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Abstract
Robust perception is still challenging due to the in-
ternal vulnerability of DNNs to adversarial exam-
ples as well as the external uncertainty of sensing
data, e.g. sensor placement and motion pertur-
bation. Recent work can only give provable ro-
bustness guarantees in a probabilistic way which
is not enough for safety-critical scenarios due to
false positive certificates. To this end, we propose
the first deterministic provable defense framework
against camera motion by extending the verifica-
tion of neural networks (VNN) method from ℓp
bounded perturbation to parameterized camera
motion space for robotics applications. Through
the dense partitions of image projection from 3D
dense point cloud to fully cover all the pixels, all
the pixel values can be bounded by linear relax-
ations using linear programming, which makes
the camera motion perturbation verifiable and
compatible with current incomplete and complete
formal VNN methods given DNN models. Exten-
sive experiments are conducted on the Metaroom
dataset for the dense image projection and our
sound and complete method is more computa-
tionally efficient than the randomized smoothing
based method at small perturbation radii.

1. Introduction
With the remarkable advancement of deep neural networks
(DNNs) in computer vision, visual perception has been well
studied and widely used in robotics and autonomous driving
applications. Many previous works show that DNNs can
be easily fooled to make wrong predictions by adding im-
perceptible ℓp norm bounded noise over pixel level (Good-
fellow et al., 2014; Szegedy et al., 2013; Xiao et al., 2018)
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or semantic transformations like image rotation, translation,
scaling, etc. (Pei et al., 2017; Dreossi et al., 2018; Hosseini
& Poovendran, 2018; Engstrom et al., 2019; Hendrycks
& Dietterich, 2018; Kanbak et al., 2018; Liu et al., 2018),
which is also called model internal vulnerability (Hu et al.,
2022b). However, in the sense of robust perception for
the safety of robotics and autonomous vehicles, there are
many other external sensing uncertainty caused by sensor
placement or movement (Hu et al., 2022a), motion blur-
ring/corruptions (Sayed & Brostow, 2021; Mintun et al.,
2021), adversary environmental conditions (Sun et al., 2022;
Hu et al., 2021), etc., which are of great importance in the
real-wrold safety-critical scenarios.

To deal with the internal vulnerability of DNNs, many em-
pirical defense methods (Madry et al., 2018; Tramèr et al.,
2018; Ma et al., 2018; Tramer et al., 2020) are proposed
against ℓp-bounded pixel-wise perturbations as well as prov-
able robustness guarantees (Cohen et al., 2019; Tjeng et al.,
2018; Zhang et al., 2018; Dathathri et al., 2020). For the
robustness certification for semantic transformation, proba-
bilistic certification methods (Fischer et al., 2020; Li et al.,
2021; Alfarra et al., 2021; Hao et al., 2022) are recently
proposed with good scalability, while deterministic verifica-
tions (Balunović et al., 2019; Mohapatra et al., 2020; Ruoss
et al., 2021; Yang et al., 2022) are much more important for
safety-critical cases with zero tolerance for failure without
constructing stochastic smoothed models.

As a commonly-seen external sensing uncertainty for
robotics applications, image projection from 3D points to
2D pixels is fundamental in geometric computer vision and
computational imaging. As shown in previous work (Hu
et al., 2022b), deep learning based visual perception models
are not robust against the camera motion perturbations along
all six translation and rotation axes, which will influence
the safety of the whole robotics system as the downstream
tasks of perception. Although randomized smoothing based
probabilistic robustness certification is shown in (Hu et al.,
2022b), there is still a chance that some non-robust example
is wrongly certified to be robust. Hence, it is inadequate
for safety-critical applications like autonomous driving. Be-
sides, smoothing-based method (Hu et al., 2022b) is compu-
tationally expensive due to Monte Carlo sampling in camera
motion space, which is a severe limitation in practical usage.
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Figure 1. Overview of robustness verification against camera motion perturbation.

To this end, we introduce the formal verification for the
robustness of the perception models against the camera mo-
tion perturbation. Specifically, by explicitly formulating
the image projection from 3D point cloud to 2D pixels, all
pixels can be expressed in terms of parameterized camera
motion. Then using the technique of uniform partitioning,
partitioned images can fully cover all the potential pixels
for any camera motion within the perturbation radius. We
solve the linear programming using the partitioned images
to find the linear lower bound and upper bound for each
pixel, making the formal verification possible given the pre-
trained DNN models and agnostic to off-the-shelf VNN
methods (Zhang et al., 2018; Weng et al., 2018; Lyu et al.,
2020; 2021; Singh et al., 2019; Xu et al., 2020a). Experi-
ments are conducted on Metaroom dataset (Hu et al., 2022b)
and our proposed results are more efficient than the random-
ized smoothing baseline at small perturbation radii. Our
contributions are summarized as follows:

• We propose the first formal verification method for the
robustness of vision models against camera motion pertur-
bation.

• We introduce the linear relaxation of image projection
through linear programming based on the fully-covered
partitions of image capturing.

• Extensive experiments validate that our method is com-
patible with current VNN methods and achieves sound and
complete camera motion perturbation verification efficiently
compared to randomized smoothing based certification.

2. Methodology
2.1. Uniform Partitions in Camera Motion Space

Following the literature (Hu et al., 2022b), Then k color
channels for each pixel can be defined given colored point

cloud V : P× [0, 1]k via the 3D-2D projective transforma-
tion O : V×R6 → Rm,m = krs. For the one-axis rotation
or translation perturbation in S, α ∈ R6 can be degraded to
α ∈ S ⊂ R1 by setting other dimensions to be 0. Detailed
definitions are shown in Def. B.1 and B.2 in Appendix.

Given the dense normalized colored point cloud V : P ×
[0, 1]k for the image projection, the projection function
O(V, α) at each pixel (r, s) ∈ Z2 is a piecewise constant
function w.r.t α, as shown in Figure 2. For all the intervals
∆r,s along α axis, the projected pixel value O(V, α)r,s is
constant for any α ∈ ∆r,s. Therefore, we present Propo-
sition 2.1 showing given pixel (r, s) that there exists ∆r,s

such that for any camera motion within ∆r,s, all the 3D-2D
projections fall into the projections of the endpoints of ∆r,s.
In this case, we call the projection function O(V, α)r,s is
fully-covered by such consistent interval upper bound ∆r,s,
as shown in Figure 2. The proof of Proposition 2.1 can be
found in Appendix Sec. C.

Proposition 2.1 (Camera motion interval to fully cover
each pixel). Given the projection from dense 3D points
V : P× [0, 1]k, for each pixel (r, s) there exists an interval
∆r,s such that ∀u ∈ S, 0 ≤ ∆∗ ≤ ∆r,s, it holds that,

O(V, u+∆∗)r,s = O(V, u)r,s or O(V, u+∆r,s)r,s

According to the upper bound of consistent camera motion
interval in Lemma 2.1, we propose to adopt uniform parti-
tions in the camera motion space S with partition interval
∆ to obtain n partitioned images, O(V, αi), αi ∈ S, i =
1, 2, . . . , n, where

n = ⌊max S−minS
∆

⌋+ 1,∆ ≤ min
(r,s)∈Z2

∆r,s (1)

Therefore, for any pixel over the image grid, all potential
values can be captured through these partitioned images,
resulting in sound linear constraints introduced in the next
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Figure 2. Illustration of uniform partitions in camera motion space
to fully cover all the pixel values.

section. In addition to uniform partitions, we leave the
adaptive partitioning method in practice as future work.

2.2. Sound Linear Constraints via Optimization

In this section, we aim to find the linear relaxation w.r.t
camera motion α ∈ S for the lower and upper bounds
of the projection function O(V, α), i.e., find the linear
weight parameters ωl

k,r,s, β
l
k,r,s, ω

u
k,r,s, β

u
k,r,s for all k 0-

1-normalized channels and pixels (r, s) satisfying the fol-
lowing constraints ∀α ∈ S,

ωl
k,r,sα+ βl

k,r,s ≤ O(V, α)krs ≤ ωu
k,r,sα+ βu

k,r,s (2)

Based on the n uniformly partitioned images from Equa-
tion (1), O(V, αi), αi ∈ S, i = 1, 2, . . . , n, all the potential
pixel values for any camera motion α ∈ S are captured and
sampled. Therefore, the following linear constraint is sound
and equivalent to (2), which is different from the unsound
constraint in (Balunović et al., 2019).

ωl
k,r,sαi + βl

k,r,s ≤ O(V, αi)krs ≤ ωu
k,r,sαi + βu

k,r,s (3)

Furthermore, we formulate the linear relaxation problem in
(3) using uniformly partitioned image O(V, αi) as well as
partitioned camera motion αi as the optimization problems
below,

min
ωl

k,r,s,β
l
k,r,s

1

n

n∑
i=1

[O(V, αi)krs − ωl
k,r,sαi − βl

k,r,s] (4)

such that ωl
k,r,sαi + βl

k,r,s ≤ O(V, αi)krs

ωl
k,r,sαi + βl

k,r,s ≥ 0, ∀i = 1, 2, . . . , n

min
ωu

k,r,s,β
u
k,r,s

1

n

n∑
i=1

[ωu
k,r,sαi + βu

k,r,s −O(V, αi)krs] (5)

such that O(V, αi)krs ≤ ωu
k,r,sαi + βu

k,r,s

ωu
k,r,sαi + βu

k,r,s ≤ 1, ∀i = 1, 2, . . . , n

which can be solved directly through linear programming
for each channel k and pixel (r, s). The results of linear
bounds of image projection can be seen in Figure 7.

2.3. Image Projection in LiRPA

Denote the solved linear weight parameters for all channels
and pixels as flatted vectors ωl, βl, ωu, βu ∈ Rm,m =
k × r × s, so ∀α ∈ S, (2) can be reorganized as below,

diag(ωl)

α...
α

+ βl ≤ O(V, α) ≤ diag(ωu)

α...
α

+ βu

(6)

where diag(·) is the diagonal matrix constructed from a
vector and vector [α, . . . , α]⊤ is with dimension of m =
k × r × s. Note that the form of linear bounds of (6) is the
same as Unary Nonlinear Functions (Zhang et al., 2018; Shi
et al., 2020; Xu et al., 2020a), so the forward and backward
propagation can be obtained based on LiRPA. Details about
forward and backward oracle functions in LiRPA can be
found in Appendix Sec. D.

3. Experiments
In this section, we will answer two questions: is the sound
linear relaxation for the image projection compatible with
different off-the-shelf VNN algorithms under different cam-
era motion perturbation radii? How do the formal verifica-
tion performance and efficiency vary under different model
complexities and different translation or rotation axes? To
answer these questions, we first introduce the dataset, NN
models, metrics and VNN methods as the setup. The code
and implementation details are in https://github.
com/HanjiangHu/metaroom_vnn_comp2023.

3.1. Experimental Setup

Dataset and NN models. We conduct our experiment based
on the realistic indoor dataset MetaRoom (Hu et al., 2022b)
with camera poses and dense point cloud for image projec-
tion. We choose different perturbation radii along z-axis
translation and y-axis rotation, as shown in Figure 6. Note
that the perturbation radii can be larger if the models to
be verified are with smoother decision boundaries. Fol-
lowing the literature of formal verification (Zhang et al.,
2018; 2019), we change the camera intrinsic matrix to ob-
tain down-scaled projected images and choose the 4-layer
and 6-layer feed-forward convolutional neural networks
with ReLU as the perception models to verify the robust-
ness against camera motion perturbation. We remark that
our method can be extended to any feed-forward NN (Xu
et al., 2020a) through LiRPA with enough computational
resources.

https://github.com/HanjiangHu/metaroom_vnn_comp2023
https://github.com/HanjiangHu/metaroom_vnn_comp2023
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Figure 3. Certified accuracy and certification time per image at different perturbation radii along z-axis translation.

Figure 4. Performance with 6-layer CNN under 1× 10−5m z-axis
translation perturbation.

Figure 5. Performance with 4-layer CNN under 2.5◦×10−4 y-axis
rotation perturbation.

Evaluation metrics and VNN methods. We adopt the cer-
tified accuracy, which is the ratio of the test images where
the predicted labels are consistent with the ground truth
labels and the lower bound of the predicted score for the
ground truth label is higher than the upper bounds of scores
for all the other non-ground-truth labels. It is also consis-
tent with the robustness certification work (Li et al., 2021;
Chu et al., 2022; Hu et al., 2022b) to show the effectiveness
of certification approaches. Besides, to compare the time
efficiency of certification, we report the average certifica-
tion time per image for different sound deterministic VNN
methods IBP (Gowal et al., 2018), CROWN (Zhang et al.,
2018), CROWN-IBP (Zhang et al., 2019), Forward (Xu
et al., 2020a), α-CROWN (Xu et al., 2020b), β-CROWN
(Wang et al., 2021) and the unsound probabilistic certifica-
tion method CMS (Hu et al., 2022b) with the confidence
of 99%. Note that β-CROWN (Wang et al., 2021) is the

complete verification method while others are incomplete.

3.2. Performance associated with different VNN
methods at different perturbation radii

From Figure 3, it can be seen that if the perturbation radius
is relatively small, all the VNN methods empowered by the
sound linear relaxation of image projection work well and
the verification time per image is much less than randomized
smoothing based one (Hu et al., 2022b) even for complete
VNN method (Wang et al., 2021), which answers the first
question that our linear relaxation for image projection can
help verify the robustness of NN against camera motion
perturbation at small radius.

3.3. Influence of different model complexity and
different axes of perturbation

We can see from Figure 4 that when the neural network goes
deeper, the verification time per image increase dramatically
compared to 4-layer CNN, especially for the complete β-
CROWN method. But the certified accuracy of all VNN
methods shows that our linear relaxation has the potential
to scale up to larger models in terms of effectiveness. From
Figure 5, we can see that for the rotation along the y-axis,
β-CROWN has even better performance than randomized
smoothing based CMS (Hu et al., 2022b), showing that the
VNN method with the proposed linear relaxed image projec-
tion can own the advantage of soundness, effectiveness, and
efficiency simultaneously due to tighter linear relaxation
along y-axis rotation.

4. Conclusion
In this work, we propose the first deterministic verifica-
tion method against camera motion for robotics applica-
tions. Through the technique of uniform partitioning for
image projection, the image projection can be linearly lower-
bounded and upper-bounded through the optimization of
linear programming, which is agnostic and valid to different
LiRPA-based VNN methods. Experiments show that the
sound VNN methods empowered by our relaxation can per-
form better than smoothing-based baseline with much fewer
computational resources at small perturbation radii.
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A. Related Work
A.1. Provable Defenses against ℓp-bounded Attacks

Empirical defense approaches (Madry et al., 2018; Tramèr et al., 2018; Ma et al., 2018; Samangouei et al., 2018; Tramer
et al., 2020; Pang et al., 2022) are well studied to train robust models against specific adversarial perturbations or attacks. In
contrast, defense with provable guarantees aims to guarantee the accuracy for all perturbations within some ℓp-bounded
attack radius (Li et al., 2020; Liu et al., 2019), which is called robustness certification or verification of deep neural networks.
The complete verification problem (Katz et al., 2017; Ehlers, 2017) is the NP-complete problem for deep neural networks
(Li et al., 2020; Zhang et al., 2022b), although they can guarantee to find such attacks if they exist. Incomplete verification
methods are more relaxed for the trade-off of efficiency of verification, which can be categorized into deterministic and
probabilistic ones (Tjeng et al., 2018; Wong & Kolter, 2018; Singh et al., 2019; Dathathri et al., 2020; Müller et al., 2022;
Zhang et al., 2022a). Although probabilistic certifications (Cohen et al., 2019) based on randomized smoothing present
impressive scalability and advantages using adversarial training (Salman et al., 2019a) and consistency regularization (Jeong
& Shin, 2020), they are usually not sound, i.e., there exist false positive cases for some non-robust samples. Deterministic
certifications are always sound, using linear programming (Salman et al., 2019b; Zhang et al., 2018) or semi-definite
programming (Raghunathan et al., 2018a;b) with a sacrifice of scalibility to large-scale datasets.

A.2. Semantic Transformation Robustness Verification

Beyond the ℓp bounded perturbation, it is of great interest to study the robustness of deep neural networks against semantic
transformations in recent years, e.g. geometric transformation over 2D images or 3D point cloud data. The empirical
robustness of adversarial attacks in the semantic transformation (Pei et al., 2017; Dreossi et al., 2018; Hosseini & Poovendran,
2018; Engstrom et al., 2019; Hendrycks & Dietterich, 2018; Kanbak et al., 2018; Liu et al., 2018) is challenging because
the landscape of optimization in the parameterized semantic space (e.g. translation, rotation, etc.) is highly non-convex,
although these perturbations are closer to the real world than norm-based bounded ones. Recent literature aims to provide
the robustness guarantee against 2D images semantic transformations (Hao et al., 2022; Li et al., 2021; Ruoss et al., 2021;
Alfarra et al., 2021; Balunović et al., 2019), with either function relaxations-based deterministic guarantees (Balunović
et al., 2019; Mohapatra et al., 2020; Lorenz et al., 2021; Ruoss et al., 2021; Yang et al., 2022) or random smoothing based
high-confident probabilistic guarantees (Fischer et al., 2020; Li et al., 2021; Alfarra et al., 2021; Chu et al., 2022; Hao et al.,
2022). However, the robustness against projective transformation induced by camera movement is rarely studied in the
literature, while we believe it is commonly seen in practical autonomous driving and robot applications. Recent work (Hu
et al., 2022b) proposes a probabilistic framework to certify such robustness via camera motion smoothing (CMS) in the
camera motion space. However, the first weakness of CMS (Hu et al., 2022b) is that it is not sound and the false positive
certificate will become a huge concern in safety-critical scenarios. Besides, it is computationally expensive to shake the
camera over 10k to 100k times for Monte Carlo sampling with image projections. The above limitations motivate us to
provide a sound and efficient formal verification method for DNNs against the camera motion perturbation.

B. Background of Image Projection and LiRPA
In this section, we first detail the image projection from dense 3D point cloud given camera poses (Hu et al., 2022b). Then
we list the forward and backward modes in the linear relaxation based perturbation analysis (Xu et al., 2020a) for NN
verification.

B.1. Image Projection from 3D Point Cloud

Following the literature (Hu et al., 2022b), image projection can be obtained through the intrinsic matrix K of the camera
and the extrinsic matrix of camera pose α = (R, t) ∈ R6 given 3D point cloud P ∈ R3. In this way, each 3D point
P ∈ P corresponds to a 2D position over the pixel grid, which is denoted as the 3D-2D position projection oracle function
ρ : R3 × R6 → R2, as defined in Definition B.1.

Definition B.1 (3D-2D position projection oracle, Definition 1 from (Hu et al., 2022b)). For any 3D point P = (X,Y, Z) ∈
R3 under the camera coordinate with the camera intrinsic matrix K, based on the camera motion of α = (θ, t) ∈ R6 with
rotation matrix R = exp(θ∧) ∈ SO(3) and translation vector t ∈ R3, define the projection function ρ : R3 ×R6 → R2 and
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Figure 6. Illustration of image projection from 3D point cloud

the depth function D : R3 × R6 → R as an oracle over P

[ρ(P, α), 1]⊤ =
1

D(P, α)
KR−1(P − t) (7)

D(P, α) = [0, 0, 1]R−1(P − t) (8)

Based on the position oracle above, the k color channels for each pixel can be defined given colored point cloud V : P×[0, 1]k

via the 3D-2D projective transformation O : V×R6 → Rm,m = krs. in Definition B.2. The illustration of image projection
is shown in Figure 6.

Definition B.2 (Colored projection for each pixel, Definition 2 from (Hu et al., 2022b)). Given the oracle of projection
function ρ : R3 × R6 → R2 and the depth function D : R3 × R6 → R with k-channel colored 3D point cloud
V ∈ V : P× [0, 1]k under the camera coordinate frame, define the colored projection for pixels on image gird Z2 with k
channels as O : V × R6 → Rm,m = krs, x = O(V, α) parameterized with camera motion α ∈ R6 using Floor function
⌊·⌋,

xk,r,s = O(V, α)k,r,s = VP∗
α,k (9)

where P ∗
α = argmin

{P∈P|⌊ρ(P,α)⌋=(r,s)}
D(P, α) (10)

Remark B.3. In our work, we focus on the one-axis rotation or translation perturbation in S where α ∈ R6 can be degraded
to α ∈ S ⊂ R1 by setting other dimensions to be 0. We remark that Definition B.1 and B.2 can apply to general rotation and
translation in SE(3).

B.2. Linear Relaxation Based Perturbation Analysis (LiRPA)

Following Linear Relaxation Based Perturbation Analysis (LiRPA) (Xu et al., 2020a), on the general computation graph, we
study the node i where node j is one of its predecessor nodes j ∈ u(i). In our case, the input of the graph is the one-axis
camera motion α ∈ R and the perturbation is within S ⊂ R. For node i, the computed value is denoted as hi(α). In addition
to all the nodes of model weights, given pojection function O with 3D point cloud V , the projection input node is node proj
with the value of hproj(α) = O(V, α). The output node on the graph is node o with the value of ho(α).

Goal of LiRPA. The final verification goal against camera motion perturbation α ∈ S is to find the linear lower and upper
bounds of output node o w.r.t α, i.e.,

Woα+ bo ≤ ho(α) ≤ Woα+ bo ∀α ∈ S, (11)

where Wo,bo,Wo,bo are the weight parameters to be computed in the following forward and backward modes.
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Forward mode of LiRPA. Forward mode propagates bounds from parent nodes to children nodes to achieve the goal (11),
e.g., for node i

Wiα+ bi ≤ hi(α) ≤ Wiα+ bi ∀α ∈ S. (12)

Initially, for the k × r × s dimensional vector of camera motion, it holds that I[α, . . . , α]⊤≤ [α, . . . , α]⊤≤I[α, . . . , α]⊤.
And for node i ̸= 0 with parent nodes u(i), given the forward LiRPA oracle function Gi, we have can find the weight
parameters W,b from parent nodes u(i) to node i,

(Wi,bi,Wi,bi) = Gi({(Wj ,bj ,Wj ,bj)|j ∈ u(i)}) (13)

It is easy to apply (13) recursively to achieve goal (11).

Backward mode of LiRPA. Backward mode propagates bounds from children nodes to parent nodes to achieve the goal
(11), i.e., for any node i in V, ∑

i∈V

Aihi(α) + d ≤ ho(α) ≤
∑
i∈V

Aihi(α) + d ∀α ∈ S, (14)

Initially, we have Ao = Ao = I, Ai = Ai = 0(i ̸= o), d = d = 0 to make (14) hold. And for node i ̸= 0 with parent
nodes u(i), given the backward LiRPA oracle function Fi, we have can find the weight parameters A,d from node i to
parent nodes u(i),

(Λu1(i),Λu1(i), · · · ,Λum(i)(i)
,Λum(i)(i),∆,∆) = Fi(Ai,Ai),

s.t.
∑

j∈u(i)
Λjhj(α) +∆ ≤ Aihi(α) (15)

Aihi(α) ≤
∑

j∈u(i)
Λjhj(α) +∆.

Equation (15) can be solved through a BFS to achieve goal (11) (Xu et al., 2020a). However, the remaining yet challenging
part of verifying the robustness against the camera motion is to find the forward and backward oracle functions Gproj , Fproj

in (13) and (15) for the projection input node proj, which is the main focus of our work.

C. Proofs in Fully-covered Camera Motion Intervals
Given the dense normalized colored point cloud V : P× [0, 1]k for the image projection, based on the 3D-2D projection in
Definition B.1 ad B.2, the projection function O(V, α) at each pixel (r, s) ∈ Z2 is a piecewise constant function w.r.t α, as
shown in Figure 2. For all the intervals ∆r,s along α axis, the projected pixel value O(V, α)r,s is constant for any α ∈ ∆r,s.

We first notice that the projected pixel value is determined by the target 3D point P ∗ ∈ P, which has the least projected
depth on the pixel (r, s) under any camera motion within the motion interval UP∗,r,s, which is defined as consistent camera
motion interval in the formal Definition below.

Definition C.1 (Consistent camera motion interval). Given the 3D points P ⊂ R3, the position projection function
ρ : R3 ×R6 → R2 and the depth function D : R3 ×R6 → R, for any P ∗ ∈ P projected on (r, s) with the least depth value,
define the consistent camera motion set UP∗,r,s as the consistent camera motion interval, where

UP∗,r,s = {α | P ∗ = argmin
{P∈P|⌊ρ(P,α)⌋=(r,s)}

D(P, α)}

Based on the consistent motion interval UP,r,s for any pixel (r, s) and any 3D point P , intuitively it is easy to find the
intervals ∆r,s along α axis, within which the 3D-2D projection function O(V, α) at each pixel (r, s) has the consistent value.
Specifically, all the intervals of the piecewise constant function O(V, α)r,s correspond to different 3D points projected to
pixel (r, s) as the camera motion α varies within perturbation S.

Besides, we present the following Lemma C.2 showing given pixel (r, s) that there exists ∆r,s as the upper bound of the
consistent camera motion interval UP,r,s for any P ∈ P, such that for any camera motion within ∆r,s, all the 3D-2D
projections fall into the projections of the endpoints of ∆r,s. In this case, we call the projection function O(V, α)r,s is
fully-covered by such consistent interval upper bound ∆r,s, as shown in Figure 2.
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Lemma C.2 (Upper bound of fully-covered motion interval). Given the projection from entire 3D point V ∈ V : P× [0, 1]K

along one-axis translation or rotation and the consistent camera motion interval UP,r,s for any P ∈ P projected on (r, s),
define the interval ∆r,s as,

∆r,s = min
P∈P

{supUP,r,s − inf UP,r,s} (16)

then for any projection on (r, s) under camera motion u ∈
⋃

P∈P UP,r,s, we have ∀ 0 ≤ ∆∗ ≤ ∆r,s

O(V, u+∆∗)r,s ∈ {O(V, u)r,s, O(V, u+∆r,s)r,s} (17)

Proof. Considering the projection function ρ on r, s with any 3D point P : ⌊ρ(P, α)⌋ = (r, s) at camera motion α ∈ S with
the least depth, UP,r,s ̸= ∅. With

∆r,s = min
P∈P

{supUP,r,s − inf UP,r,s} = min
P∈P|⌊ρ(P,α)⌋=(r,s),α∈UP,r,s

supUP,r,s − inf UP,r,s (18)

For the 3D projective oracle O on pixel (r, s), based on the definition of O(V, u), O(V, u+∆r,s), we have O(V, u)r,s =
VPu , O(V, u+∆r,s)r,s = VPu+∆r,s , where

Pu = argmin
{P∈P|⌊ρ(P,u)⌋=(r,s)}

D(P, u), Pu+∆r,s = argmin
{P∈P|⌊ρ(P,u+∆r,s)⌋=(r,s)}

D(P, u+∆r,s)

Suppose there exists ∆∗ ∈ [0,∆r,s] such that

O(V, u+∆∗)r,s ̸= O(V, u)r,s, O(V, u+∆r,s)r,s ̸= O(V, u+∆r,s)r,s

i.e., there exists O(V, u + ∆∗)r,s = VPu+∆∗ such that Pu ̸= Pu+∆∗ , Pu+∆r,s ̸= Pu+∆∗ . In this case, according to the
definition of UPu+∆∗ ,r,s, it holds that

supUPu+∆∗ ,r,s − inf UPu+∆∗ ,r,s < ∆r,s

which contradicts with (18). Therefore, such O(V, u+∆∗)r,s does not exist and for any 0 ≤ ∆∗ ≤ ∆r,s,

O(V, u+∆∗)r,s ∈ {O(V, u)r,s, O(V, u+∆r,s)r,s}

which concludes the proof.

Proposition C.3 (Camera motion interval to fully cover each pixel, restated of Proposition 2.1). Given the projection from
dense 3D points V : P × [0, 1]k, for each pixel (r, s) there exists an interval ∆r,s such that ∀u ∈ S, 0 ≤ ∆∗ ≤ ∆r,s, it
holds that,

O(V, u+∆∗)r,s = O(V, u)r,s or O(V, u+∆r,s)r,s

Proof. Given the projection from dense 3D points V : P× [0, 1]k, we can find the consistent camera motion interval UP,r,s

according to C.1. Then for the one-axis camera translation or rotation S =
⋃

P∈P UP,r,s, by applying Lemma C.2, we can
find the upper bound of fully-covered camera motion interval as

∆r,s = min
P∈P

{supUP,r,s − inf UP,r,s} (19)

where ∀ u ∈ S, 0 ≤ ∆∗ ≤ ∆r,s

O(V, u+∆∗)r,s ∈ {O(V, u)r,s, O(V, u+∆r,s)r,s} (20)

Therefore, simply let any ∆r,s ≤ ∆r,s, we have ∀u ∈ S, 0 ≤ ∆∗ ≤ ∆r,s ≤ ∆r,s, then by Lemma C.2 it holds that,

O(V, u+∆∗)r,s ∈ {O(V, u)r,s, O(V, u+∆r,s)r,s} (21)

Besides, with ∆r,s ≤ ∆r,s, we have ∀u ∈ S, then by Lemma C.2 it holds that,

O(V, u+∆r,s)r,s ∈ {O(V, u)r,s, O(V, u+∆r,s)r,s} (22)

By combining (21) and (22), we have ∀u ∈ S, 0 ≤ ∆∗ ≤ ∆r,s, it holds that

O(V, u+∆∗)r,s ∈ {O(V, u)r,s, O(V, u+∆r,s)r,s}, i.e. O(V, u+∆∗)r,s = O(V, u)r,s or O(V, u+∆r,s)r,s

which concludes the proof.
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Figure 7. Visualization of sound linear relaxation of the projected images in the middle column. The left column shows the linear lower
bound (darker pixels) while the right column shows the linear upper bound (lighter pixels). The camera in the second row moves 0.1m
closer to the object along the z-axis compared to the first row.

D. Theorems of Forward and Backward Function for Projection
Theorem D.1 (Forward oracle function for the projection node). Given the 3D-2D projection function O with 3D
point cloud V , construct the projection node proj as α → O(V, α) followed by neural networks as the general com-
putational graph. Given I[α, . . . , α]⊤ ≤ [α, . . . , α]⊤ ≤ I[α, . . . , α]⊤, the forward oracle function Gproj : (I, 0) →
(Wproj ,bproj ,Wproj ,bproj) can be calculated as

Wproj = diag(ωl),bproj = βl,Wproj = diag(ωu),bproj = βu (23)

such that (12) can be updated with ∀α ∈ S,

Wproj

α...
α

+ bproj ≤ O(V, α) ≤ Wproj

α...
α

+ bproj .

Theorem D.2 (Backward oracle function for the projection node). Given the 3D-2D projection function O with 3D point
cloud V , construct the projection node proj as α → O(V, α) followed by neural networks as the general computational
graph. Given the backward relaxation with image node img in (14) where Aimghimg(α) = AimgO(V, α),Aimghimg(α) =

AimgO(V, α), the backward oracle function Fproj : (Aimg,Aimg) → (Λproj ,Λproj ,∆,∆) can be calculated as

Λproj = max{Aimg, 0}diag(ωl) + min{Aimg, 0}diag(ωu)

Λproj = max{Aimg, 0}diag(ωu) + min{Aimg, 0}diag(ωl)

∆ = max{Aimg, 0}βl +min{Aimg, 0}βu

∆ = max{Aimg, 0}βu +min{Aimg, 0}βl

such that (14) can be updated with ∀α ∈ S,

Λproj

α...
α

+∆ ≤ AimgO(V, α),AimgO(V, α) ≤ Λproj

α...
α

+∆.

We direct the readers to Section 3.2 of (Shi et al., 2020) and Section A.1 of (Xu et al., 2020a) for the proof of Theorem D.1
and D.2 as a special case of unary nonlinear functions.


