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Abstract
In this paper, we present a toolbox for interval
analysis in numpy, with an application to formal
verification of neural network controlled systems.
Using the notion of natural inclusion functions,
we systematically construct interval bounds for a
general class of mappings. The toolbox offers ef-
ficient computation of natural inclusion functions
using compiled C code, as well as a familiar inter-
face in numpy with its canonical features, such as
n-dimensional arrays, matrix/vector operations,
and vectorization. We then use this toolbox in for-
mal verification of dynamical systems with neural
network controllers, through the composition of
their inclusion functions.

1. Introduction
Interval analysis is a classical field that provides a com-
putationally efficient approach for propagating errors by
computing function bounds (Jaulin et al., 2001). It has
been successfully used for floating point error bounding
in numerical and scientific analysis (Hickey et al., 2001).
Interval bounds are often used for dynamical systems: (i)
in reachability analysis, using methods such as Differential
Inequalities (Scott & Barton, 2013) and Mixed Monotonic-
ity (Meyer et al., 2019; Abate et al., 2021); (ii) for invariant
set computation (Abate & Coogan, 2020). Recently, interval
analysis has been increasingly used for the verification of
learning algorithms: (i) standalone neural network verifica-
tion approaches such as Interval Bound Propogation (Gowal
et al., 2019); (ii) in-the-loop neural network control sys-
tem verification approaches including simulation-guided
approaches (Xiang et al., 2021), POLAR (Huang et al.,
2022) and ReachMM (Jafarpour et al., 2023).

Since all of these techniques use a similar suite of tools,
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there is value in creating an efficient, user-friendly tool-
box for general interval analysis. Python has become the
standard for the learning community, and as such there are
several existing tools for interval arithmetic. However, they
come with key drawbacks: pyinterval does not natively
support interval vectors and matrices, and portion sup-
ports lists of intervals, but not matrix and vector operations.

Contributions In this paper, we introduce a novel interval
analysis framework called npinterval1, implemented in
numpy (Harris et al., 2020), the computational backbone
of most scientific Python packages. This framework is built
upon the notion of inclusion functions, which provide inter-
val bounds on the output of a given function. We first define
tight inclusion functions for several elementary functions,
then use Theorem 2.3 to build natural inclusion functions for
a more general class of composed functions. The proposed
package extends the prominent benefits of numpy directly
to interval analysis, including its efficiency with compiled
C implementations, versatility with n-dimensional arrays,
matrix/vector operations, vectorization, and its familiar user
interface. We then demonstrate its utility through an appli-
cation in formal verification of neural network controlled
systems, by composing CROWN (Zhang et al., 2018), a
state-of-the-art neural network verification method with a
natural inclusion functions of the system in Theorem 3.4.
The proofs of all the Theorems are presented in Appendix B.

Notation We denote the standard partial order on Rn by
≤, i.e., for x, y ∈ Rn, x ≤ y if and only if xi ≤ yi for
all i ∈ {1, . . . , n}. A (bounded) interval of Rn is a set
of form {z : x ≤ z ≤ x} =: [x, x] for some endpoints
x, x ∈ Rn, x ≤ x. Let IRn denote the set of all intervals
on Rn. We also use the notation [x] ∈ IRn to denote an
interval when its endpoints are not relevant or implicitly
understood to be x and x. For every two vectors v, w ∈ Rn

and every i ∈ {1, . . . , n}, we define the vector v{i:w} ∈ Rn

by
(
v{i:w}

)
j
=

{
vj j ̸= i

wj j = i.
. For a function f : Rn →

Rm and a set X ⊆ Rn, define the set-valued extension
1The most recent code for npinterval can be viewed at

https://github.com/gtfactslab/npinterval; to
reproduce the figures in this paper, see https://github.
com/gtfactslab/Harapanahalli_WFVML2023.
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f(X ) = {f(x) : x ∈ X}. For two vectors x, y ∈ Rn, let
(x, y) ∈ R2n denote their concatenation.

2. Interval Analysis
2.1. Interval Arithmetic

Interval analysis extends operations and functions to inter-
vals (Jaulin et al., 2001). For example, if we know that some
number a ∈ [a, a], and b ∈ [b, b], it is easy to see that the
sum (a+ b) ∈ [a+ b, a+ b].

Definition 2.1 (Inclusion Function (Jaulin et al., 2001)).
Given a function f : Rn → Rm, the interval function
[f ] : IRn → IRm is called an

1. inclusion function for f if, for every [x] ∈ IRn,
f([x]) ⊆ [f ]([x]);

2. [y]-localized inclusion function for f if for every [x] ⊆
[y], we have f([x]) ⊆ [f ]([x]).

Moreover, an inclusion function [f ] for f is

3. monotone if [x] ⊆ [y] implies that [f ]([x]) ⊆ [f ]([y]).

4. tight if, for every [x], [f ]([x]) is the smallest interval
containing f([x]).

In the next Theorem, we provide a closed-form expression
for the tight inclusion function.

Theorem 2.2 (Uniqueness and Monotonicity of the Tight
Inclusion Function). Given a function f : Rn → Rm, the
tight inclusion function can be characterized as

[f ]([x]) =

[
inf
x∈[x]

f(x), sup
x∈[x]

f(x)

]
,

where the inf and sup are taken element-wise, which is
unique and monotone.

For some common functions, the tight inclusion function is
easily defined. For example, if a function is monotonic, the
tight inclusion function is simply the interval created by the
function evaluated at its endpoints.

More generally, the tight inclusion function can be alterna-
tively computed using the fact that on a closed and bounded
interval, a continuous function will achieve its maximal and
minimal values at either the endpoints or a critical value in
the interval. For any bounded interval, the tight inclusion
function can be evaluated by taking the maximum and mini-
mum of the function on each critical point within and the
endpoints of the input interval. Tight inclusion functions
for some elementary functions such as sin and cos can be
defined in this manner (see Table 1). However, when consid-
ering general functions, finding the tight inclusion function

is often not computationally viable. The following theorem
shows a more computational approach, by chaining known
inclusion functions.

Theorem 2.3 (Natural Inclusion Functions). Given a func-
tion f : Rn → Rm defined by a composition of func-
tions with known monotone inclusion functions, i.e., f =
eℓ◦eℓ−1◦· · ·◦e1, an inclusion function for f is formed by re-
placing each composite function with its inclusion function,
i.e. [f ] = [eℓ] ◦ [eℓ−1] ◦ · · · ◦ [e1] and is called the natu-
ral inclusion function. Additionally, if each of the [ej ] are
monotone inclusion functions, the natural inclusion function
is also monotone.

Note that two different decompositions of the function f
can lead to two different natural inclusion functions for f .
Thus, the natural inclusion function is not guaranteed to
be the tight inclusion function. For example, consider the
function

(x+ 1)2 = x2 + 2x+ 1,

on the interval [−1, 1]. With the natural inclusion func-
tion for the first expression (LHS), the output interval is
([−1, 1] + 1)2 = [0, 4]. With the natural inclusion func-
tion for the second expression (RHS), the output interval is
[−1, 1]2 + 2 ∗ [−1, 1] + 1 = [0, 1] + [−2, 2] + 1 = [−1, 4].
Figure 1 demonstrates this phenomenon in further detail.

2.2. Automated Interval Analysis using npinterval

The main contribution of this paper is to introduce the open
source npinterval package, an extension of numpy to
allow native support for interval arithmetic. npinterval
defines a new interval data-type, internally represented
as a tuple of two doubles, [a] = (a.l, a.u). The
interval type is fully implemented in C, and therefore
the standard operations from Table 1 are all compiled into
efficient machine-code executed as needed at runtime. Ad-
ditionally, since interval is implemented as a dtype
in numpy, all of numpy’s prominent features, including n-
dimensional arrays, fast matrix multiplication, and vectoriza-
tion, are available to use. In particular, each function from
Table 1 is registered as a numpy universal function, allow-
ing for quick, element-wise operation over an n-dimensional
array. While there are existing interval arithmetic toolboxes,
none plug directly into numpy, opting instead to rewrite
every operation in Python. While these packages do support
the same standard operations from Table 1, they lose the
flexibility and utility of numpy, as well as the efficiency of
compiled C code.

3. Interval Reachability of Neural Network
Controlled Systems

One application of interval analysis is in reachability anal-
ysis of neural network controlled systems. This section
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Figure 1. Left: npinterval is used to generate interval approx-
imations for a function f using two different natural inclusion
functions. Blue: f(x1, x2) = [(x1 + x2)

2, 4 sin((x1 − x2)/4)]
T

Green: f(x1, x2) = [x2
2+2x1x2+x2

2, 4 sin(x1/4) cos(x2/4)−
4 cos(x1/4) sin(x2/4)]

T . The approximations are generated us-
ing the initial set [−1, 1]× [−1, 1], and 2000 uniformly sampled
ouptuts are shown in red. Right: The same function is analyzed,
with the same two natural inclusion functions, but the initial set
is partitioned into 1024 uniform sections, and the union of the
interval approximations are shown.

revisits and extends the framework considered in (Jafarpour
et al., 2023).

3.1. Problem Statement

Consider a dynamical system of the following form

ẋ = f(x, u, w), (1)

where x ∈ Rn is the system state, u ∈ Rp is the control
input, w ∈ W ⊆ Rq is a unknown disturbance input in
a compact set W , and f : Rn × Rp × Rq → Rn is a
parameterized vector field. We assume that a feedback
control policy for the system (1) is given by a k-layer fully
connected feed-forward neural network N : Rn → Rp as
follows:

ξ(i) = σ(i−1)
(
W (i−1)ξ(i−1) + b(i−1)

)
, i = 1, . . . k

ξ(0) = x, N(x) = W (k)ξ(k) + b(k)
(2)

where mi is the number of neurons in the i-th layer, W (i) ∈
Rmi×mi−1 is the weight matrix on the i-th layer, b(i) ∈ Rmi

is the bias vector on the i-th layer, ξ(i) ∈ Rmi is the i-th
layer hidden variable and σi is the activation function for
the i-th layer. Thus, we consider the closed-loop system

ẋ = f(x,N(x), w) = f c(x,w). (3)

Given an initial time t0, an initial state x0, and a piecewise
continuous mapping w : R → W , denote the trajectory of
the system for any t ≥ t0 as ϕfc(t, t0, x0,w). Given an
initial set X0, we denote the reachable set of f c at some

t ≥ t0:

Rf (t, t0,X ,W) =

{
ϕfc(t, t0, x0,w), ∀x0 ∈ X0,

w : R → W piecewise cont.

}
(4)

One can use the reachable set of the system to verify
safety specifications, e.g. by ensuring an empty intersec-
tion with unsafe states for all time. However, in general,
computing the reachable set exactly is not computationally
tractable—instead, approaches typically compute an over-
approximation Rfc(t, t0,X ,W) ⊇ Rfc(t, t0,X ,W). The
main challenge addressed in this section is to develop an ap-
proach for providing tight over-approximations of reachable
sets while remaining computationally tractable for runtime
computation.

3.2. Open-loop System Interval Reachability

Previously, (Jafarpour et al., 2023) consider a known de-
composition function of the open-loop system. The interval
analysis framework from Section 2 allows us to extend this
theory to remove the need to define a decomposition func-
tion a priori.

Assumption 3.1. For the dynamical system (1), there exists
a known monotone inclusion function [f ] for f .

Using Theorem 2.3, this assumption reduces to knowing
a particular form f = eℓ ◦ · · · ◦ e1 with known monotone
inclusion functions for each ej , thus removing the need to
manually define a decomposition function for f .

The open-loop embedding function is defined by:

Fi([x], [u], [w]) = f
i
([x, x{i:x}], [u], [w]),

Fi([x], [u], [w]) = f i([x{i:x}, x], [u], [w]),
(5)

for every i ∈ {1, . . . , n}, where [f ] = [f, f ] is the mono-
tone inclusion function of f , and F,F : IRn× IRp× IRq →
Rn. Using this embedding function, the following embed-
ding dynamics can be defined[

ẋ
˙̂x

]
=

[
F([x, x̂], [u], [w])
F([x, x̂], [u], [w])

]
, (6)

where (x, x̂) ∈ R2n, x ≤ x̂.

Theorem 3.2 (Open-Loop System Interval Reachability).
Let t 7→ (x(t), x(t)) denote the trajectory of the system
(6) with initial condition (x0, x0), under interval control
mapping [u] : R → IRp and interval disturbance mapping
[w] : R → IRq. Let t 7→ x(t) denote the trajectory of
the system (1) with initial condition x0, under control u :
R → Rp and disturbance w : R → W . If x0 ∈ [x0, x0],
u(t) ∈ [u](t), and w(t) ∈ [w](t) for every t ≥ t0, then

x(t) ∈ [x(t), x(t)], for every t ≥ t0.
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3.3. Interconnected Closed-Loop System Interval
Reachability

While Theorem 3.2 provides a method of over-
approximating the system (3) using global bounds on the
control input, it disregards all interactions between the neu-
ral network controller and the dynamical system.
Assumption 3.3. For the neural network (2), there exists a
known monotone inclusion function [N ] for N .

For example, one can use CROWN (Zhang et al., 2018)
to obtain these bounds. Using CROWN, given an interval
[y], we can obtain affine upper and lower bounds of the
following form

C [y]x+ d[y] ≤ N(x) ≤ C [y]x+ d[y], (7)

valid for any x ∈ [y], which can be used to create the fol-
lowing monotone [y]-localized inclusion function [N ][y] =

[N [y], N [y]], with

N [y]([x]) = C+
[y]x+ C−

[y]x+ d[y],

N [y]([x]) = C
+

[y]x+ C
−
[y]x+ d[y],

(8)

valid for any [x] ⊆ [y]. One can then construct the following
“hybrid” closed-loop embedding function by interconnect-
ing the open-loop embedding function with the monotone
inclusion function for the neural network as follows

Fc
i ([x], [w]) = f

i
([x, x{i:x}], [N ][x]([x, x{i:x}]), [w]),

F
c

i ([x], [w]) = f i([x{i:x}, x], [N ][x]([x{i:x}, x]), [w]),
(9)

for every i ∈ {1, . . . , n}, and Fc,F
c
: IRn × IRq → Rn.

Using this embedding function, the following embedding
dynamics can be defined[

ẋ
˙̂x

]
=

[
Fc([x, x̂], [w])

F
c
([x, x̂], [w])

]
, (10)

where (x, x̂) ∈ R2n, x ≤ x̂.
Theorem 3.4 (Closed-Loop System Interval Reachability).
Let t 7→ (x(t), x(t)) denote the trajectory of the system (10)
with initial condition (x0, x0), under interval disturbance
mapping [w] : R → IRq. Let t 7→ x(t) denote the tra-
jectory of the closed-loop system (3) with initial condition
x0, under disturbance w : R → W . If x0 ∈ [x0, x0] and
w(t) ∈ [w](t) for every t ≥ t0, then

x(t) ∈ [x(t), x(t)], for every t ≥ t0.

3.4. Experiments

Vehicle Model Consider the nonlinear dynamics of a ve-
hicle adopted from (Polack et al., 2017):

ṗx = v cos(ϕ+ β(u2)) ϕ̇ =
v

ℓr
sin(β(u2)) (11)

ṗy = v sin(ϕ+ β(u2)) v̇ = u1. (12)

0 2 4 6 8
px

0

1

2

3

4
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6

7

8

py

runtime: 0.030 ± 0.007

Figure 2. The over-approximated reachable set of the nonlinear
vehicle model in the px-py coordinates are shown in blue for
the initial set [7.95, 8.05]2 × [− 2π

3
− 0.005,− 2π

3
+ 0.005] ×

[1.995, 2.005] over the time interval [0, 1.25]. 100 true trajectories
of the system are shown in red, and the average runtime and
standard deviation over 100 runs is shown.

where [px, py]
⊤ ∈ R2 is the displacement of the center of

mass, ϕ ∈ [−π, π) is the heading angle in the plane, and
v ∈ R≥0 is the speed of the center of mass. Control input
u1 is the applied force, input u2 is the angle of the front
wheels, and β(u2) = arctan

(
ℓf

ℓf+ℓr
tan(u2)

)
is the slip

slide angle. Let x = [px, py, ϕ, v]
⊤ and u = [u1, u2]

⊤. We
use the neural network controller (4×100×100×2 ReLU)
defined in (Jafarpour et al., 2023), which is applied at evenly
spaced intervals of 0.25 seconds apart. This neural network
is trained to mimic an MPC that stabilizes the vehicle to the
origin while avoiding a circular obstacle centered at (4, 4)
with a radius of 2.

The natural inclusion function is constructed using
npinterval with Table 1, and the monotone inclusion
function (8) is computed using autoLiRPA (Xu et al.,
2020). The closed-loop embedding function (10) is then
used to over-approximate the reachable set of the system
using Theorem 3.4. The dynamics are simulated using Euler
integration with a step size of 0.05. The results are shown
in Figure 2.

4. Conclusion
In this paper, we introduced a framework for interval analy-
sis implemented directly in numpy, called npinterval.
The framework provides an automatic way to generate pro-
vide interval bounds on the output of a general class of
functions. We use this framework to formally verify the
output of nonlinear neural network controlled systems. In
the future, npinterval will be updated to account for
floating point error, as well as to support a wider array of
standard inclusion functions.
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A. Table of Tight Inclusion Functions and Operations Implemented in npinterval

Table 1. Tight inclusion functions and operations supported by npinterval.

FUNCTION/OPERATION TIGHT INCLUSION FUNCTION/IMPLEMENTATION

[a] + c [a+ c, a+ c]

c ∗ [a]

{
[ca, ca] c ≥ 0

[ca, ca] c < 0

[a] + [b] [a+ b, a+ b]
[a]− [b] [a− b, a− b]
[a] ∗ [b] [min{ab, ab, ab, ab},max{ab, ab, ab, ab}]

1/[a]

{
[1/a, 1/a] 0 /∈ [a]

[−∞,∞] 0 ∈ [a]

[a]n


[an, an] n ODD

[0,max{an, an}] n EVEN, 0 ∈ [a]

[min{an, an},max{an, an}] n EVEN, 0 /∈ [a]

f([a]), f MON INC [f(a), f(a)]
f([a]), f MON DEC [f(a), f(a)]
TRIGONOMETRIC SEE EQUATIONS (13) AND (14)

[A] ∗ [B],

[A] ∈ IRn×p, [B] ∈ IRp×m [·]i,j =
∑p

k=1[ai,k] ∗ [bk,j ]

The following is the tight inclusion function for sin,

sin([a]) =



[−1, 1] A1

[s, s] A2 ∧ ((c, c) ≥ 0)

[s, s] A2 ∧ ((c, c) ≤ 0)

[min{s, s}, 1] A2 ∧ ((c, c) ≥SE 0)

[−1,max{s, s}] A2 ∧ ((c, c) ≤SE 0)

[−1, 1] A3 ∧ ((c, c) ≥ 0)

[−1, 1] A3 ∧ ((c, c) ≤ 0)

[min{s, s}, 1] A3 ∧ ((c, c) ≥SE 0)

[−1,max{s, s}] A3 ∧ ((c, c) ≤SE 0)

, (13)

where A1 := (|[a]| > 2π), A2 := (π < |[a]| ≤ 2π), A3 = (0 < |[a]| ≤ π), s := sin(a), s := sin(a), and c := cos(a),
c := cos(a). Note that the tight inclusion function for cos can be defined as cos([a]) = sin([a] + π/2).

tan([a]) =

{
[tan(a), tan(a)] ∀k ∈ N, π

2 + πk /∈ [a]

[−∞,∞] ∃k ∈ N, π
2 + πk ∈ [a]

(14)

So far, in npinterval, the implemented monotonic functions include exp, log, arctan, and sqrt, and will be extended in
the future.
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B. Proof of the main results

In this section, we define the southeast order ≤SE on Rn by
[
x
y

]
≤SE

[
x̂
ŷ

]
if and only if x ≤ x̂ and ŷ ≤ y.

Proof of Theorem 2.2 Take f : Rn → Rm, and fix [x] ∈ IRn. We need to show that the smallest interval containing
f([x]) is

[
infx∈[x] f(x), supx∈[x] f(x)

]
.

Fix i ∈ {1, . . . , n}. For contradiction, assume that the smallest interval containing the set fi([x]) is not[
infx∈[x] fi(x), supx∈[x] fi(x)

]
. Then, there are two (non-exclusive) cases:

Case 1: There exists a > infx∈[x] fi(x) such that fi(x) ≥ a for every x ∈ [x]. However, by the definition of inf , there
exists x′ ∈ [x] such that infx∈[x] fi(x) < fi(x

′) < a, which is a contradiction.

Case 2: There exists b < supx∈[x] fi(x) such that fi(x) ≤ b for every x ∈ [x]. However, by the definition of sup, there
exists x′ ∈ [x] such that b < fi(x

′) < supx∈[x] fi(x), which is a contradiction.

Thus, the smallest interval containing the set fi([x]) is
[
infx∈[x] fi(x), supx∈[x] fi(x)

]
. This is true for every i, completing

the proof.

Proof of Theorem 2.3 We prove the theorem by induction.

Base Case: m = 1

Since [e1] is an inclusion function for e1, we have that e1 ⊆ [e1]([x]) for any interval [x]. Moreover, since [e1] is a monotone
inclusion function, we have [x] ⊆ [y] =⇒ [e1]([x]) ⊆ [e1]([y]).

Inductive Step: [em−1]◦ · · · ◦ [e1] monotone inclusion function =⇒ [em]◦ [em−1]◦ · · · ◦ [e1] monotone inclusion function

Assume that [em−1] ◦ · · · ◦ [e1] is a monotone inclusion function for em−1 ◦ · · · ◦ e1. For every interval [x], we have that
em ◦ em−1 ◦ · · · ◦ e1([x]) = em(em−1 ◦ · · · ◦ e1([x])) ⊆ em([em−1] ◦ · · · ◦ [e1]([x])) ⊆ [em]([em−1] ◦ · · · ◦ [e1]([x])),
which implies that [em] ◦ [em−1] ◦ · · · ◦ [e1] is an inclusion function for em ◦ em−1 ◦ · · · ◦ e1.

Moreover, since [em−1] ◦ · · · ◦ [e1] is a monotone inclusion function, we have that for any two intervals [x] ⊆ [y],
[em−1] ◦ · · · ◦ [e1]([x]) ⊆ [em−1] ◦ · · · ◦ [e1]([y]). Since [em] is monotone, we also have [em]([em−1] ◦ · · · ◦ [e1]([x])) ⊆
[em]([em−1] ◦ · · · ◦ [e1]([y])), implying that [em] ◦ [em−1] ◦ · · · ◦ [e1] is a monotone inclusion function.

This completes the proof.

Proof of Theorem 3.2 We define the function d for the open-loop dynamics f (1) as follows:

di(x, x̂, u, û, w, ŵ) =

min z∈[x,x̂],ξ∈[w,ŵ]
zi=xi,η∈[u,û]

fi(z, η, ξ), x ≤ x̂, u ≤ û, w ≤ ŵ

max z∈[x̂,x],ξ∈[w,ŵ]
zi=x̂i,η∈[u,û]

fi(z, η, ξ), x̂ ≤ x, û ≤ u, ŵ ≤ w,
(15)

and we consider the following dynamical system on R2n:

d

dt

[
x
x̂

]
=

[
d(x, x̂, u, û, w, ŵ)
d(x̂, x, û, u, ŵ, w)

]
(16)

The trajectory of the embedding system (16) with the control input [ uû ] = [ uu ] and disturbance [wŵ ] = [ww ] starting from[ x0
x0

]
is denoted by t 7→

[
xo(t)
xo(t)

]
. Note that, by (Abate et al., 2021, Theorem 1), we have x(t) ∈ [xo(t), xo(t)], for every

t ∈ R≥0. Moreover, for every i ∈ {1, . . . , n}, we get

di(x, x̂, u, û, w, ŵ) = min
z∈[x,x̂],ξ∈[w,ŵ]
zi=xi,η∈[u,û]

fi(z, η, ξ) ≥ Fi([x, x̂], [u], [w]), (17)

where the first equality holds by definition of d and second inequality holds by Theorem (2.2). Similarly, one can
show that di(x̂, x, û, u, ŵ, w) ≤ Fi([x, x̂], [u], [w]), for every i ∈ {1, . . . , n}. This implies that

[
Fi([x,x̂],[u],[w])

Fi([x,x̂],[u],[w])

]
≤SE
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d(x,x̂,u,û,w,ŵ)
d(x̂,x,û,u,ŵ,w)

]
, for every x ≤ x̂ and every w ≤ ŵ and every u ≤ û. Note that, by (Abate et al., 2021, Theorem 1), the

vector field
[
d(x,x̂,u,û,w,ŵ)
d(x̂,x,û,u,ŵ,w)

]
is monotone with respect to the southeast order ≤SE on R2n. Now, we can use (Michel et al.,

2008, Theorem 3.8.1), to deduce that
[
x(t)
x(t)

]
≤SE

[
xo(t)
xo(t)

]
, for every t ∈ R≥0. This implies that [xo(t), xo(t)] ⊆ [x(t), x(t)].

On the other hand, by (Abate et al., 2021, Theorem 1 and Theorem 2), we know that x(t) ∈ [xo(t), xo(t)], for every t ∈ R≥0.
This lead to x(t) ∈ [x(t), x(t)], for every t ∈ R≥0.

Proof of Theorem 3.4 We define the function dc for the closed-loop system f c (3) as follows:

dci (x, x̂, w, ŵ) =

min z∈[x,x̂],ξ∈[w,ŵ]
zi=xi

f c
i (z,N(z), ξ), x ≤ x̂, w ≤ ŵ

max z∈[x̂,x],ξ∈[w,ŵ]
zi=x̂i

f c
i (z,N(z), ξ), x̂ ≤ x, ŵ ≤ w.

(18)

and we consider the following dynamical system on R2n:

d

dt

[
x
x̂

]
=

[
dc(x, x̂, w, ŵ)
dc(x̂, x, ŵ, w)

]
(19)

The trajectory of the embedding system (19) with disturbance [wŵ ] = [ww ] starting from
[ x0
x0

]
is denoted by t 7→

[
xc(t)
xc(t)

]
.

Note that, by (Abate et al., 2021, Theorem 1 and Theorem 2), we have x(t) ∈ [xc(t), xc(t)], for every t ∈ R≥0.

Let i ∈ {1, . . . , n} and y ∈ [x, x̂] be such that yi = xi. Note that [N [x,x̂], N [x,x̂]] is an monotone inclusion function for N
on [x, x̂]. Moreover, y ∈ [x, x̂[i:x]] ⊆ [x, x̂] and thus

N [x,x̂](x, x̂[i:x]) ≤ N(y) ≤ N [x,x̂](x, x̂[i:x]). (20)

Therefore, for every i ∈ {1, . . . , n}, we get

dci (x, x̂, w, ŵ) = min
z∈[x,x̂],ξ∈[w,ŵ]

zi=xi

f c
i (z,N(z), ξ) ≥ min

z∈[x,x̂],ξ∈[w,ŵ],zi=xi
u∈[N[x,x̂](x,x̂[i:x]),N[x,x̂](x,x̂[i:x])]

f c
i (z, u, ξ)

≥ f c

i
([x, x̂], [N ][x]([x, x̂{i:x}]), [w]) = Fc

i ([x, x̂], [w]), (21)

where the first equality holds by definition of dc, the second inequality holds by equation (20), the third inequality holds
by Theorem (2.2), and the fourth inequality holds by definition of Fc in equation (2.2). Similarly, one can show that
dci (x̂, x, ŵ, w) ≤ F

c

i ([x, x̂], [w]), for every i ∈ {1, . . . , n}. This implies that
[
Fc
i ([x,x̂],[w])

F
c
i ([x,x̂],[w])

]
≤SE

[
dc(x,x̂,w,ŵ)
dc(x̂,x,ŵ,w)

]
, for every

x ≤ x̂ and every w ≤ ŵ. Note that, by (Abate et al., 2021, Theorem 1), the vector field
[
dc(x,x̂,w,ŵ)
dc(x̂,x,ŵ,w)

]
is monotone

with respect to the southeast order ≤SE on R2n. Now, we can use (Michel et al., 2008, Theorem 3.8.1), to deduce that[
x(t)
x(t)

]
≤SE

[
xc(t)
xc(t)

]
, for every t ∈ R≥0. This implies that [xc(t), xc(t)] ⊆ [x(t), x(t)]. On the other hand, by (Abate et al.,

2021, Theorem 1 and Theorem 2), we know that x(t) ∈ [xc(t), xc(t)], for every t ∈ R≥0. This lead to x(t) ∈ [x(t), x(t)],
for every t ∈ R≥0.


