj for k = 0, ..., n

DeepBern-Nets

and j = k, ..., n

ckj =

{
cj if k = 0

(1− τ)ck−1
j−1 + τck−1

j if k > 0
, (8)

c′i = cii, c′′i = cn−i
n i = 0 . . . n,

where τ = α−l
u−l . Next, the polynomials defined on each of

the subintervals [l, α] and [α, u] are:

P [l,α]
n (x) =

n∑
k=0

c′kb
[l,α]
n,k (x), P [α,u]

n (x) =

n∑
k=0

c′′kb
[α,u]
n,k (x).

Indeed, we can apply the Subdivision property twice to
compute the coefficients of the polynomial P [α,β]

n . Comput-
ing the coefficients on the subintervals allows us to tightly
bound the polynomial using property 1. Therefore, given a
DeepBern-Net trained on D = [l(0), u(0)], we can compute

tighter bounds on the subregion S = [l̂
(0)

, û(0)] by apply-
ing the subdivision property (Property 2) to compute the
Bernstein coefficients on the sub-region S, and then use the
enclosure property (Property 1) to compute tight bounds on
the output of the activation equivalent to the minimum and
maximum of the computed Bernstein coefficients. We do
this on a layer-by-layer basis until we reach the output of
the NN. Implementation details of this approach is given in
Appendix B.

4. Experiments
Implementation: Our framework has been developed
in Python, and is designed to facilitate the training of
DeepBern-Nets and certify local properties such as Adver-
sarial Robustness and certified training. We use PyTorch
(Paszke et al., 2019) for all neural network training tasks.
To conduct our experiments, we utilized a single GeForce
RTX 2080 Ti GPU in conjunction with a 24-core Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz. Only 8 cores were
utilized for our experiments.

4.1. Experiment 1: Certification of Adversarial
Robustness

The first experiment assesses the ability to compute tight
bounds on the NN output and its implications for certifying
NN properties. To that end, we use the application of adver-
sarial robustness, where we aim to certify that a NN model
is not susceptible to adversarial examples within a defined
perturbation set. The results in (Li et al., 2020; Müller et al.,
2022a) show that state-of-the-art IBP algorithms fail to cer-
tify the robustness of NNs trained with Projected Gradient
Descent (PGD), albeit being robust, due to the excessive er-
rors in the computed bounds, which forces designers to use
computationally expensive sound and complete algorithms.

Thanks to the properties of DeepBern-Nets, the bounds com-
puted by Bern-IBP are tight enough to certify the robustness
of NNs without using computationally expensive sound and
complete tools. To that end, we trained several NNs using
the MNIST (LeCun, 1998) and CIFAR-10 (Krizhevsky &
Hinton, 2014) datasets using PGD. We trained both Fully
Connected Neural Networks (FCNN) and Convolutional
Neural Networks (CNNs) on these datasets with Bernstein
polynomials of orders 2, 3, 4, 5, and 6. For detailed infor-
mation regarding the model architectures, please refer to
Appendix C.2. Further information about the training proce-
dure can be found in Appendix C.1.

4.1.1. FORMALIZING ADVERSARIAL ROBUSTNESS AS A
LOCAL PROPERTY

Given a NN model NN : [0, 1]d → Ro, a concrete input
xn, a target class t, and a perturbation parameter ϵ, the
adversarial robustness problem asks that the NN output be
the target class t for all the inputs in the set {x | ∥x −
xn∥∞ ≤ ϵ}. In other words, a NN is robust whenever:

∀x ∈ S(xn, ϵ) = {x | ∥x− xn∥∞ ≤ ϵ} =⇒
NN (x)t > NN (x)i, i ̸= t (9)

where NN (x)t is the NN output for the target class and
NN (x)i is the NN output for any class i other that t. To
certify the robustness of a NN, one can compute a lower
bound on the adversarial robustness Lrobust for all classes
i ̸= t as:

Lrobust(xn, ϵ) = min
i ̸=t

(
L
(
NN (x)t, S(xn, ϵ))−

U
(
NN (x)i, S(xn, ϵ)

))

≤ min
i ̸=t

(
min

x∈S(xn,ϵ)
NN (x)t −NN (x)i

)
(10)

Indeed, the NN is robust whenever Lrobust > 0. Neverthe-
less, the tightness of the bounds L(NN (x)t, S(xn, ϵ)) and
U(NN (x)i, S(xn, ϵ)) plays a significant role in the ability
to certify the NN robustness. The tighter these bounds, the
higher the ability to certify the NN robustness.

4.1.2. EXPERIMENT 1.1: TIGHTNESS OF OUTPUT
BOUNDS - BERN-IBP VS IBP

For each trained neural network, we compute the lower
bound on robustness Lrobust(xn, ϵ) using Bern-IBP and us-
ing state-of-the-art Interval Bound Propagation (IBP) that
does not take into account the properties of DeepBern-
Nets. In particular, for this experiment, we used
auto LiRPA(Wang et al., 2021), a tool that is part of αβ-
CROWN(Wang et al., 2021)—the winner of the 2022 Verifi-
cation of Neural Network (VNN) competition (Müller et al.,

DeepBern-Nets

2022a). Figure 2 shows the difference between the bound
Lrobust(xn, ϵ) computed by Bern-IBP and the one computed
by IBP using a semi-log scale. The raw data for the ad-
versarial robustness bound Lrobust(xn, ϵ) for both Bern-IBP
and IBP is given in Appendix C.4.

The results presented in Figure 2 clearly demonstrate that
Bern-IBP yields significantly tighter bounds in comparison
to IBP. Figure 2 also shows that for all values of ϵ, the
bounds computed using IBP become exponentially looser
as the order of the Bernstein activations increase, unlike the
bounds computed with Bern-IBP, which remain precise even
for higher-order Bernstein activations or larger values of ϵ.
The raw data in Appendix C.4 provide a clearer view on
the superiority of computing Lrobust(xn, ϵ) using Bern-IBP
compared to IBP.

4.1.3. EXPERIMENT 1.2: CERTIFICATION OF
ADVERSARIAL ROBUSTNESS USING BERN-IBP

Next, we show that the superior precision of bounds calcu-
lated using Bern-IBP can lead to efficient certification of
adversarial robustness. Here, we define the certified accu-
racy of the NN as the percentage of the data points (in the
test dataset) for which an adversarial input can not change
the class (the output of the NN). Table 1 contrasts the certi-
fied accuracy for the adversarially-trained (using 100-step
PGD) DeepBern-Nets of orders 2, 4, and 6, using both IBP
and Bern-IBP methods and varying values of ϵ. As observed
by the table, IBP fails to certify the robustness of all the
NNs. On the other hand, Bern-IBP achieved high certified
accuracy for all the NNs with varying values of ϵ. Finally,
we use the methodology reported in (Wang et al., 2021)
to upper bound the certified accuracy using 100-step PGD
attack.

It is essential to mention that IBP’s inability to certify the
robustness of NNs is not unique to DeepBern-Nets. In
particular, as shown in (Li et al., 2020; Müller et al., 2022a),
most certifiers struggle to certify the robustness of ReLU
NNs when trained with PGD. This suggests the power of
DeepBern-Nets, which can be efficiently certified—in a few
seconds even for NNs with millions of parameters, as shown
in Table 1—using incomplete certifiers thanks to the ability
of Bern-IBP to compute tight bounds.

4.2. Experiment 2: Certified training using Bern-IBP

In this experiment, we demonstrate that the tight bounds
calculated by Bern-IBP can be utilized for certified training,
achieving state-of-the-art results. Although a direct com-
parison with methods from certified training literature is
not feasible due to the use of Bernstein polynomial activa-
tions instead of ReLU activations, we provide a comparison
with state-of-the-art certified accuracy results from the SOK
benchmark (Li et al., 2020) to study how effectively can

Bern-IBP be utilized for certified training. We trained neural
networks with the same architectures as those in the bench-
mark to maintain a similar number of parameters, with the
polynomial order serving as an additional hyperparameter.
The training objective adheres to the certified training liter-
ature (Zhang et al., 2019), incorporating the bound on the
robustness loss in the objective as follows:

min
θ

E
(x,y)∈(X,Y)

[
(1− λ)LCE(NN θ(x), y; θ)+

λLRCE(S(x, ϵ), y; θ))

]
, (11)

where x is a data point, y is the ground truth label, λ ∈ [0, 1]
is a weight to control the certified training regularization,
LCE is the cross-entropy loss, θ is the NN parameters, and
LRCE is computed by evaluating LCE on the upper bound of
the logit differences computed(Zhang et al., 2019) using a
bounding method.

For DeepBern-Nets, LRCE is computed using Bern-IBP dur-
ing training, while the networks in the SOK benchmark
are trained using CROWN-IBP (Zhang et al., 2019). Ta-
ble 2 illustrates that employing Bern-IBP bounds for certi-
fied training yields state-of-the-art certified accuracy (certi-
fied with Bern-IBP) on these datasets, comparable to—or
in many cases surpassing—the performance of ReLU net-
works. The primary advantage of using Bern-IBP lies in
its ability to compute highly precise bounds using a com-
putationally cheap method, unlike the more sophisticated
bounding methods for ReLU networks, such as α-Crown.
For more details about the exact architecture of the NNs,
please refer to Appendix C.2

4.3. Experiment 3: Tight reachability analysis of
NN-controlled Quadrotor using Bern-IBP

In this experiment, we study the application-level impact
of using Bernstein polynomial activations in comparison to
ReLU activations with respect to the tightness of reachable
sets in the context of safety-critical applications. Specif-
ically, we consider a 6D linear dynamics system ẋ =
Ax+Bu representing a Quadrotor (used in (Everett et al.,
2021; Hu et al., 2020; Lopez et al., 2019)), controlled by
a nonlinear NN controller where u = NN (x). To ensure
a fair comparison, both sets of networks are trained on the
same datasets, using the same architectures and training
procedures. The only difference between the two sets of net-
works is the activation function used (ReLU vs. Bernstein
polynomial).

After training, we perform reachability analysis with hori-
zon T = 6 on each network using the respective bounding
methods: Crown and α-Crown for ReLU networks and the
proposed Bern-IBP for Bernstein polynomial networks. We
compute the volume of the reachable sets after each step

DeepBern-Nets

Figure 2: A visual representation of the tightness of bounds computed using Bern-IBP compared to IBP. The figure shows
the log difference between Lrobust computed using Bern-IBP and IBP for NNs with varying orders of and different values of
ϵ. The figure demonstrates the enhanced precision and scalability of the Bern-IBP method in computing tighter bounds,
even for higher-order Bernstein activations and larger values of ϵ, as compared to the naive IBP method.

Table 1: A comparison of certified accuracy and verification time for neural networks with Bernstein polynomial activations
using both IBP and Bern-IBP methods and varying values of ϵ. The table also presents the upper bound on certified accuracy
calculated using a 100-step PGD attack. The results highlight the superior performance of Bern-IBP in certifying robustness
properties compared to IBP.

Dataset Model
(# of params) Test acc. (%) ϵ

IBP Bern-IBP U.B (PGD)

Time (s)
Certified
acc. (%) Time (s)

Certified
acc. (%)

Certified
acc. (%)

MNIST

CNNa 4
(190,426) 97.229

0.01 3.45 0 1.43 88.69 95.97
0.03 3.41 0 1.42 72.12 92.53
0.1 3.26 0 1.39 65.22 75.27

CNNb 2
(905,882) 97.14

0.01 4.38 0 2.07 80.21 95.42
0.03 4.58 0 2.11 56.49 90.57
0.1 4.61 0 1.97 72.35 78.6

CIFAR-10

CNNa 6
(258,626) 46.77 1/255 3.29 0 1.82 27.74 33.53

2/255 3.25 0 1.83 33.49 35.81
CNNb 4

(1,235,994) 54.66 1/255 5.17 0 4.45 28.55 42.86
2/255 5.14 0 4.33 14.7 36.73

for each network. The results are visualized in Figure 3,
comparing the error in the volume of the reachable sets
for both ReLU and Bernstein polynomial networks. The
error is computed with respect to the true volume of the
reachable set for each network, which is computed by heavy
sampling. As shown in Figure 3, using Bern-IBP on the NN
with Bernstein polynomial can lead to much tighter reach-
able sets compared to SOTA bounding methods for ReLU
networks. This experiment provides insights into the poten-
tial benefits of using Bernstein polynomial activations for
improving the tightness of reachability bounds, which can
have significant implications for neural network certification
for safety-critical systems.

5. Related work
Neural Network verification. NN verification is an active
field of research that focuses on developing techniques to
verify the correctness and robustness of neural networks.

Various methods have been proposed for NN verification
to provide rigorous guarantees on the behavior of NNs and
detect potential vulnerabilities such as adversarial examples
and unfairness. These methods use techniques such as ab-
stract interpretation (Ferrari et al.), Satisfiability Modulo
Theory (SMT) (Katz et al., 2019), Reachability Analysis
(Bak, 2021; Tran et al., 2020) and Mixed-Integer Linear
Programming (MILP) (Lomuscio & Maganti, 2017; Tjeng
et al., 2017; Bunel et al., 2020; Anderson et al., 2020). Many
tools also rely on optimization and linear relaxation tech-
niques (Wang et al., 2021; Khedr et al., 2021; Henriksen
& Lomuscio) to speedup the verification. Another line of
work (Wan et al., 2023; Fatnassi et al., 2023) uses higher
order relaxation such as Bernstein Polynomials to certify
NNs. However, frameworks for NN verification often result
in loose bounds during the relaxation process or are compu-
tationally expensive, particularly for large-scale networks.

DeepBern-Nets

Table 2: A comparison of certified accuracy for NNs with Bernstein polynomial activations versus ReLU NNs as in the SOK
benchmark (Li et al., 2020). The certified accuracy is computed using Bern-IBP for NNs with polynomial activations, and
the method yielding highest certified accuracy as reported in SOK for ReLU NNs. The table highlights the effectiveness
of Bern-IBP in achieving competitive certification while utilizing a very computationally cheap method for tight bound
computation.

Model MNIST Certified acc. (%) CIFAR-10 Certified acc. (%)
ϵ = 0.1 ϵ = 0.3 ϵ = 2/255 ϵ = 8/255

DeepBern-Net
(%)

SOK
(%)

DeepBern-Net
(%)

SOK
(%)

DeepBern-Net
(%)

SOK
(%)

DeepBern-Net
(%)

SOK
(%)

FCNNa 72 68 31 25 38 33 28 27
FCNNb 86 85 57 54 39 37 26 25
FCNNc 80 80 51 22 36 32 31 30
CNNa 95 95 82 88 45 46 31 34
CNNb 95 94 77 85 49 49 37 35
CNNc 87 89 72 87 38 51 32 38

Figure 3: (Left) The trajectory of the Quadrotor for the ReLU and Bernstein polynomial networks. (Right) the error in
the reachable set volume e = (V̂ − V)/V for each of the networks after each step. V̂ is the estimated volume using the
respective bounding method and V is the true volume of the reachable set using heavy sampling

Polynomial activations. NNs with polynomial activations
have been studied in (Gottemukkula, 2020). Theoretical
work was established on their expressiveness (Kileel et al.,
2019) and their universal approximation property (Kidger &
Lyons, 2020) is established under certain conditions. How-
ever, to the best of our knowledge, using Bernstein polyno-
mials in Deep NNs and their impact on NN certification has
not been explored yet.

Polynomial Neural Networks. A recent work(Chrysos
et al., 2021) proposed a new class of approximators called
Π-nets, which is based on polynomial expansion. Empirical
evidence has shown that Π-nets are highly expressive and
capable of producing state-of-the-art results in a variety of
tasks, including image, graph, and audio processing, even
without the use of non-linear activation functions. When
combined with activation functions, they have been demon-
strated to achieve state-of-the-art performance in challeng-
ing tasks such as image generation, face verification, and 3D

mesh representation learning. A framework for certifying
such networks using α-convexification was introduced in
(Rocamora et al.).

6. Discussion and limitations
Societal impact. The societal impact of utilizing Bern-
stein polynomial activations in neural networks lies in their
potential to enhance the reliability and interpretability of
AI systems, enabling improved safety, fairness, and trans-
parency in various real-world applications.

Limitations. While Bernstein polynomials offer advan-
tages in the context of certification, they also pose some
limitations. One limitation is the increased computational
complexity during training compared to ReLU networks.

DeepBern-Nets

References
Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C.,

and Vielma, J. P. Strong mixed-integer programming
formulations for trained neural networks. Mathemati-
cal Programming, 183(1):3–39, 2020. doi: 10.1007/
s10107-020-01474-5.

Bak, S. Nnenum: Verification of relu neural networks
with optimized abstraction refinement. In NASA For-
mal Methods: 13th International Symposium, NFM
2021, Virtual Event, May 24–28, 2021, Proceed-
ings, pp. 19–36, Berlin, Heidelberg, 2021. Springer-
Verlag. ISBN 978-3-030-76383-1. doi: 10.1007/
978-3-030-76384-8 2. URL https://doi.org/10.
1007/978-3-030-76384-8_2.

Bunel, R., Lu, J., Turkaslan, I., Kohli, P., Torr, P., and
Mudigonda, P. Branch and bound for piecewise linear
neural network verification. Journal of Machine Learning
Research, 21(42):1–39, 2020.

Chrysos, G. G., Moschoglou, S., Bouritsas, G., Deng, J.,
Panagakis, Y., and Zafeiriou, S. Deep polynomial neural
networks. IEEE transactions on pattern analysis and
machine intelligence, 44(8):4021–4034, 2021.

Doha, E., Bhrawy, A., and Saker, M. On the derivatives of
bernstein polynomials: an application for the solution of
high even-order differential equations. Boundary Value
Problems, 2011:1–16, 2011.

Everett, M., Habibi, G., Sun, C., and How, J. P. Reachabil-
ity analysis of neural feedback loops. IEEE Access, 9:
163938–163953, 2021.

Farouki, R. and Rajan, V. On the numerical condition
of polynomials in bernstein form. Computer Aided
Geometric Design, 4(3):191–216, 1987. ISSN 0167-8396.
doi: https://doi.org/10.1016/0167-8396(87)90012-4.
URL https://www.sciencedirect.com/
science/article/pii/0167839687900124.

Farouki, R. T. The bernstein polynomial basis: A centennial
retrospective. Comput. Aided Geom. Des., 29(6):379–419,
aug 2012. ISSN 0167-8396. doi: 10.1016/j.cagd.2012.03.
001. URL https://doi.org/10.1016/j.cagd.
2012.03.001.

Fatnassi, W., Khedr, H., Yamamoto, V., and Shoukry, Y.
Bern-nn: Tight bound propagation for neural networks
using bernstein polynomial interval arithmetic. In Pro-
ceedings of the 26th ACM International Conference on
Hybrid Systems: Computation and Control, pp. 1–11,
2023.

Ferrari, C., Mueller, M. N., Jovanović, N., and Vechev,
M. Complete verification via multi-neuron relaxation

guided branch-and-bound. In International Conference
on Learning Representations.

Goodfellow, I. J., Shlens, J., and Szegedy, C. S. Explain-
ing and harnessing adversarial examples. 2014. URL
https://arxiv.org/abs/1412.6572.

Gottemukkula, V. Polynomial activation functions. 2020.

Henriksen, P. and Lomuscio, A. Deepsplit: An efficient split-
ting method for neural network verification via indirect
effect analysis.

Hu, H., Fazlyab, M., Morari, M., and Pappas, G. J. Reach-
sdp: Reachability analysis of closed-loop systems with
neural network controllers via semidefinite programming.
In 2020 59th IEEE conference on decision and control
(CDC), pp. 5929–5934. IEEE, 2020.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochen-
derfer, M. J. Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks. In Majumdar, R. and
Kunčak, V. (eds.), Computer Aided Verification, Lecture
Notes in Computer Science, pp. 97–117. Springer Interna-
tional Publishing, 2017. ISBN 978-3-319-63387-9. doi:
10.1007/978-3-319-63387-9 5.

Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus,
C., Lim, R., Shah, P., Thakoor, S., Wu, H., Zeljić,
A., et al. The marabou framework for verification
and analysis of deep neural networks. In Dillig, I.
and Tasiran, S. (eds.), Computer Aided Verification, pp.
443–452. Springer International Publishing, 2019. doi:
10.1007/978-3-030-25540-4 26.

Khedr, H. and Shoukry, Y. Certifair: A framework for cer-
tified global fairness of neural networks. arXiv preprint
arXiv:2205.09927, 2022.

Khedr, H., Ferlez, J., and Shoukry, Y. Peregrinn: Penalized-
relaxation greedy neural network verifier. In Computer
Aided Verification: 33rd International Conference, CAV
2021, Virtual Event, July 20–23, 2021, Proceedings, Part
I 33, pp. 287–300. Springer, 2021.

Kidger, P. and Lyons, T. Universal approximation with deep
narrow networks. In Conference on learning theory, pp.
2306–2327. PMLR, 2020.

Kileel, J., Trager, M., and Bruna, J. On the expressive power
of deep polynomial neural networks. Advances in neural
information processing systems, 32, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kochdumper, N., Krasowski, H., Wang, X., Bak, S., and
Althoff, M. Provably safe reinforcement learning via

https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-030-76384-8_2
https://www.sciencedirect.com/science/article/pii/0167839687900124
https://www.sciencedirect.com/science/article/pii/0167839687900124
https://doi.org/10.1016/j.cagd.2012.03.001
https://doi.org/10.1016/j.cagd.2012.03.001
https://arxiv.org/abs/1412.6572

DeepBern-Nets

action projection using reachability analysis and polyno-
mial zonotopes. IEEE Open Journal of Control Systems,
2:79–92, 2023.

Krizhevsky, A.; Nair, V. and Hinton, G. The cifar-10
dataset. http://www.cs.toronto.edu/kriz/
cifar.html, 2014.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial
examples in the physical world. 2016. URL https:
//arxiv.org/abs/1607.02533.

LeCun, Y. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/, 1998.

Li, L., Xie, T., and Li, B. Sok: Certified robustness for deep
neural networks. arXiv preprint arXiv:2009.04131, 2020.

Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C.,
Kochenderfer, M. J., et al. Algorithms for verifying deep
neural networks. Foundations and Trends® in Optimiza-
tion, 4(3-4):244–404, 2021.

Lomuscio, A. and Maganti, L. An approach to reachability
analysis for feed-forward relu neural networks. 2017.
URL https://arxiv.org/abs/1706.07351.

Lopez, D. M., Musau, P., Tran, H.-D., and Johnson, T. T.
Verification of closed-loop systems with neural network
controllers. In Frehse, G. and Althoff, M. (eds.), ARCH19.
6th International Workshop on Applied Verification of
Continuous and Hybrid Systems, volume 61 of EPiC Se-
ries in Computing, pp. 201–210. EasyChair, 2019. doi:
10.29007/btv1. URL https://easychair.org/
publications/paper/ZmnC.

Lyu, Z., Guo, M., Wu, T., Xu, G., Zhang, K., and Lin, D.
Towards evaluating and training verifiably robust neural
networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4308–
4317, 2021.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and
Galstyan, A. A survey on bias and fairness in machine
learning. ACM Computing Surveys (CSUR), 54(6):1–35,
2021.

Müller, M. N., Brix, C., Bak, S., Liu, C., and Johnson,
T. T. The third international verification of neural net-
works competition (vnn-comp 2022): Summary and re-
sults. arXiv preprint arXiv:2212.10376, 2022a.

Müller, M. N., Eckert, F., Fischer, M., and Vechev, M. Certi-
fied training: Small boxes are all you need. arXiv preprint
arXiv:2210.04871, 2022b.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Qian, W., Riedel, M. D., and Rosenberg, I. Uni-
form approximation and bernstein polynomials with
coefficients in the unit interval. European Jour-
nal of Combinatorics, 32(3):448–463, 2011. ISSN
0195-6698. doi: https://doi.org/10.1016/j.ejc.2010.11.
004. URL https://www.sciencedirect.com/
science/article/pii/S0195669810001666.

Rocamora, E. A., Sahin, M. F., Liu, F., Chrysos, G., and
Cevher, V. Sound and complete verification of polynomial
networks. In Advances in Neural Information Processing
Systems.

Santa Cruz, U. and Shoukry, Y. Nnlander-verif: A neural
network formal verification framework for vision-based
autonomous aircraft landing. In NASA Formal Methods:
14th International Symposium, NFM 2022, Pasadena,
CA, USA, May 24–27, 2022, Proceedings, pp. 213–230.
Springer, 2022.

Song, D., Eykholt, K., Evtimov, I., Fernandes, E., Li, B.,
Rahmati, A., Tramer, F., Prakash, A., and Kohno, T. Phys-
ical adversarial examples for object detectors. In Pro-
ceedings of the 12th USENIX Conference on Offensive
Technologies, WOOT’18. USENIX Association, 2018.

Sun, X., Khedr, H., and Shoukry, Y. Formal verification
of neural network controlled autonomous systems. In
Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pp. 147–
156, 2019.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. 2013. URL https://arxiv.org/
abs/1312.6199.

Titi, J. Matrix Methods for the Tensorial and Simplicial
Bernstein Forms with Application to Global Optimization.
PhD thesis, 01 2019.

Tjeng, V., Xiao, K., and Tedrake, R. Evaluating robust-
ness of neural networks with mixed integer program-
ming. 2017. URL https://arxiv.org/abs/
1711.07356.

Tran, H.-D., Yang, X., Manzanas Lopez, D., Musau, P.,
Nguyen, L. V., Xiang, W., Bak, S., and Johnson, T. T.
Nnv: The neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems.
In Lahiri, S. K. and Wang, C. (eds.), Computer Aided
Verification, pp. 3–17. Springer International Publishing,
2020. doi: 10.1007/978-3-030-53288-8 1.

http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1607.02533
http://yann. lecun. com/exdb/mnist/
https://arxiv.org/abs/1706.07351
https://easychair.org/publications/paper/ZmnC
https://easychair.org/publications/paper/ZmnC
https://www.sciencedirect.com/science/article/pii/S0195669810001666
https://www.sciencedirect.com/science/article/pii/S0195669810001666
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1711.07356
https://arxiv.org/abs/1711.07356

DeepBern-Nets

Wan, Y., Zhou, W., Fan, J., Wang, Z., Li, J., Chen,
X., Huang, C., Li, W., and Zhu, Q. Polar-express:
Efficient and precise formal reachability analysis of
neural-network controlled systems. arXiv preprint
arXiv:2304.01218, 2023.

Wang, J., Chen, L., and Ng, C. W. W. A new class of
polynomial activation functions of deep learning for
precipitation forecasting. In Proceedings of the Fif-
teenth ACM International Conference on Web Search
and Data Mining, WSDM ’22, pp. 1025–1035, New
York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450391320. doi: 10.1145/
3488560.3498448. URL https://doi.org/10.
1145/3488560.3498448.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
Efficient formal safety analysis of neural networks. In
Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems, volume 31, pp.
6367–6377, 2018a.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S. For-
mal security analysis of neural networks using symbolic
intervals. In Proceedings of the 27th USENIX Confer-
ence on Security Symposium, SEC’18, pp. 1599–1614.
USENIX Association, 2018b. doi: 10.5555/3277203.
3277323.

Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.-J.,
and Kolter, J. Z. Beta-crown: Efficient bound propaga-
tion with per-neuron split constraints for neural network
robustness verification. Advances in Neural Information
Processing Systems, 34:29909–29921, 2021.

Wu, W., Chen, J., and Chen, J. Stability analysis of
systems with recurrent neural network controllers.
IFAC-PapersOnLine, 55(12):170–175, 2022. ISSN 2405-
8963. doi: https://doi.org/10.1016/j.ifacol.2022.07.306.
URL https://www.sciencedirect.com/
science/article/pii/S2405896322007078.
14th IFAC Workshop on Adaptive and Learning Control
Systems ALCOS 2022.

Xu, D., Yuan, S., Zhang, L., and Wu, X. Fairgan: Fairness-
aware generative adversarial networks. In 2018 IEEE
International Conference on Big Data (Big Data), pp.
570–575. IEEE, 2018.

Yang, Y. and Rinard, M. Correctness verification of neural
networks. arXiv preprint arXiv:1906.01030, 2019.

Zhang, B., Jiang, D., He, D., and Wang, L. Rethinking
lipschitz neural networks for certified l-infinity robustness.
arXiv preprint arXiv:2210.01787, 2022.

Zhang, B. H., Lemoine, B., and Mitchell, M. Mitigating un-
wanted biases with adversarial learning. In Proceedings
of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, pp. 335–340, 2018.

Zhang, H., Chen, H., Xiao, C., Gowal, S., Stanforth, R.,
Li, B., Boning, D., and Hsieh, C.-J. Towards stable and
efficient training of verifiably robust neural networks.
arXiv preprint arXiv:1906.06316, 2019.

https://doi.org/10.1145/3488560.3498448
https://doi.org/10.1145/3488560.3498448
https://www.sciencedirect.com/science/article/pii/S2405896322007078
https://www.sciencedirect.com/science/article/pii/S2405896322007078

DeepBern-Nets

A. Bernstein Polynomials
A.1. Proof of Proposition 2.1

Proof. Before we prove our result, we review the following properties of Bernstein polynomials.

Property 3 (Positivity (Titi, 2019)). Bernstein basis polynomials are non-negative on the interval [l, u], i.e., b[l,u]n,k (x) ≥ 0
for all x ∈ [l, u].
Property 4 (Partition of Unity (Titi, 2019)). The sum of Bernstein basis polynomials of the same degree is equal to 1 on the
interval [l, u], i.e.,

∑n
k=0 b

[l,u]
n,k (x) = 1, ∀x ∈ [l, u].

Property 5 (Closed under differentiation (Doha et al., 2011)). The derivative of an n-degree Bernstein polynomial is n
multiplied by the difference of two (n− 1)-degree Bernstein polynomials. Concretely,

d

dx
b
[l,u]
n,k (x) = n

(
b
[l,u]
n−1,k−1(x)− b

[l,u]
n−1,k(x)

)
Now, it follows from Property 5 that:∣∣∣∣ ddxσ(x; l, u, c)

∣∣∣∣ =
∣∣∣∣∣

n∑
k=0

ckn
(
b
[l,u]
n−1,k−1(x)− b

[l,u]
n−1,k(x)

)∣∣∣∣∣
≤

n∑
k=0

∣∣∣cknb[l,u]n−1,k−1(x)
∣∣∣+ n∑

k=0

∣∣∣cknb[l,u]n−1,k(x)
∣∣∣

≤ nmax
k
|ck|

n∑
k=0

∣∣∣b[l,u]n−1,k−1(x)
∣∣∣+ nmax

k
|ck|

n∑
k=0

∣∣∣b[l,u]n−1,k(x)
∣∣∣

(a)
= nmax

k
|ck|

n∑
k=0

b
[l,u]
n−1,k−1(x) + nmax

k
|ck|

n∑
k=0

b
[l,u]
n−1,k(x)

(b)
= nmax

k
|ck|+ nmax

k
|ck|(1 + b

[l,u]
n−1,n(x))

(c)
= 2nmax

k
|ck|

where (a) follows from Property 3; (b) follows from Property 4, and (c) follows from the definition of Bernstein basis and
the fact that the binomial coefficient

(
n−1
n

)
= 0.

Similarly, ∣∣∣∣ d

dci
σ(x; l, u, c)

∣∣∣∣ = ∣∣∣b[l,u]n,i (x)
∣∣∣ (d)= b

[l,u]
n,i (x)

(e)

≤ 1.

where (d) follows from Property 3 and (e) follows from both Properties 3 and 4 which implies that Bernstein basis satisfy
0 ≤ b

[l,u]
n,i (x) ≤ 1.

A.2. Example to demonstrate properties of Bernstein polynomials

To demonstrate the properties of Bernstein polynomials, we present a simple example to represent the polynomial f(x) =
x3+x2−x+1 for all x ∈ [0, 1] using the Bernstein form. Any polynomial expressed in power series form can be converted
to Bernstein form by employing a closed-form expression (Titi, 2019) to calculate the Bernstein coefficients. For instance,

f(x) = x3 + x2 − x + 1 =
3∑

i=0

cib
[0,1]
3,i for x ∈ [0, 1], with c0 = 1, c1 = c2 = 2

3 , and c3 = 2. Figure 4 illustrates a plot

of the polynomial f(x) and the Bernstein basis polynomials b[0,1]3,i . As depicted in the figure, the basis polynomials are
positive (Property 3) and sum to 1 (Property 4). The range of the polynomial is constrained by the Bernstein coefficients’
range, which is [23 , 2] (Property 1). Lastly, applying the subdivision property to compute the coefficients of the Bernstein
polynomial on [0.6, 0.8] results in c0 = 1.352, c1 = 1.184, c2 = 1.0613, and c3 = 0.976. With the new coefficients, we
can use the range enclosure property to infer that the polynomial’s range on [0.6, 0.8] is [0.976, 1.352].

DeepBern-Nets

Figure 4: A visual representation of the polynomial f(x) = x3 + x2 − x+ 1 along with the Bernstein basis polynomials of
degree three b

[0,1]
3,i for x ∈ [0, 1]. The basis polynomials exhibit positivity and unity partition properties, while the range of

its Bernstein coefficients bounds the range of the polynomial.

B. Implementation of Bern-IBP
In this section, we discuss the implementation details of Bern-IBP and how it can be applied to certify global and local
properties.

Following the discussion in section 3.1, we can check if a global property holds by examining the output bounds of theNN .
Algorithm 2 provides a procedure for incomplete certification, which relies on Property 1 to efficiently compute bounds on
the output and check if the property holds. The output bounds are simply the minimum and maximum of the Bernstein
coefficients of the last layer. The bounds computed using the Bernstein coefficients are not only much tighter than IBP
bounds (as demonstrated in experiment 4.1.2), but they are also more computationally efficient, as they do not require any
matrix-vector operations

Algorithm 2 Incomplete Certification of a global output property y(L) = NN (y(0)) > 0

1: Given: Neural Network NN with L layers, and input bounds l(0),u(0)

2: l(L) = min
i

c
(L)
i

3: if l(L) > 0 then
4: Return SAT
5: else
6: Return UNKNOWN
7: end if

Certification of local properties defined on a subset of the input domain D can benefit from computing tighter bounds on
the outputs of the NN using Bern-IBP. Algorithm 3 propagates the input bounds on a layer-by-layer basis, for linear and
convolutional layers, we propagate the bounds using IBP. For Bernstein layers, we first apply the subdivision property to
compute a new set of Bernstein coefficients to represent the polynomial on a subregion of [l(k),u(k)], then, using the new
coefficients, we apply the enclosure property to bound the output of the Bernstein activation. This procedure result in much
tighter bounds compared to IBP (as shown in Experiment 4.1.2) and Appendix C.4

C. Additional information on numerical experiments
C.1. Experimental Setup

Datasets. In our MNIST and CIFAR-10 experiments, we employ torchvision.datasets to load the datasets,
maintaining the original data splits. While we normalize the input images for CIFAR-10, we do not apply any data

DeepBern-Nets

Algorithm 3 Incomplete Certification of a local output property y(L) = NN (y(0)) > 0

1: Given: Neural Network NN with L layers, and input bounds l(0),u(0)

2: for i = 1....L do
3: if type(layer i) is Linear or Conv then
4: l̂

(i)
, û(i) ← IBP(layer i, [l(i−1),u(i−1)])

5: else
6: for each neuron z in layer i do
7: {Actual implementation is vectorized}
8: τ ← l̂(i)z −l(i)z

u
(i)
z −l

(i)
z

{l(i)z and u
(i)
z denote lower and upper bounds for neuron z for the entire input domain D}

9: for k = 0....n do
10: for j = k....n do

11: ckj ←
{

cj if k = 0

(1− τ)ck−1
j−1 + τck−1

j if k > 0

12: c′ ← cii
13: c′′ ← cn−i

n {c′′ are the coefficients of the polynomial on [l̂z, ubz]}
14: end for
15: end for
16: l̂

(i)
z = min

i
c′′, û

(i)
z = max

i
c′′

17: end for
18: end if
19: end for
20: if l̂(L) > 0 then
21: Return SAT
22: else
23: Return UNKNOWN
24: end if

augmentation techniques. To evaluate the certified accuracy of our models, we utilize the test set during the certification
process.

Certified training. During certified training, our models are trained using the Adam optimizer (Kingma & Ba, 2014) for
100 epochs (unless otherwise specified) with an initial learning rate of 5e−3. We incorporate an exponential learning rate
decay of 0.999 that begins after 50 epochs. For the MNIST dataset, we employ a batch size of 512, while for CIFAR-10, we
use a batch size of 256, except for larger models where a batch size of 128 is utilized. Prior to incorporating the robust loss
into the objective, we perform 10 warmup epochs for MNIST and 20 for CIFAR-10. The total loss comprises a weighted
combination of the natural cross-entropy loss and the robust loss. The weight follows a linear schedule after the warmup
phase, gradually increasing to optimize more for the robust loss towards the end of training. In terms of evaluation, the
primary metric is certified accuracy, which represents the percentage of test examples for which the model can confidently
make correct predictions within the given l∞ perturbation radius.

Bernstein activations. We use the same value of the hyperparameter n for all neurons in the network. For a Bersntein
activation layer with m neurons, we initialize the Bernstein coefficients from a normal distribution ck ∼ N (0, σ2), where
σ2 = 1

m .

C.2. Models Architecture

Table 3 lists the architecture, polynomial order and number of parameters for the Neural networks used to compare the
certified robustness with ReLU networks from SOK(Li et al., 2020) benchmark.

DeepBern-Nets

Table 3: Neural Network Models

Model Structure Degree # of Parameters
MNIST CIFAR-10 MNIST CIFAR-10

FCNNa [20,20,10] 4 3 16,530 62,250
FCNNb [100,100,100,10] 8 3 102,410 329,710
FCNNc [100,100,100,100,100,100,100,10] 10 10 147,810 376,610
CNNa [CONV16,CONV16,100,10] 10 12 219,250 296,090
CNNb [CONV16,CONV16,CONV32,CONV32,512,10] 4 8 953,946 1,360,922
CNNc [CONV32,CONV32,CONV64,CONV64,512,512,10] 2 7 2,118,954 2,966,570

C.3. Training time

In this section, we study the computational complexity of training DeepBern-Nets.

Figure 5 (left) shows the average epoch time and the standard deviation for training DeepBern-Nets. We trained NNs with
three different architectures and with increasing Bernstein activation order on the MNIST dataset. The figure shows that
for each architecture, the training time seems to grow linearly with the polynomial order (used in the activation functions),
except for the small architecture (CNNa). This is due to the fact that higher-order polynomials introduce more parameters
into the network and the fact that the cost of computing the Bernstein bounds during training also scales with the order of
the polynomial. We also report the training time of a ReLU network with the same architecture to contrast an important
underlying trade-off; Bernstein activations are trained with certifiability in mind, which comes with the extra computational
cost during training.

Figure 5: (Left) Training time (per epoch) for three different model architectures and increasing order of Bernstein
polynomials. (Right) training time (per epoch) for training networks with certified training objective functions (i.e., Bern-
IBP must be used with every epoch to compute the loss in the certified training loss) and increasing Bernstein order on the
MNIST dataset. Crown-IBP execution times are reported for ReLU networks with the same architecture.

Figure 5 (right) shows the average epoch time ad the standard deviation for certified training of DeepBern-Nets using
Bern-IBP. We also report the certified training epoch time for ReLU networks of the same architecture using Crown-IBP. We
observe a similar trend of linear increase in training time with increasing the order of Bernstein activation.

C.4. Tightness of output bounds - Bern-IBP vs IBP

In this section, we complement Experiment 4.1.2 by reporting the raw data for computing the lower bound on the robustness
margin as defined in 10 computed using Bern-IBP and IBP on the MNIST dataset. Tables 4, 5, 6, and 7 present the mean,
median, minimum, and maximum values for the lower bounds using both methods on NNs of increasing order and different
values of ϵ, respectively. The model architecture is CNNb as described in C.2. The tables clearly demonstrate that Bern-IBP
achieves significantly higher precision than IBP in bounding DeepBern-Nets. This improvement is observed consistently

DeepBern-Nets

across all DeepBern-Nets orders and various epsilon values. Bern-IBP outperforms IBP by orders of magnitude, highlighting
its effectiveness in providing tighter bounds.

Table 4: Raw values of the average of Lrobust in Experiment 1.1. The results show that Bern-IBP results in orders of
magnitude tighter values for Lrobust compared with IBP.

Order ϵ = 0.001 ϵ = 0.01 ϵ = 0.04 ϵ = 0.1
IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP

2 3.25 6.44 -23.75 0.33 -47.85 -4.39 -48.10 0.02
3 -31.35 6.91 -145.52 -0.30 -13175.76 -8.39 -2.16e+8 -104.32
4 -109.46 6.75 -1779.87 -0.33 -8.4e+11 -0.38 -2.53e+21 -8.36
5 -410.41 6.94 -2.65e+31 2.67 -inf -0.40 -inf -7.69
6 -2429.93 7.05 -inf 1.13 -inf -11.63 -inf -42.75

Table 5: Raw values of the median of Lrobust in Experiment 1.1. The results show that Bern-IBP results in orders of
magnitude tighter values for Lrobust compared with IBP.

Order ϵ = 0.001 ϵ = 0.01 ϵ = 0.04 ϵ = 0.1
IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP

2 3.38 6.54 -23.6 0.43 -46.71 -4.14 -47.25 0.19
3 -31.01 7.07 -145.36 -0.03 -12108.94 -8.14 -1.99e+8 -104.78
4 -105.52 6.9 -1584.41 -0.1 -2.12e+11 -0.13 -1.91e+20 -8.36
5 -404.44 7.17 -1.88e+10 2.96 -2.34e+34 -0.17 -inf -7.93
6 -2334.94 7.22 -1.32e+24 1.56 -inf -11.25 -inf -42.37

Table 6: Raw values of the minimum of Lrobust in Experiment 1.1. The results show that Bern-IBP results in orders of
magnitude tighter values for Lrobust compared with IBP.

Order ϵ = 0.001 ϵ = 0.01 ϵ = 0.04 ϵ = 0.1
IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP

2 -20.16 -16.63 -42.72 -16.56 -83.7 -22.22 -71.33 -8.25
3 -96.55 -12.16 -205.09 -14.02 -34962.84 -22.91 -2302369792 -137.07
4 -3550.07 -10.15 -56758.56 -13.72 -1.09065E+15 -9.23 -8.24695E+24 -23.03
5 -1345.89 -11.78 -2.2861E+35 -12.93 -inf -8.68 -inf -18.11
6 -109130.05 -12.24 -inf -17.03 -inf -30.47 -inf -72.53

Table 7: Raw values of the maximum of Lrobust in Experiment 1.1. The results show that Bern-IBP results in orders of
magnitude tighter values for Lrobust compared with IBP.

Order ϵ = 0.001 ϵ = 0.01 ϵ = 0.04 ϵ = 0.1
IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP

2 14.83 18.01 -10.33 11.24 -23.36 5.61 -28 5.42
3 -12.53 20.98 -96.18 7.18 -2952.79 1.21 -13615902 -76.27
4 -71.81 18.97 -767.27 7.59 -307653536 4.35 -1.80601E+17 1.4
5 -249.03 16.76 -8781314 12.62 -7.72777E+25 4.26 -inf 2.62
6 -1055.1 19.99 -1.13219E+15 10.94 -inf 0.18 -inf -19.47

