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Abstract
Explanation methods for machine learning mod-
els tend to not provide any formal guarantees and
may not reflect the underlying decision-making
process. In this work, we analyze stability as
a property for reliable feature attribution meth-
ods. We prove that a relaxed variant of stability
is guaranteed if the model is sufficiently Lips-
chitz with respect to the masking of features. To
achieve such a model, we develop a smoothing
method called Multiplicative Smoothing (MuS).
We show that MuS overcomes theoretical limita-
tions of standard smoothing techniques and can
be integrated with any classifier and feature attri-
bution method. We evaluate MuS on vision and
language models with a variety of feature attri-
bution methods, such as LIME and SHAP, and
demonstrate that MuS endows feature attributions
with non-trivial stability guarantees.

1. Introduction
Modern machine learning models are incredibly powerful
at challenging prediction tasks but notoriously black-box
in their decision-making. One can therefore achieve im-
pressive performance without fully understanding why. In
settings like like medical diagnosis (Reyes et al., 2020; Tjoa
& Guan, 2020) and legal analysis (Wachter et al., 2017;
Bibal et al., 2021), where accurate and well-justified deci-
sions are important, such power without proof is insufficient.
In order to fully wield the power of such models while ensur-
ing reliability and trust, a user needs accurate and insightful
explanations of model behavior.

One popular family of explanation methods is feature attri-
butions (Simonyan et al., 2013; Ribeiro et al., 2016; Lund-
berg & Lee, 2017; Sundararajan et al., 2017). Given a model
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Figure 1. Classification by VisionTransformer (Dosovitskiy et al.,
2020) on an attribution generated by SHAP (Lundberg & Lee,
2017) with top-25% selection. A single 28× 28 pixel patch of dif-
ference between the two attributions (marked green) significantly
affects prediction confidence and results in a classification flip.

and input, a feature attribution method generates a score for
each input feature that denotes its importance to the over-
all prediction. For instance consider Figure 1, in which
the Vision Transformer (Dosovitskiy et al., 2020) classi-
fier predicts the full image (left) as “Goldfish”. We then
use a feature attribution method like SHAP (Lundberg &
Lee, 2017) to score each feature and select the top-25%, for
which the masked image (middle) is consistently predicted
as “Goldfish”. However, additionally including a single
patch of features (right) alters the prediction confidence so
much that it now yields “Axolotl”. This suggests that the ex-
planation is brittle (Ghorbani et al., 2019), as small changes
easily cause it to now induce some other class. In this paper
we study how to overcome such behavior by analyzing the
stability of an explanation: we consider an explanation to
be stable if once the explanatory features are included, the
addition of more features does not change the prediction.

Stability implies that the selected features are enough to
explain the prediction (Brown, 2009; Chen et al., 2018; Li
et al., 2020) and that this selection maintains strong ex-
planatory power even in the presence of additional informa-
tion (Ghorbani et al., 2019; Boopathy et al., 2020). Similar
properties are studied in literature and identified as useful
for interpretability (Nauta et al., 2022), and we emphasize
that our main focus is on analyzing and achieving provable
guarantees. Stability guarantees in particular are useful as
they allow one to accurately predict how model behavior
varies with the explanation. Given a stable explanation,
one can include more features, e.g. adding context, while
maintaining confidence in the consistency of the underlying
explanatory power. Crucially, we observe that such guaran-
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tees only make sense when jointly considering the model
and explanation method: the explanation method necessarily
depends on the model to yield an explanation, and stability
is then evaluated with respect to the model.

Thus far, existing work on feature attributions with formal
guarantees face challenges with computational tractability
and explanatory utility. While some methods take an ax-
iomatic approach (Shapley, 1953; Sundararajan et al., 2017),
others use metrics that appear reasonable but may not reli-
ably reflect useful model behavior, a common and known
limitation (Zhou et al., 2022). Such explanations have been
criticized as at best a plausible guess, and at worst com-
pletely misleading (Jacovi & Goldberg, 2020).

In this paper we study how to construct explainable models
with provable stability guarantees. We jointly consider the
classification model and explanation method, and present
a formalization for studying such properties that we call
explainable models. We focus on binary feature attribu-
tions (Li et al., 2017) wherein each feature is either marked
as explanatory (1) or not explanatory (0). We present a
method to solve this problem, which is inspired by tech-
niques from adversarial robustness, in particular random-
ized smoothing (Cohen et al., 2019; Yang et al., 2020). Our
method can take any off-the-shelf classifier and feature at-
tribution method to efficiently yield an explainable model
that satisfies provable stability guarantees. In summary, our
contributions are as follows:

• We formalize stability as a key property for binary
feature attributions and study this in the framework of
explainable models. We prove that relaxed variants
of stability are guaranteed if the model is sufficiently
Lipschitz with respect to the masking of features.

• To achieve the sufficient Lipschitz conditions, we
develop a smoothing method called Multiplicative
Smoothing (MuS). We show that MuS achieves strong
smoothness conditions, overcomes key theoretical and
practical limitations of standard smoothing techniques,
and can be integrated with any classifier and feature
attribution method.

• We evaluate MuS on vision and language models along
with different feature attribution methods. We demon-
strate that MuS-smoothed explainable models achieve
strong stability guarantees at a small cost to accuracy.

2. Overview
We observe that formal guarantees for explanations must
take into account both the model and explanation method,
and for this we present in Section 2.1 a pairing that we
call explainable models. This formulation allows us to then
describe the desired stability properties in Section 2.2. We

show in Section 2.3 that classifiers with sufficient Lipschitz
smoothness with respect to feature masking allows us to
yield provable guarantees of stability. Finally in Section 2.4
we show how to adapt existing feature attribution methods
into our explainable model framework.

2.1. Explainable Models

We first present explainable models as a formalism for rig-
orously studying explanations. Let X = Rn be the space
of inputs, a classifier f : X → [0, 1]m maps inputs x ∈ X
to m logits (class probabilities) that sum to 1, where the
class of f(x) ∈ [0, 1]m is taken to be the largest coordi-
nate. Similarly, an explanation method φ : X → {0, 1}n
maps an input x ∈ X to an explanation φ(x) ∈ {0, 1}n
that indicates which features are considered explanatory for
the prediction f(x). In particular, we may pick and adapt
φ from among a selection of existing feature attribution
methods like LIME (Ribeiro et al., 2016), SHAP (Lund-
berg & Lee, 2017), and many others (Simonyan et al., 2013;
Sundararajan et al., 2017; Smilkov et al., 2017; Sundarara-
jan & Najmi, 2020; Kwon & Zou, 2022), wherein φ may
be thought of as a top-k feature selector. Note that the
selection of input features necessarily depends on the ex-
planation method executing or analyzing the model, and so
it makes sense to jointly study the model and explanation
method: given a classifier f and explanation method φ, we
call the pairing ⟨f, φ⟩ an explainable model. Given some
x ∈ X , the explainable model ⟨f, φ⟩ maps x to both a pre-
diction and explanation. We show this in Figure 2, where
⟨f, φ⟩(x) ∈ [0, 1]m × {0, 1}n pairs the class probabilities
and the feature attribution.

For an input x ∈ X , we will evaluate the quality of the
binary feature attribution φ(x) through its masking on x.
That is, we will study the behavior of f on the masked input
x⊙φ(x) ∈ X , where ⊙ is the element-wise vector product.
To do this, we define a notion of prediction equivalence: for
two x, x′ ∈ X , we write f(x) ∼= f(x′) to mean that f(x)
and f(x′) yield the same class. This allows us to formalize
the intuition that an explanation φ(x) should recover the
prediction of x under f .

Definition 2.1. The explainable model ⟨f, φ⟩ is consistent
at x if f(x) ∼= f(x⊙ φ(x)).

Evaluating f on x⊙ φ(x) this way lets us apply the model
as-is and therefore avoids the challenge of constructing a sur-
rogate model that is accurate to the original (Alizadeh et al.,
2020). Moreover, this approach is reasonable, especially
in domains like vision — where one intuitively expects
that a masked image retaining only the important features
should induce the intended prediction. Indeed, architec-
tures like Vision Transformer (Dosovitskiy et al., 2020) can
maintain high accuracy with only a fraction of the image
present (Salman et al., 2022).
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Figure 2. An explainable model ⟨f, φ⟩ outputs both a classification and a feature attribution. The feature attribution is a binary-valued
mask (white 1, black 0) that can be applied over the original input. Here f is Vision Transformer (Dosovitskiy et al., 2020) and φ is
SHAP (Lundberg & Lee, 2017) with top-25% feature selection.

Particularly, we would like for ⟨f, φ⟩ to generate explana-
tions that are stable and concise (i.e. sparse). The former
is our central guarantee, and is ensured through smoothing.
The latter implies that φ(x) has few ones entries, and is
desirable since a good explanation should not contain too
much redundant information. However, sparsity is a diffi-
culty property to enforce, as this is contingent on the model
having high accuracy with respect to heavily masked inputs.
For sparsity we present a simple heuristic in Section 2.4.

2.2. Stability Properties of Explainable Models

Given an explainable model ⟨f, φ⟩ and some x ∈ X , stabil-
ity means that the prediction does not change even if one
adds more explanatory features to φ(x). For instance, the
model-explanation pair in Figure 1 is not stable, as the inclu-
sion of a single feature group (patch) changes the prediction.
To formalize this notion of stability, we first introduce a
partial ordering: for α, α′ ∈ {0, 1}n, we write α ⪰ α′ iff
αi ≥ α′

i for all i = 1, . . . , n. That is, α ⪰ α′ iff α includes
all the features selected by α′.

Definition 2.2. The explainable model ⟨f, φ⟩ is stable at x
if f(x⊙ α) ∼= f(x⊙ φ(x)) for all α ⪰ φ(x).

Note that the constant explanation φ(x) = 1, the vector of
ones, makes ⟨f, φ⟩ trivially stable at every x ∈ X , though
this is not a concise explanation. Additionally, stability at x
implies consistency at x.

Unfortunately, stability is a difficult property to enforce
in general, as it requires that f satisfy a monotone-like
behavior with respect to feature inclusion — which is espe-
cially challenging for complex models like neural networks.
Checking stability without additional assumptions on f is
also hard: if k = ∥φ(x)∥1 is the number of ones in φ(x),
then there are 2n−k possible α ⪰ φ(x) to check. This
large space of possible α ⪰ φ(x) motivates us to instead
examine relaxations of stability. We introduce lower and
upper-relaxations of stability below.

Definition 2.3. The explainable model ⟨f, φ⟩ is incremen-
tally stable at x with radius r if f(x ⊙ α) ∼= f(x ⊙ φ(x))
for all α ⪰ φ(x) where ∥α− φ(x)∥1 ≤ r.

Incremental stability is the lower-relaxation since it con-
siders the case where the mask α has only a few features
more than φ(x). For instance, if one can provably add up

to r features to a masked x ⊙ φ(x) without altering the
prediction, then ⟨f, φ⟩ would be incrementally stable at x
with radius r. We next introduce the upper-relaxation that
we call decremental stability.

Definition 2.4. The explainable model ⟨f, φ⟩ is decremen-
tally stable at x with radius r if f(x ⊙ α) ∼= f(x ⊙ φ(x))
for all α ⪰ φ(x) where ∥1− α∥1 ≤ r.

Decremental stability is a subtractive form of stability, in
contrast to the additive nature of incremental stability. Par-
ticularly, decremental stability considers the case where α
has much more features than φ(x). If one can provably
remove up to r features from the full x without altering
the prediction, then ⟨f, φ⟩ is decrementally stable at x with
radius r. Note that decremental stability necessarily entails
consistency of ⟨f, φ⟩, but for simplicity of definitions we do
not enforce this for incremental stability. Finally, note that
for sufficiently large radius of r = ⌈(n− ∥φ(x)∥1)/2⌉, in-
cremental and decremental stability together imply stability.
Remark 2.5. Similar notions to the above have been pro-
posed in literature, and we refer to (Nauta et al., 2022) for
an extensive survey. In particular for (Nauta et al., 2022),
consistency is akin to preservation and stability is similar
to continuity, except we are concerned with adding features.
Also, incremental stability is most similar to incremental
addition and decremental stability to incremental deletion.

2.3. Lipschitz Smoothness Entails Stability Guarantees

If f : X → [0, 1]m is Lipschitz with respect to the masking
of features, then we can guarantee relaxed stability proper-
ties for the explainable model ⟨f, φ⟩. In particular, we re-
quire for all x ∈ X that f(x⊙α) is Lipschitz with respect to
the mask α ∈ {0, 1}n. This then allows us to presented our
main results in smoothness and stability, which we present
in Section 3.1. A sketch of the stability result is first given
below in Remark 2.6.
Remark 2.6 (Sketch of main result). Consider an explainable
model ⟨f, φ⟩ where for all x ∈ X the function g(x, α) =
f(x⊙α) is λ-Lipschitz in α ∈ {0, 1}n with respect to the ℓ1

norm. Then at any x, the radius of incremental stability rinc
and radius of decremental stability rdec are respectively:

rinc =
[
gA(x, φ(x))− gB(x, φ(x))

]
/(2λ),

rdec =
[
gA(x,1)− gB(x,1)

]
/(2λ),
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Figure 3. Evaluating f(x) is done in three stages. (Stage 1) Generate N samples of binary masks s(1), . . . , s(N) ∈ {0, 1}n, where each
coordinate is Bernoulli with parameter λ (here λ = 1/4). (Stage 2) Apply each mask on the input to yield x⊙ s(i) for i = 1, . . . , N .
(Stage 3) Average over h(x⊙ s(i)) to compute f(x), and note that the predicted class is given by a weighted average.

with gA, gB the first and second-largest logits defined as

gA(x, α) = gk⋆(x, α), gB(x, α) = max
i ̸=k⋆

gi(x, α), (1)

where the largest logit index is k⋆ = argmax
1≤k≤m

gk(x, α).

Observe that Lipschitz smoothness is in fact a stronger as-
sumption than necessary, as besides α ⪰ φ(x) it also im-
poses guarantees on α ⪯ φ(x). Nevertheless, Lipschitz
smoothness is one of the few classes of properties that can be
guaranteed and analyzed at scale on arbitrary models (Yang
et al., 2020; Levine & Feizi, 2021). Importantly, we may
apriori pick the Lipschitz constant λ for our smoothed clas-
sifier, thereby allowing us to establish known guarantees
ahead of test time. The details for establishing the Lipschitz
constant through our randomized smoothing method are
described in Theorem 3.1.

2.4. Adapting Existing Feature Attribution Methods

Most existing feature attribution methods assign a real-
valued score to feature importance, rather than a binary
value. We therefore need to convert this to a binary-
valued method for use with a stable explainable model. Let
ψ : X → Rn be such a continuous-valued method like
LIME (Ribeiro et al., 2016) or SHAP (Lundberg & Lee,
2017), and fix some desired incremental stability radius rinc
and decremental stability radius rdec. Given some x ∈ X a
simple construction for binary φ(x) ∈ {0, 1}n then follows.
Remark 2.7 (Iterative construction of φ(x)). Consider any
x ∈ X and let ρ be an index ordering on ψ(x) from high-to-
low (i.e. largest logit first). Initialize α = 0, and for each
i ∈ ρ: assign αi ← 1 then check whether ⟨f, φ : x 7→ α⟩ is
now consistent, incrementally stable with radius rinc, and
decrementally stable with radius rdec. If so then terminate
with φ(x) = α; otherwise continue.

3. Multiplicative Smoothing for Lipschitz
Constants

In this section we present our main technical contribution in
Multiplicative Smoothing (MuS). The goal is to transform

an arbitrary base classifier h : X → [0, 1]m into a smoothed
classifier f : X → [0, 1]m that is Lipschitz with respect to
the masking of features. This then allows one to appropri-
ately couple an explanation method φ with f to form an
explainable model ⟨f, φ⟩ with provable stability guarantees.
An extended discussion of results is given in Appendix A.

3.1. Technical Overview of MuS

Our key insight is that randomly dropping (i.e. zeroing)
features attains the desired smoothness. In particular, we
uniformly drop features with probability 1− λ by sampling
binary masks s ∈ {0, 1}n from some distribution D where
each coordinate is distributed as Pr[si = 1] = λ. Then
define f as follows:

f(x) = E
s∼D

h(x⊙ s), (2)

such that si ∼ B(λ) for i = 1, . . . , n, where B(λ) is the
Beronulli distribution with parameter λ ∈ [0, 1]. We give an
overview of evaluating f(x) in Figure 3: each coordinate
of the random mask s ∈ {0, 1}n is 1 with probability λ,
meaning that the masked input x⊙ s retains λ fraction of its
original features on average. Importantly, our main results
of smoothness (Theorem 3.1) and stability (Theorem 3.2)
hold providedD is coordinate-wise Bernoulli with λ, and so
we avoid restricting ourselves to any one particular choice
of D until necessary. However, it will be easy to intuit
the exposition with D = Bn(λ), the coordinate-wise i.i.d.
Bernoulli distribution with λ.

We can equivalently parametrize f using the mapping
g(x, α) = f(x⊙ α), where it follows that:

g(x, α) = E
s∼D

h(x⊙ α̃), α̃ = α⊙ s. (3)

Note that one could have alternatively first defined g and
then f due to the identity g(x,1) = f(x). We require that
the relationship between f and g follows an identity that we
call masking equivalence:

g(x⊙ α,1) = f(x⊙ α) = g(x, α), (4)
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for all x ∈ X and α ∈ {0, 1}n. This follows by defini-
tion of g, and the relevance to stability is this: if masking
equivalence holds, then we can rewrite stability properties
involving f in terms of g’s second parameter as follows:

f(x⊙ α) = g(x, α) ∼= g(x, φ(x)) = f(x⊙ φ(x))
(c.f. Definition 2.2)

for all α ⪰ φ(x), where incremental and decremental stabil-
ity may be analogously defined. This translation is useful,
as we will prove that g is λ-Lipschitz in its second param-
eter (Theorem 3.1), which then allows us to establish the
desired stability properties (Theorem 3.2). Importantly, we
are motivated to develop MuS because standard smoothing
techniques, namely additive smoothing (Cohen et al., 2019;
Yang et al., 2020), may fail to satisfy masking equivalence.
This is further explained in Section A.1.

We do not enforce a specific construction for D, since many
choices are in fact valid. Rather, so long as each coordinate
of s ∼ D obeys si ∼ B(λ) then the Lipschitz properties
for g follow. The implication here is that although simple
distributions like Bn(λ) suffices for D, they may not be
sample efficient. We show in Section A.2 how to exploit
and construct statistical dependence in order to reduce the
sample complexity of computing MuS.

3.2. Certifying Stability with Lipschitz Classifiers

Our core technical result is in showing that f as defined
in (2) is Lipschitz to the masking of features. We present
MuS in terms of g, where it is parametric with respect to
the distribution D: so long as D satisfies a coordinate-wise
Bernoulli condition, then it is usable with MuS.

Theorem 3.1 (MuS). Let D be any distribution on {0, 1}n
where each coordinates of s ∼ D is distributed as si ∼
B(λ). Consider any h : X → [0, 1] and define g : X ×
{0, 1}n → [0, 1] as

g(x, α) = E
s∼D

h(x⊙ α̃), α̃ = α⊙ s.

Then the function g(x, ·) : {0, 1}n → [0, 1] is λ-Lipschitz
in the ℓ1 norm for all x ∈ X .

The strength of this result is in its weak assumptions. First,
the theorem applies to any model h and input x ∈ X . It fur-
ther suffices that each coordinate is distributed as si ∼ B(λ),
and we emphasize that statistical independence between dif-
ferent si, sj is not assumed. This allows us to construct D
with structured dependence in Section A.2, such that we
may exactly and efficiently evaluate g(x, α) at a sample
complexity of N ≪ 2n. A low sample complexity is impor-
tant for making MuS practically usable, as otherwise one
must settle for of the expected value subject to probabilistic
guarantees. For instance, simpler distributions like Bn(λ)
do in fact satisfy the requirements of Theorem 3.1 — but

costs 2n samples because of coordinate-wise independence.
Whatever choice of valid D, one can guarantee stability so
long as g is Lipschitz in its second argument.

Theorem 3.2 (Stability). Consider any h : X → [0, 1]m

with coordinates h1, . . . , hm. Fix λ ∈ [0, 1] and let
g1, . . . , gm be the respectively smoothed coordinates as
in Theorem 3.1, using which we analogously define g :
X × {0, 1}n → [0, 1]m. Also define f(x) = g(x,1). Then
for any explanation method φ and input x ∈ X , the explain-
able model ⟨f, φ⟩ is incrementally stable with radius rinc
and decrementally stable with radius rdec:

rinc =
gA(x, φ(x))− gB(x, φ(x))

2λ
,

rdec =
gA(x,1)− gB(x,1)

2λ
,

where gA, gB are the first and second largest logits as in (1).

Note that it is only in the case where the radius ≥ 1 do non-
trivial stability guarantees exist. Because each gk has range
in [0, 1], this means that a Lipschitz constant of λ ≤ 1/2
is necessary to attain at least one radius of stability. We
present in Section B.2 some extensions to MuS that allows
one to achieve higher coverage of features.

4. Empirical Evaluations
(Experimental Setup) Due to space limitations we high-
light a subset of our results and refer to Appendix C for
comprehensive experiments. In this section we show results
with Vision Transformer (Dosovitskiy et al., 2020) and Ima-
geNet1K (Russakovsky et al., 2015). We group features on
the 3×224×224 dimensional input into n = 64 superpixels,
and report stability radii r as a fraction of the features, i.e.
r/n. For methods we use SHAP (Lundberg & Lee, 2017)
with top-25% feature selection. A sample size of N = 2000
of ImageNet1K was used for all experiments here.

4.1. (E1) How Good are the Stability Guarantees?

There exists a natural measure of quality for stability guar-
antees over a dataset: what radii are achieved, and at what
frequency. We investigate how different combinations of
models, explanation methods, and λ affect this measure.
To do this we plot the rate at which a property holds at a
radius r as a function of the radius (expresesd as r/n). We
show our results in Figure 4, where we show consistent and
incremental stability (left) and consistent and decremental
stability (right). Although we can achieve non-trivial incre-
mental stability, decremental stability is easier to certify at
larger radii — and this is reasonable, since for incremental
stability evaluation the classifier sees a masked x⊙ φ(x).
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Figure 4. Experiments are run with ⟨f, φ⟩ where f is a smoothed Vision Transformer and φ is SHAP with top-25% feature selection. We
use N = 2000 samples from ImageNet1K, radius r are reported as fraction of input covered, i.e. r/n. (Left; Middle) Consistency and
incremental (resp. decremental) stability. Property hold rate is the fraction of images that are consistent and stable up to radius r when
using a mask from SHAP-top25%. (Right) Overall accuracy vs the radius of decremental stability. Certified accuracy is the fraction of
images for which f predicts the true label on the entire unmasked x while achieving decremental stability at radius r.

4.2. (E2) What is the Cost of Smoothing?

To increase the radius of a provable stability guarantee, we
must decrease the Lipschitz constant λ. As λ decreases,
however, more features are dropped during the smoothing
process. To study the stability-accuracy trade-off, we plotted
the accuracy attained by the smoothed classifier vs. the ra-
dius of decremental stability and show the results in Figure 4
(right), where as expected the clean accuracy (in parenthe-
ses) decreases with λ. For Vision Transformer we see that
the accuracy remains high even under non-trivial noise.

5. Conclusion
We study provable stability guarantees for binary feature
attribution methods through the framework of explainable
models. A selection of features is stable if the additional
inclusion of other features do not alter its explanatory power.
We show that if the classifier is Lipschitz with respect to the
masking of features, then one can guarantee relaxed variants
of stability. To achieve this Lipschitz condition we develop a
smoothing method called Multiplicative Smoothing (MuS).
We show that MuS yields strong stability guarantees at only
a small cost to accuracy.
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A. Extended Results for Section 3
We give an extended discussion of content from Section 3.

A.1. Standard Smoothing Does Not Satisfy Masking
Equivalence

We are motivated to develop MuS because standard smooth-
ing techniques, namely additive smoothing (Cohen et al.,
2019; Yang et al., 2020), may fail to satisfy masking equiv-
alence. Additive smoothing is by far the most popular
smoothing technique, and differs from our scheme (3) in
how noise is applied, where let Dadd and Dmult be any two
distributions on Rn:

g(x, α) = E
s∼D

h(x⊙ α̃), α̃ =

{
α+ s, s ∼ Dadd

α⊙ s, s ∼ Dmult

where Dadd denotes additive smoothing, and Dmult denotes
multiplicative smoothing. Particularly, additive smoothing
has counterexamples to masking equivalence.

Proposition A.1. There exists h : X → [0, 1] and distribu-
tion D, where for

g+(x, α) = E
s∼D

h(x⊙ α̃), α̃ = α+ s,

we have g+(x, α) ̸= g+(x ⊙ α,1) for some x ∈ X and
α ∈ {0, 1}n.

Proof. Observe that it suffices to have h, x, α such that
h(x ⊙ (α + s)) > h((x ⊙ α) ⊙ (1 + s)) for a non-empty
set of s ∈ Rn. Let D be a distribution on these s, then:

g+(x, α) = E
s∼D

h(x⊙ (α+ s))

> E
s∼D

h((x⊙ α)⊙ (1+ s))

= g+(x⊙ α,1)

Intuitively, this occurs because additive smoothing primarily
applies noise by perturbing feature values, rather than com-
pletely masking them. As such, there might be “information
leakage” when non-explanatory bits of α are changed into
non-zero values. This then causes each sample of h(x⊙ α̃)
within g(x, α) to observe more features of x than it would
have been able to otherwise.

A.2. Exploiting Structured Dependency

We now present Lqv(λ), a distribution on {0, 1}n that al-
lows for efficient and exact evaluation of a MuS-smoothed
classifier. Our construction is an adaption of (Levine &
Feizi, 2021) from uniform to Bernoulli noise, where the
primary insight is that one can parametrize n-dimensional

noise using a single dimension via structured coordinate-
wise dependence. In particular, we use a seed vector v,
where with an integer quantization parameter q > 1 there
will only exist q distinct choices of s ∼ Lqv(λ). All the
while, we still enforce that any such s is coordinate-wise
Bernoulli with si ∼ B(λ). Thus for a sufficiently small
quantization parameter (i.e. q ≪ 2n) we may tractably
enumerate through all q possible choices of s and thereby
evaluate a MuS-smoothed model with only q samples.

Proposition A.2. Fix integer q > 1 and consider any
vector v ∈ {0, 1/q, . . . , (q − 1)/q}n and scalar λ ∈
{1/q, . . . , q/q}. Define s ∼ Lqv(λ) to be a random vector
in {0, 1}n with coordinates given by

si = I[ti ≤ λ], ti = vi + sbase mod 1,

where sbase ∼ U({1/q, . . . , q/q}) − 1/(2q). Then there
are q distinct values of s and each coordinate is distributed
as si ∼ B(λ).

Proof. First, observe that each of the q distinct values of
sbase defines a unique value of s, since we have assumed v
and λ to be fixed. Next, observe that each ti has q unique
values uniformly distributed as ti ∼ U(1/q, . . . , q/q}) −
1/(2q). Because λ ∈ {1/q, . . . , q/q} we therefore have
Pr[ti ≤ λ] = λ, which implies that si ∼ B(λ).

The seed vector v is the source of our structured coordinate-
wise dependence and the one-dimensional source of random-
ness sbase is used to generate the n-dimensional s. Such
s ∼ Lqv(λ) then satisfies the conditions for use in MuS
(Theorem 3.1), and this noise allows for an exact evaluation
of the smoothed classifier in q samples. We have found
q = 64 to be sufficient in practice and values as low as
q = 16 to also yield good performance. We remark that
one drawback is that one may get an unlucky seed v, but we
have not yet observed this in our experiments.

B. Proofs and Extensions
Here we present the proofs of our main results, as well as
some extensions to MuS.

B.1. Proofs of Main Results

B.1.1. PROOF OF THEOREM 3.1

Proof. By linearity we have:

g(x, α)− g(x, α′) = E
s∼D

h(x⊙ α̃)− h(x⊙ α̃′),

α̃ = α⊙ s, α̃′ = α′ ⊙ s,

so it suffices to analyze an arbitrary term by fixing some
s ∼ D. Consider any x ∈ X , let α, α′ ∈ {0, 1}n, and
define δ = α − α′. Observe that α̃i ̸= α̃′

i exactly when
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|δi| = 1 and si = 1. Since si ∼ B(λ), we thus have
Pr[α̃i ̸= α̃′

i] = λ|δi|, and applying the union bound:

Pr
s∼D

[α̃ ̸= α̃′] = Pr
s∼D

[

n⋃
i=1

α̃i ̸= α̃′
i] ≤

n∑
i=1

λ|δi| = λ∥δ∥1,

and so:

|g(x, α)− g(x, α′)|

=
∣∣∣ E
s∼D

[h(x⊙ α̃)− h(x⊙ α̃′)]
∣∣∣

=
∣∣∣ Pr
s∼D

[α̃ ̸= α̃′] · E
s∼D

[h(x⊙ α̃)− h(x⊙ α̃′) | α̃ ̸= α̃′]

− Pr
s∼D

[α̃ = α̃′] · E
s∼D

[h(x⊙ α̃)− h(x⊙ α̃′) | α̃ = α̃′]
∣∣∣.

Note that E [h(x⊙ α̃)− h(x⊙ α̃′) | α̃ = α̃′] = 0, and so

|g(x, α)− g(x, α′)|

= Pr
s∼D

[α̃ ̸= α̃′] ·
∣∣∣ E
s∼D

[h(x⊙ α̃)− h(x⊙ α̃′) | α̃ ̸= α̃′]
∣∣∣︸ ︷︷ ︸

≤1 because h(·) ∈ [0, 1]

≤ Pr
s∼D

[α̃ ̸= α̃′] ≤ λ∥δ∥1.

Thus, g(x, ·) is λ-Lipschitz in the ℓ1 norm.

B.1.2. PROOF OF THEOREM 3.2

Proof. We first show incremental stability. Consider any
x ∈ X , then by masking equivalence:

f(x⊙ φ(x)) = g(x⊙ φ(x),1) = g(x, φ(x)),

and let gA, gB be the top two logits of g as defined in (1).
By Theorem 3.1, both gA, gB are Lipschitz in their second
parameter, and so for all α ∈ {0, 1}n:

∥gA(x, φ(x))− gA(x, α)∥1 ≤ λ∥φ(x)− α∥1
∥gB(x, φ(x))− gB(x, α)∥1 ≤ λ∥φ(x)− α∥1

Observe that if α is sufficiently close to φ(x), i.e.:

2λ∥φ(x)− α∥1 ≤ gA(x, φ(x))− gB(x, φ(x)),

then the top logit index of g(x, φ(x) and g(x, α) are the
same. This means that g(x, φ(x)) ∼= g(x, α) and thus f(x⊙
φ(x)) ∼= f(x⊙ α), thus proving incremental stability with
radius d(x, φ(x))/(2λ).

The decremental stability case is similar, except we replace
φ(x) with 1.

B.2. Some Basic Extensions

Below we present some extensions to MuS that help increase
the fraction of the input to which we can guarantee stability.

B.2.1. FEATURE GROUPING

We have so far assumed that X = Rn, but sometimes it may
be desirable to group features together, e.g. color channels
of the same pixel. Our results also hold for more general
X = Rd1 × · · · × Rdn , where for such x ∈ X and α ∈ Rn

we lift ⊙ as:

⊙ : X × Rn → X , (x⊙ α)i = xi · I[αi = 1] ∈ Rdi .

All of our proofs are identical under this construction, with
the exception of the dimensionalities of terms like (x⊙ α).
An example of feature grouping is given in Figure 1.

C. All Experiments
Models, Datasets, and Explanation Methods We evalu-
ate on two vision models (Vision Transformer (Dosovitskiy
et al., 2020) and ResNet50 (He et al., 2016)) and one lan-
guage model (RoBERTa (Liu et al., 2019)). For the vision
dataset we use ImageNet1K (Russakovsky et al., 2015) and
for the language dataset we use TweetEval (Barbieri et al.,
2020) sentiment analysis. We use four explanation methods
in SHAP (Lundberg & Lee, 2017), LIME (Ribeiro et al.,
2016), Integrated Gradients (IGrad) (Sundararajan et al.,
2017), and Vanilla Gradient Saliency (VGrad) (Simonyan
et al., 2013); we take φ(x) as the top-k weighted features.

Training Details We use Adam (Kingma & Ba, 2014)
as our optimizer with default parameters and learning rate
10−6. For each λ ∈ {1/8, . . . , 8/8} we fine-tuned each
model for 1 epoch, which results in a total of 8 × 3 = 24
models used in our experiments. To train with a particular λ:
for each training input x we generate two random maskings
— one where λ of the features are zerod and one where λ/2
of the features are zerod. This additional λ/2 zeroing is to
account for the fact that inputs to a smoothed model will be
subject to masking by λ as well as φ(x), where the scaling
factor of 1/2 is informed by our prior experience about the
size of a stable explanation.

Miscellaneous Preprocessing For images in ImageNet1K
we use feature grouping (Appendix B.2.1) to group the 3×
224×224 dimensional image into patches of size 3×28×28,
such that there remains n = 64 feature groups. Each feature
of a feature group then receives the same value of noise
during smoothing. We report radii of stability as a fraction
of the feature groups covered. For example, if at some input
from ImageNet1K we get an incremental stability radius of
r, then we report r/64 as the fraction of features up to which
we are guaranteed to be stable. This is especially amenable
to evaluating RoBERTa on TweetEval where inputs do not
have uniform token lengths, i.e. do not have uniform feature
dimensions. In all of our experiments we use the quantized
noise as in Appendix A.2 with a quantization parameter of
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q = 64, with the exception of Appendix C.2 where for the
box attack search we use q = 16.

Our experiments are organized as follows:

• (Appendix C.1) What is the quality of stability guaran-
tees from MuS?

• (Appendix C.2) What is the theoretical vs empirical
stability that can be guaranteed?

• (Appendix C.3) What are the stability-accuracy trade-
offs due to smoothing?

• (Appendix C.4) Which explanation method is best?

C.1. Quality of Stability Guarantees

Here we study what radii of stability are certifiable, and
how often these can be achieved with different models
and explanation methods. We therefore consider explain-
able models ⟨f, φ⟩ constructed from base models h ∈
{Vision Transformer,ResNet50,RoBERTa} and explana-
tion methods φ ∈ {SHAP,LIME, IGrad,VGrad} with top-
k ∈ {1/8, 2/8, 3/8} feature selection. We take N = 2000
samples from each model’s respective datasets and compute
the following value for each radius:

value(r) =

#

{
x :
⟨f, φ⟩ consistent and inc (dec)
stable with radius ≤ r

}
N

.

The results are shown in the following figures, where plots
of incremental stability are on the left; plots of decremental
stability are on the right.

• Figure 5: Vision Transformer with SHAP and LIME

• Figure 6: Vision Transformer with IGrad and VGrad

• Figure 7: ResNet50 with SHAP and LIME

• Figure 8: ResNet50 with IGrad and VGrad

• Figure 9: RoBERTa with SHAP and LIME

• Figure 10: RoBERTa with IGrad and VGrad

C.2. Theoretical vs Empirical

We compare the certifiable theoretical stability guarantees
with what is empirically attained via a standard box attack
search (Chen et al., 2017). This is an extension of Sec-
tion 4.2, where we now show all models as evaluated with
SHAP-top25%. The certified plots are identical from Ap-
pendix C.1. We take Ncert = 2000 samples for the certified
plots, and Nemp = 250 for the empirical plots. This com-
paratively small selection of methods and data is because
box attack is very time-intensive to run, requiring several
minutes per model, method, and λ combination. The plots
are shown in Figure 11.

C.3. Stability-Accuracy Trade-Offs

We study how the accuracy degrades with λ. We consider
a smoothed model f constructed from a base classifier
h ∈ {Vision Transformer,ResNet50,RoBERTa} and vary
λ ∈ {1/16, 1/8, 2/8, 4/8, 8/8}. We then take N = 2000
samples from each respective dataset and measure the accu-
racy of f at different radii. We use f(x) ∼= true label
to mean that f attained the correct prediction at x ∈ X , and
we plot the following value at each radius r:

value(r) =

#

{
x :

f(x) ∼= true label and
dec stable with radius ≤ r

}
N

The overall accuracy with each λ is shown in the parentheses
of each plot’s legend. The plots are shown in Figure 12.

C.4. Which Explanation Method is the Best?

We first investigate how may features are needed to yield
consistent and non-trivially stable explanations, as done by
the greedy selection algorithm in Section 2.4. For some x ∈
X , let kx denote the fraction of features that ⟨f, φ⟩ needs
to be consistent, incrementally stable, and decrementally
stable with radius 1. We vary λ ∈ {1/8, . . . , 4/8}, where
recall λ ≤ 4/8 is needed for non-trivial stability, and use
N = 250 samples to plot the average kx. The plots are
shown in Figure 13.

We next investigate the ability of each method to predict
features that lead to high accuracy. Let f(x ⊙ φ(x)) ∼=
true label, mean that the masked input x⊙φ(x) yields
the correct prediction. We then plot this accuracy as we vary
the top-k ∈ {1/8, 2/8, 3/8} for different methods φ, and
λ ∈ {1/8, . . . , 8/8}, using N = 2000 samples. The plots
are shown in Figure 14.

C.5. Discussion

Effect of Smoothing We observe that smoothing can
yield non-trivial stability guarantees, especially for Vision
Transformer and RoBERTa, as evidenced in Appendix C.1.
We see that smoothing is least detrimental on these two
transformer-based architectures, and most negatively im-
pacts the performance of ResNet50. We conjecture that al-
though different training set-ups may improve performance
across every category, our experiments still serves to illus-
trate the general trend.

Theoretical vs Empirical It is expected that the certi-
fiable radii of stability is more conservative than what is
empirically observed. As mentioned in Section 3.2, for each
λ there is a maximum radius to which stability can be guar-
anteed, which is an inherent limitation of using logit gaps
and Lipschitz constants as the main theoretical technique.
We emphasize that the notion of stability need not be tied
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to smoothing, though we are currently not aware of other
viable approaches.

Why these Explanation Methods? We chose SHAP,
LIME, IGrad, and VGrad from among the large variety
of methods available primarily due to their popularity, and
because we believe that they are collectively representative
of many techniques. In particular, we believe that LIME
remains representative baseline for surrogate model-based
explanation methods. SHAP and IGrad are, to our knowl-
edge, the two most well-known families of axiomatic feature
attribution methods. Finally, we believe that VGrad is repre-
sentative of a traditional gradient saliency-based approach.

Which Explanation Method is the Best? Based on our
experiments in Appendix C.4 we see that SHAP generally
achieves higher accuracy using the same amount of top-k
features as other methods. On the other hand, VGrad tends
to perform poorly. We remark that there is well-known
critique against the usefulness of saliency-based explanation
methods (Kindermans et al., 2019).

D. Miscellaneous
Relevance to Other Explanation Methods Our key the-
oretical contribution of MuS in Theorem 3.1 is a general-
purpose smoothing method that is distinct from standard
smoothing techniques, namely additive smoothing. MuS is
therefore applicable to other problem domains beyond what
is studied in this paper, and would be useful where Lipschitz
constants with respect to maskings is desirable.

Broader Impacts Reliable explanations are necessary for
making well-informed decisions, and are increasingly im-
portant as machine learning models are integrated with fields
like medicine, law, and business — where the primary users
may not be well-versed in the technical limitations of differ-
ent methods. Formal guarantees are therefore important for
ensuring the predictability and reliability of complex sys-
tem, which then allows users to construct accurate mental
models of interaction and behavior. In this work we study a
particular kind of guarantee known as stability, which is key
to feature attribution-based explanation methods.

E. All Figures
All remaining figures are shown in the following.
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Figure 5. (Top) Vision Transformer with SHAP; (Bottom) Vision Transformer with LIME. (Left) consistent and incrementally stable;
(Right) consistent and decrementally stable.
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Figure 6. (Top) Vision Transformer with IGrad; (Bottom) Vision Transformer with VGrad. (Left) consistent and incrementally stable;
(Right) consistent and decrementally stable.
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Figure 7. (Top) ResNet50 with SHAP; (Bottom) ResNet50 with LIME. (Left) consistent and incrementally stable; (Right) consistent and
decrementally stable.
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Figure 8. (Top) ResNet50 with IGrad; (Bottom) ResNet50 with VGrad. (Left) consistent and incrementally stable; (Right) consistent and
decrementally stable.
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Figure 9. (Top) RoBERTa with SHAP; (Bottom) RoBERTa with LIME. (Left) consistent and incrementally stable; (Right) consistent and
decrementally stable.
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Figure 10. (Top) RoBERTa with IGrad; (Bottom) RoBERTa with VGrad. (Left) consistent and incrementally stable; (Right) consistent
and decrementally stable.
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Figure 11. With SHAP top-25%: (Top) Vision Transformer; (Middle) ResNet50; (Bottom) RoBERTa.
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Figure 12. (Top) Vision Transformer; (Middle) ResNet50; (Bottom) RoBERTa.
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Figure 13. (Left) Vision Transformer; (Middle) ResNet50; (Right) RoBERTa.

Figure 14. (Top) Vision Transformer; (Middle) ResNet50; (Bottom) RoBERTa.


