
Formal Verification for Neural Networks with General Nonlinearities
via Branch-and-Bound

Zhouxing Shi 1 Qirui Jin 2 Huan Zhang 3 Zico Kolter 3 Suman Jana 4 Cho-Jui Hsieh 1

Abstract
Bound propagation with branch-and-bound (BaB)
is so far among the most effective methods for
neural network (NN) verification. However, ex-
isting works with BaB have mostly focused on
NNs with piecewise linear activations only, espe-
cially ReLU neurons. In this paper, we develop a
framework for conducting BaB based on bound
propagation with general branching points and
an arbitrary number of branches, as an impor-
tant move for extending verification to models
with various nonlinearities beyond ReLU. Our
framework strengthens verification for common
element-wise activation functions, as well as other
multi-dimensional nonlinear operations that arise
naturally in computation graphs, such as multi-
plication and division. In addition, we find that
existing branching heuristics for choosing neu-
rons to branch for ReLU networks are insufficient
for general nonlinearities, and we design a new
heuristic named BBPS, which outperforms the
heuristic obtained by directly extending the exist-
ing ones originally developed for ReLU networks.
We empirically demonstrate the effectiveness of
our BaB framework on verifying a wide range of
NNs, including networks with Sigmoid, Tanh, or
Sin activations, LSTMs, and ViTs, which have
various nonlinearities.

1. Introduction
Neural network (NN) verification plays a crucial role in for-
mally verifying whether a neural network satisfies specific
properties, such as safety or robustness, prior to its deploy-
ment in safety-critical applications. Mathematically, veri-
fiers aim to compute bounds on the output neurons within a

1University of California, Los Angeles 2University of Michigan
3Carnegie Mellon University 4Columbia University. Correspon-
dence to: Zhouxing Shi <z.shi@ucla.edu>.

Presented at the 2nd Workshop on Formal Verification of Machine
Learning, co-located with the 40 th International Conference on
Machine Learning, Honolulu, Hawaii, USA., 2023. Copyright
2023 by the author(s).

pre-defined input region. As computing exact bounds is NP-
complete (Katz et al., 2017) even for simple ReLU networks,
it becomes crucial to relax the bound computation process
to improve efficiency. Bound propagation methods (Wang
et al., 2018b; Wong & Kolter, 2018; Zhang et al., 2018; Dvi-
jotham et al., 2018; Henriksen & Lomuscio, 2020; Singh
et al., 2019) are commonly used, which relax nonlinearities
in neural networks into linear lower and upper bounds that
can be efficiently propagated. The linear relaxation relies on
intermediate layer bounds, which are recursively computed
through bound propagation. However, if the intermediate
bounds are not sufficiently tight, the relaxation often results
in loose output bounds, particularly for deeper networks.

To further tighten the bounds for bound propagation, Branch-
and-Bound (BaB) has been utilized in many works (Bunel
et al., 2018; 2020; Xu et al., 2021; Lu & Mudigonda, 2020;
De Palma et al., 2021; Wang et al., 2021; Ferrari et al., 2021).
BaB iteratively branches the intermediate bounds so that
the original verification is branched into subdomains with
tighter intermediate bounds. Subsequently, these subdo-
mains can be bounded individually, leading to tighter linear
relaxations. However, previous works mostly focused on
ReLU networks due to the simplicity of ReLU from its piece-
wise linear nature. Branching a ReLU neuron only requires
branching at 0, and it immediately becomes linear in either
branch around 0. Conversely, handling neural networks with
nonlinearities beyond ReLU, such as LSTMs (Hochreiter
& Schmidhuber, 1997) and Transformers (Vaswani et al.,
2017) which also have nonlinearities beyond activation func-
tions such as multiplication and division, introduces addi-
tional complexity as the convenience of piecewise linearity
diminishes. While there are existing works considering
BaB for NNs beyond ReLU networks, they often specialize
in specific types of nonlinearities, such as (Henriksen &
Lomuscio, 2020; Wu et al., 2022) focusing on S-shaped
activations exclusively. A more principled framework for
handling general nonlinearities is lacking, leaving ample
room for further advancements in verifying non-ReLU net-
works.

In this paper, we propose a principled verification frame-
work with BaB for neural networks with general nonlinear-
ities. We generalize the α,β-CROWN verifier (Xu et al.,
2020; 2021; Wang et al., 2021) which is based on linear

Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound

bound propagation but initially restricted to BaB for ReLU
activations. We resolve multiple challenges to enable BaB
for general nonlinearities beyond piecewise linear ReLU.
Specifically, we formulate the BaB problem under the linear
bound propagation framework in a more general manner.
This formulation encompasses general branching points (in
contrast to simply 0 for ReLU) and a general number of
branches (in contrast to two branches for ReLU which natu-
rally has two pieces).

We encode such general branching into constraints in linear
bound propagation by optimizable Lagrange multipliers to
improve the verified bounds. Moreover, we find that the
existing branching heuristic named “BaBSR” for selecting
neurons to branch from works for ReLU networks (Bunel
et al., 2020) is suboptimal for networks with general non-
linearities. It is because while making an estimation on
the impact of a branching will have on the output bounds,
for their convenience BaBSR discards an important term
which is found to be negligible on ReLU networks yet we
find to be important on general nonlinearities in this paper.
Thereby, to improve the effectiveness of BaB, we introduce
a new branching heuristic named “Branching via Bound
Propagation with Shortcuts (BBPS)” with a more accurate
estimation by carefully leveraging the linear bounds from
bound propagation.

We demonstrate the effectiveness of the new framework on
a variety of networks, including feedforward networks with
Sigmoid, Tanh, or Sin activations, LSTMs, Vision Trans-
formers (ViTs). These networks involve various nonlineari-
ties including S-shaped activations, periodic trigonometric
functions, and also multiplication and division which are
multi-dimensional nonlinear operations beyond activation
functions. Our BaB is generally effective and outperforms
the existing baselines.

2. Background
The NN verification problem. Let f : Rd 7→ RK be a
neural network taking input x ∈ Rd and outputting f(x) ∈
RK . Suppose C is the input region to be verified, and s :
RK 7→ R is an output specification function, h : Rd 7→
R is the function that combines the NN and the output
specification as h(x) = s(f(x)). Then NN verification
can typically be formulated as verifying if h(x) > 0,∀x ∈
C provably holds. A commonly adopted special case is
robustness verification given a small input region, where
f(x) is a K-way classifier and h(x) := mini̸=c{fc(x) −
fi(x)} checks the worst-case margin between the ground-
truth class c and any other class i, and if h(x) > 0,∀x ∈ C,
the classifier is provably robust for any input within C. In
particular, the input region is often taken as a small ℓ∞-
ball around a data point x0, i.e., C := {x | ∥x − x0∥∞ ≤
ϵ} where ϵ is the radius of the ℓ∞ ball and (x − x0) is

a perturbation around x0. Robustness verification under
an ℓ∞ input region is a succinct and useful problem for
provably verifying the robustness properties of a model and
also benchmarking NN verifiers, although there are other
NN verification problems beyond robustness. We also focus
on this setting for its simplicity following prior works.

Linear bound propagation based on α,β-CROWN . We
develop our new framework based on α,β-CROWN (Xu
et al., 2020; 2021; Wang et al., 2021) which is among the
state-of-the-art NN verifiers (Bak et al., 2021; Müller et al.,
2022a) yet it conducts BaB for ReLU only and has limited
support for nonlinearities other than ReLU. α,β-CROWN
is based on linear bound propagation (Zhang et al., 2018)
which computes a sound lower bound for h(x) by propagat-
ing linear bounds w.r.t. the output of one or more intermedi-
ate layers as

h(x) ≥
∑

i
Aix̂i + c, (1)

where x̂i (i ≤ n) is the output of layer i in the network with
n layers, Ai are the coefficients w.r.t. intermediate layer i
in the linear bound, and c is a bias term dynamically accu-
mulated during the bound propagation. In the beginning,
the linear bound is trivially h(x) ≥ I · h(x) + 0 which is
actually an equality but is still consistent with Eq. (1). Dur-
ing the bound propagation, Aix̂i in Eq. (1) is recursively
substituted by the linear bound of x̂i w.r.t its input. For
simplicity, suppose layer i − 1 is the input to layer i and
x̂i = hi(x̂i−1), where hi(·) is the computation for layer i.
And suppose we have the linear bounds of x̂i w.r.t its input
x̂i−1 as:

aix̂i−1 + bi ≤ x̂i = hi(x̂i−1) ≤ aix̂i−1 + bi, (2)

with parameters ai,bi,ai,bi for the linear bounds, and “≤”
holds elementwise. Then Aix̂i can be substituted and lower
bounded by:

Aix̂i ≥ Ai−1x̂i−1 +
(
Ai,+bi +Ai,−bi

)
, (3)

where Ai−1 =
(
Ai,+ai +Ai,−ai

)
, (4)

“+” and “-” in the subscripts denote taking positive and
negative elements respectively, and in this way the linear
bounds are propagated from layer i to layer i−1. Ultimately
the linear bounds can be propagated to the input of the
network x as h(x) ≥ A0x + c, A0 ∈ R1×d, where the
input can be viewed as the 0-th layer. Depending on C, this
linear bound can be concretized into a lower bound without
x. If C is an ℓ∞ ball, we have

∀∥x−x0∥∞ ≤ ϵ, A0x+c ≥ A0x0−ϵ∥A0∥1+c. (5)

To construct Eq. (2), if hi(·) is inherently linear, its lin-
ear bounds are simply itself. Otherwise, linear relaxation
is used, and it relaxes a nonlinearity to lower and upper

Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound

bound the nonlinearity by linear functions. An intermediate
bound on x̂i−1 as li−1 ≤ x̂i−1 ≤ ui−1 is usually required
for the relaxation, which can be obtained by running ad-
ditional bound propagation and treating the intermediate
layers as the output of a network. For example, if hi(x̂i−1)
is a ReLU activation, linear relaxation is needed for the
j-th neuron only if li−1,j < 0 < ui−1,j as otherwise the
function is linear. The upper bound can be a line connecting
endpoints (li−1,j , hi(li−1,j)) and (ui−1,j , hi(ui−1,j)), and
the lower bound can be any αx̂i−1,j (0 ≤ α ≤ 1). Linear
relaxation can contain optimizable parameters to tighten
the bounds (Lyu et al., 2020; Xu et al., 2021), and we use
α to denote all the optimizable parameters in the linear
relaxation.

Branch-and-Bound (BaB). BaB has been widely applied
to tighten the bounds. Each time it branches the inter-
mediate bound of a selected neuron j in a selected layer
i − 1, x̂i−1,j ∈ [li−1,j ,ui−1,j], into smaller subdomains
with tighter intermediate bounds. Then BaB bounds such
subdomain respectively and take the worst bound from the
subdomains as the new bound. This process is repeated
iteratively to gradually improve the bounds. α,β-CROWN
only conducts BaB for ReLU neurons. For a selected neu-
ron with intermediate bounds x̂i,j ∈ [li−1,j ,ui−1,j] satis-
fying li−1,j < 0 < ui−1,j , the bounds can be branched
into two subdomains as x̂

(1)
i−1,j ∈ [l

(1)
i−1,j ,u

(1)
i−1,j] and

x̂
(2)
i−1,j ∈ [l

(2)
i−1,j ,u

(2)
i−1,j] with u

(1)
i−1,j = l

(2)
i−1,j = 0, and

thereby the ReLU neuron in each subdomain immediately
becomes linear and the linear relaxation becomes exact. For
each ReLU branching, α,β-CROWN further encodes a con-
straint x̂(1)

i−1,j ≤ 0 or x̂(2)
i−1,j ≥ 0 for the two subdomains

respectively by a Lagrangian multiplier denoted as β(1)
i−1,j

or β(2)
i−1,j , where β

(1)
i−1,j , β

(2)
i−1,j ≥ 0. Specifically, it adds

a term β
(1)
i−1,jx̂

(1)
i−1,j or −β

(2)
i−1,jx̂

(2)
i−1,j respectively to the

right-hand-side (RHS) of Eq. (4) and this extra term can
be combined with Ai−1x̂i−1. We use β to denote all such
Lagrangian multipliers.

Overall, α,β-CROWN uses linear bound propagation with
linear relaxation enhanced by optimizable parameters α,
and it uses BaB to tighten the bounds with branching con-
straints encoded with parameters β. α and β parameters
are optimized by gradient descent. BaB in α,β-CROWN
is restricted to ReLU and is not applicable to more general
nonlinearities.

3. Method
3.1. Overall Framework

Notations. We have reviewed α,β-CROWN in Section 2,
where we only considered a feedforward NN for its simplic-
ity. But the linear bound propagation technique has been

generalized to general computational graphs to support vari-
ous NN architectures (Xu et al., 2020). In our method, we
also consider a general computational graph h(x) for input
region x ∈ C. Instead of a feedforward network with n
layers in Section 2, we consider a computational graph with
n nodes, where each node i computes some function hi(·)
that may either correspond to a linear layer in the NN or a
nonlinearity. We use x̂i to denote the output of node i which
may contain many neurons, and we use x̂i,j to denote the
output of the j-th neuron in node i. Intermediate bounds
of node i may be needed to relax and bound hi(·), and we
use li,j ,ui,j to denote the intermediate lower bound and
upper bound respectively. We use l and u to denote all the
intermediate lower bounds and upper bounds respectively
for the entire computational graph.

Initial verification. Before entering BaB, we first compute
initial verified bounds by bound propagation with optimiz-
able linear relaxation. Specifically, we use Vα(h, C,α) to
denote the linear bound propagation-based verifier with α
denoting all the parameters in the optimizable relaxation,
and we compute initial verified bounds by optimizing α,
as h(x) ≥ maxα Vα(h, C,α) (∀x ∈ C), where α is con-
strained within a domain that ensures the soundness of the
relaxation, such as 0≤α≤ 1 for ReLU mentioned in Sec-
tion 2. All the intermediate bounds are also updated with
the updating α, and we obtain the optimized intermediate
bounds l,u. The verification finishes if Vα(h, C,α) > 0
holds already. Since α,β-CROWN has limited support on
nonlinearities beyond ReLU, we have derived new optimiz-
able linear relaxation we encounter, as will be discussed in
Section 3.5.

Branch-and-Bound. Otherwise, we enter our BaB to
tighten the bounds. We maintain a dynamic pool of in-
termediate bound domains, D = {(l(i),u(i))}mi=1, where
m = |D| is the number of current domains, and initially
D = {(l,u)} with the intermediate bounds from the initial
verification. In each iteration of BaB, we pick a domain
that leads to the worst verified bounds, and for the picked
domain, we select a neuron to branch and obtain new sub-
domains. For the new subdomains, we update l,u for the
branched neurons, and we also use β parameters for the
Lagrange multipliers in the branching constraints. For each
new subdomain, given updated l,u and the parameters α,β,
we denote a verified lower bound computed during BaB as
V (h, l,u,α,β), and we optimize α and β to obtain an
optimized lower bound for h(x):

h(x) ≥ max
α,β

V (h, l,u,α,β), ∀x ∈ C. (6)

Subdomains with V (h, l,u,α,β) > 0 are verified and dis-
carded, otherwise they are added to D for further branching.
In our implementation, a batch of multiple domains can be
branched in parallel. We repeat the process until there is no

Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound

domain left in D and the verification succeeds, or when the
timeout is reached and the verification fails. We illustrate
the framework in Figure 1.

3.2. Branching for General Nonlinearities

Branching on ReLU networks as studied by prior works is
a special case of branching on general nonlinearities. For
ReLU networks, branching is needed only if li,j < 0 < ui,j

for a neuron, and the only reasonable way is to branch
at 0 and split the intermediate bounds into two branches,
[li,j , 0] and [0,ui,j], so that ReLU is linear for both sides,
as shown in Figure 2a. However, branching for general
nonlinearities on general computational graphs is more com-
plex. First, branching can be needed even if ui,j ≤ 0 or
li,j ≥ 0 and it requires considering branching at points
other than 0. As shown in Figure 2b, a Sigmoid acti-
vation is still nonlinear when given intermediate bound
[0.25, 1.75], and it cannot be branched at 0 which is out
of [0.25, 1.75]. But it can be branched at a point within
[0.25, 1.75] such as 1.0. Second, unlike ReLU, general non-
linearities usually do not consist of two linear pieces, and
the intermediate bounds may be branched into more than
two branches at once, as shown in Figure 2c. Third, unlike
typical activation functions, some nonlinearities may take
more than one input. For example, there may be a node
computing x̂i = hi(x̂i−1, x̂i−2) = x̂i−1x̂i−2, as appeared
in Transformers (Vaswani et al., 2017; Shi et al., 2019) or
LSTMs (Hochreiter & Schmidhuber, 1997; Ko et al., 2019).
The multiplication between x̂i−1 and x̂i−2 is generally a
nonlinear function unless one of x̂i−1 and x̂i−2 is constant
and does not depend on x. For such nonlinearities, there
are multiple input nodes that can be branched. Fourth, on
general computational graphs, a node can also be followed
by multiple nonlinearities, as appeared in LSTMs, and then
branching intermediate bounds of this node can affect mul-
tiple nonlinearities.

To resolve these challenges, we propose a new and more
general formulation for branching on general nonlinearities
for general computational graphs. Each time we consider
branching the intermediate bounds of a neuron j in a node
i, namely [li,j ,ui,j], if node i is the input of some nonlin-
earity. We consider branching the concerned neuron into K

branches with branching points p(1)
i,j , · · · ,p

(K−1)
i,j , and then

the intermediate bounds become:

[li,j ,ui,j] → [li,j ,p
(1)
i,j], [p

(1)
i,j ,p

(2)
i,j], · · · , [p

(K−1)
i,j ,ui,j],

(7)
for the K branches respectively. In this work, we instantiate
Eq. (7) as uniformly branching [li,j ,ui,j] into K branches
where we take K = 3 for non-ReLU models.

We select the neuron to branch by a heuristic to approxi-
mately maximize the bound improvement after the branch-
ing, as discussed in Section 3.4. If neuron j in node i is

selected, we use the new intermediate bounds of each branch
to update the linear relaxation of the impacted nonlinearities.
We also add branching constraints parameterized by β, as
will be discussed in Section 3.3. Then compute new verified
bounds for the branches by solving Eq. (6) with multiple
iterations optimizing α and β.

Note that in our formulation, we consider each node that
is the input to some nonlinearities and decide if we branch
on this node, and it allows us to naturally generalizes to
nonlinearities with multiple input nodes as well as multi-
ple nonlinearities sharing the the input node. It would be
more convenient and general compared to considering the
nonlinearities themselves, and how all the input nodes of a
nonlinearity shall be branched, yet the input nodes may be
shared by some other nonlinearities.

3.3. Encoding the General Branching Constraints

We encode general branching constraints into the linear
bound propagation by β Lagrange multipliers which have
shown to be important for linear bound propagation in
BaB (Wang et al., 2021) which focused on ReLU. For
each neuron j in a node i branched as Eq. (7), we obtain
branching constraints for the output x̂(1)

i,j , · · · , x̂
(K)
i,j in the

K branches respectively: x̂(1)
i,j −p

(1)
i,j ≤ 0, x̂(2)

i,j −p
(2)
i,j ≤ 0,

p
(1)
i,j −x̂

(2)
i,j ≤ 0, · · · , p(K−1)

i,j −x̂
(K)
i,j ≤ 0. These constraints

can be encoded into the bound propagation by Lagrangian
multipliers, and we add s

(k)
i,j for the k (1 ≤ k ≤ K)-th

branch. For 2 ≤ k ≤ K − 1, we have

s
(k)
i,j := β

(k,1)
i,j (x̂

(k)
i,j − p

(k)
i,j) + β

(k,2)
i,j (p

(k−1)
i,j − x̂

(k)
i,j),

and in we also have s
(1)
i,j := β

(1)
i,j (x̂

(1)
i,j − p

(1)
i,j) and s

(K)
i,j :=

β
(K)
i,j (p

(K−1)
i,j −x̂

(K)
i,j). With the Lagrangian multipliers, the

linear bound during the linear bound propagation for each
branch from Eq. (1) can be updated into:

h(x) ≥
∑

i

(
Aix̂i+

∑
j
si,j

)
+c =

∑
i
Ãix̂i+c̃, (8)

where si,j denotes all the added terms with Lagrangian mul-
tipliers, Ã and c̃ are the updated parameters in the linear
bound after merging Ai with coefficients in every si,j and
merging c with the biases in every si,j respectively. Since
this is done for each of the K branches, we omit the super-
scripts “(k)” here. Then the linear bound propagation can
continue with the updated parameters.

3.4. A New Branching Heuristic for General Nonlinear
Functions

In each branching iteration, we aim to pick some neuron j
in node i on which the branching potentially leads to the

Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound

Specification

>0?

Solve 𝑉!(ℎ, 𝒞, 𝛂,)

Yes

Verified

Pick out a domain

Select and branch a neuron

Solve 𝑉(ℎ, 𝐥, 𝐮, 𝛂, 𝛃)

Add unverified domains

Branch-and-Bound (BaB)

No

No domain left
Verified

Timeout
Failed

Figure 1. Illustration of our framework, as described in Section 3.1.

3 2 1 0 1 2 3
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
x [-1.5, 2.0]
ReLU(x)
Branching at 0

(a) Branching a neuron with ReLU activa-
tion.

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0
x [0.25, 1.75]
Sigmoid(x)
Branching at 1.0

(b) Branching a neuron with Sigmoid activa-
tion into two branches.

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

x [0.25, 1.75]
Sigmoid(x)
Branching at 0.75 and 1.25

(c) Branching a neuron with Sigmoid activa-
tion into three branches.

Figure 2. Illustration of branching the intermediate bound of a neuron with different activations.

largest improvement on the verified bounds:

argmax
i,j

min
1≤k≤K

max
α,β

V (h,B(l, i, j, k), B(u, i, j, k),α,β),

(9)
where we use B(l, i, j, k) to denote the updated intermedi-
ate lower bounds for the k-th branch after branching neuron
j in node i, and similarly B(u, i, j, k) for the updated in-
termediate upper bounds. Previous works typically use
some branching heuristic (Bunel et al., 2018; 2020; Lu &
Mudigonda, 2020; De Palma et al., 2021) which approxi-
mates the potential improvement in an efficient way.

Suppose we consider branching a neuron j in node i and
we aim to estimate V (·) in Eq. (9) for each branch k. In
linear bound propagation, when the bounds are propagated
to node i, we have:

h(x) ≥ A
(k)
i,j x̂i,j + c(k)

≥ V (h,B(l, i, j, k), B(u, i, j, k),α,β),

where we use A
(k)
i,j and c(k) to denote the parameters in

the linear bounds for the k-th branch. Note that branch-
ing a neuron in node i only affects the linear relaxation
of nonlinear nodes immediately after node i (i.e., output
nodes of i), and thus A

(k)
i,j and c(k) can be computed

by only propagating the linear bounds from the output

nodes of i using stored linear bounds rather than from
the ultimate output of h(x). If we want to exactly ob-
tain V (h,B(l, i, j, k), B(u, i, j, k),α,β), then we need to
further propagate the linear bounds until the input of the
network, which is costly.

For a more efficient estimation, the BaBSR heuristic (Bunel
et al., 2020) originally for ReLU networks essentially prop-
agates the bounds only to the node before the branched
one with an early stop, as they then ignore the coefficients
(A(k)

i−1,j for a feedforward NN) without propagating further.
Note that we have described this heuristic in a general way,
although it was originally for ReLU networks only. We call
it “BaBSR-like” as a direct adaption from BaBSR (Bunel
et al., 2020). However, we find a BaBSR-like branching
heuristic is suboptimal on the models with general nonlinear-
ities we experimented, as the heuristic ignores the important
impact of the discarded coefficients on the verified bounds.

In this work, we propose a new branching heuristic named
Branching via Bound Propagation with Shortcuts (BBPS),
where we use a shortcut to directly propagate the bounds
to the input. We expect it to more precisely estimate the
potential improvement than simply discarding terms during
the bound propagation, and more efficient than simply prop-
agate the bounds layer by layer to the input. Specifically,

Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound

we save the linear bounds of all the potentially branched in-
termediate layers during the initial verification before BaB.
For every neuron j in intermediate layer i, we record:

∀x ∈ C, Âijx+ ĉij ≤ x̂ij ≤ Âijx+ ĉij , (10)

where Âij , ĉij , Âij , ĉij are parameters for the linear
bounds. These are obtained when linear bound propagation
is used for computing the intermediate bounds [li,j ,ui,j]
and the linear bounds are propagated to the input x. We then
use Eq. (10) to compute a lower bound for A(k)

i,j x̂i,j + c(k):

A
(k)
i,j x̂i,j + c(k)

≥ (A
(k)
i,j,+Âij +A

(k)
i,j,−Âij)x

+A
(k)
i,j,+ĉij +A

(k)
i,j,−ĉij + c(k), ∀x ∈ C,

and then the RHS can be concretized by Eq. (5) and serve as
an approximation for V (·) after branching. In this way, the
linear bounds are directly propagated from node i to input x
and concretized using a shortcut. Utilizing previously saved
linear bounds has also been used in previous works (Shi
et al., 2019; Zhong et al., 2021) for speeding up bound
propagation, while we show that it can serve as a better
branching heuristic for general nonlinearities.

3.5. Optimized Linear Relaxation for Less Studied
Nonlinearities

We derive new optimized linear relaxation for nonlinearities
not supported in α,β-CROWN , including multiplication
and trigonometric functions. For multiplication, the unop-
timized relaxation in α,β-CROWN is basically from (Shi
et al., 2019) originally for verifying Transformers. Shi et al.
(2019) mentioned that there are two different relaxations
with optimal tightness, and they arbitrarily take one. We
optimize the relaxation by interpolating between the two
optimal cases with a parameter for the interpolation. We
also handle periodic functions such as sin by optimizing
tangent points used for constructing the linear relaxation,
where the domain of the tangent points is carefully designed
to produce sound bounds when the function can contain
multiple periods. We discuss details in Appendix A.

4. Experiments
4.1. Settings

We experiment on NNs with various nonlinearities as shown
in ??. We consider the commonly used ℓ∞ robustness veri-
fication specification on image classification. We compare
with baselines (Singh et al., 2019; Müller et al., 2022b; Hen-
riksen & Lomuscio, 2020; Ryou et al., 2021; Bonaert et al.,
2021; Wu et al., 2022; Wei et al., 2023) on models they
support respectively. We adopt some MNIST (LeCun et al.,

2010) models trained from existing works, along with their
data instances for verification. We also compute an upper
bound on the number of potentially verifiable instances by
PGD attack (Madry et al., 2018), as a sound verification
should not verify on instances where a PGD attack can suc-
cessfully discover counterexamples. Besides, we also train
several new models on CIFAR-10 (Krizhevsky et al., 2009)
by PGD adversarial training (Madry et al., 2018) using an
ℓ∞ perturbation with ϵ = 1/255 in both training and veri-
fication. For these CIFAR-10 models, we first run vanilla
CROWN (Zhang et al., 2020; Xu et al., 2020) (without α,β
or BaB) and PGD attack (Madry et al., 2018) on the test set
and remove instances on which either PGD attack succeeds
or vanilla CROWN can already verify the property. Thereby
we only retain instances that can possibly be verified but
are relatively hard to verify. If there are more than 100
instances after the filtering, we only retain the first 100 in-
stances. We set a timeout of 300 seconds for our BaB in all
the experiments. Details are in Appendix C.

4.2. Experiments on Sigmoid and Tanh networks

MNIST models from Müller et al. (2022b). We first exper-
iment on feedforward Sigmoid networks and Tanh networks
for MNIST from Müller et al. (2022b). Table 1 shows the
results. On the Sigmoid 9× 100 network, we find that the
number of verified instances reported by Wu et al. (2022)
is particularly high and even exceeds the upper bound by
PGD attack, and thus their result may not be fully sound
in this case and we skip it in the following comparison.
Then, we find that using α only without BaB can already
outperforms all the non-CROWN baselines on most of the
cases. On 4 out of the 6 models, our BaB with BBPS is
able to verify additional instances over using α only. Our
method with BaB outperforms all the baselines. We also
find that improving on Sigmoid 9× 100 and Tanh 6× 100
networks by BaB is hard, as the initial bounds are typically
too loose on the unverifiable instances, possibly due to these
models being trained by standard training without robust-
ness intervention. In Figure 3, we plot the total number of
verified instances against the running time for various meth-
ods, showing that our method can verify more instances
compared to the baselines when the timeout threshold is at
least around 10 seconds, and BaB enables us to verify more
instances as more time is allowed compared to using α only.

CIFAR-10 models by PGD training. In Table 2, we show
results for models on CIFAR-10. The results show that
our BaB effectively improves verification beyond using α
only without BaB. Besides, the ablation studies show that
using the BaBSR-like heuristic adapted from Bunel et al.
(2020) as mentioned in Section 3.4 negatively impacts the
performance of BaB, providing evidence for the effective-
ness of our new branching heuristic. Disabling β leads to
a reduction in the number of instances, which validates the

Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound

Table 1. Number of verified instances out of the first 100 test examples on MNIST for several Sigmoid networks and Tanh networks along
with their ϵ from Müller et al. (2022b). “L×W ” in the network names denote a fully-connected NN with L layers and W hidden neurons
in each layer. The upper bounds in the last row are computed by PGD attack.

Method
Sigmoid Networks Tanh Networks

6×100 6×200 9×100 6×100 6×200 9×100
ϵ=0.015 ϵ=0.012 ϵ=0.015 ϵ=0.006 ϵ=0.002 ϵ=0.006

DeepPoly (Singh et al., 2019)ab 30 43 38 38 39 18
PRIMA (Müller et al., 2022b)a 53 73 56 61 68 52

VeriNet (Henriksen & Lomuscio, 2020) 65 81 56 31 30 16
Wu et al. (2022)? 65 75 96? - - -

Vanilla CROWN (Zhang et al., 2018)b 53 63 49 18 24 44
α only w/o BaB 62 81 62 65 72 58

BaB (BBPS) 71 83 62 65 78 59

Upper bound 93 99 92 94 97 96
aResults for DeepPoly and PRIMA are directly from Müller et al. (2022b).
bWhile DeepPoly and CROWN are thought to be equivalent on ReLU networks (Müller et al., 2022b), these two works adopt different
relaxation for Sigmoid and Tanh, which results in different results here.
?For Wu et al. (2022), we found that the result they report on the Sigmoid 9 × 100 model exceeds the upper bound by PGD attack
(96 > 92), and thus the result may not be fully valid. Results on Tanh networks are unavailable from Wu et al. (2022).

0 100 200 300
Time (seconds)

0

50

100

150

200

Nu
m

be
r o

f v
er

ifi
ed

 in
st

an
ce

s

Sigmoid networks

0 100 200 300
Time (seconds)

0

50

100

150

200

Nu
m

be
r o

f v
er

ifi
ed

 in
st

an
ce

s

Tanh networks
Vanilla CROWN
DeepPoly
PRIMA
VeriNet

 only w/o BaB
BaB (BBPS)

Figure 3. Total number of verified instances against running time threshold, on the three Sigmoid networks (left) and three Tanh networks
(right) respectively in Table 1.

Table 2. Number of verified instances out of 100 filtered instances
on CIFAR-10 for several Sigmoid networks and Tanh networks
with ϵ = 1/255.

Method Sigmoid Networks Tanh Networks
4×100 4×500 6×100 6×200 4×100 6×100

PRIMA 0 0 0 0 0 0
α only w/o BaB 28 16 43 39 25 6

BaB (BaBSR-like) 34 17 44 41 35 8
BaB (BBPS, w/o β) 47 20 55 47 39 9

BaB (BBPS) 53 21 61 49 41 9

effectiveness of encoding the general branching constraints
using β. For the non-CROWN baselines, as we only use rel-
atively hard instances for verification, we find that PRIMA
is unable to verify any instance here. On the other hand,
VeriNet depends on the FICO Xpress commercial solver
which requires a license which we do not have access to1 for
all the models in this experiment due to the problem scale.

1FICO Xpress declined the request we submitted for the aca-
demic license, directing us to obtain it via a (course) tutor, which
is not applicable for our research.

Thus we omit VeriNet in this experiment.

4.3. Experiments on LSTMs

Next, we experiment on LSTMs containing more complex
nonlinearities, including both Sigmoid and Tanh activa-
tions, as well as multiplication as sigmoid(x) tanh(y) and
sigmoid(x)y. We compare with PROVER (Ryou et al.,
2021) which is a specialized verification algorithm for RNN
outperforming earlier RNN verification works (Ko et al.,
2019). While there are other works on verifying RNN and
LSTM, such as (Du et al., 2021; Mohammadinejad et al.,
2021; Paulsen & Wang, 2022), we have not found their code,
and we also make orthogonal contributions compared them
on improving the relaxation for RNN verification. Thus
we omit them in our experiments. We take the hardest
model, an LSTM for MNIST, from the main experiments
of PROVER (other models can be verified by PROVER on
more than 90% instances and are thus omitted), where each
28 × 28 image is sliced into 7 frames for LSTM. We also
use two LSTMs trained by ourselves on CIFAR-10, where

Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound

we linearly map each 32× 32 image into 4 patches as the in-
put tokens, similar to ViTs with patches (Dosovitskiy et al.,
2021). Table 3 shows the results. Using α only without
BaB can already outperform PROVER with specialized re-
laxation for RNN and LSTM, and using BaB further boosts
the performance.

Table 3. Number of verified instances out of 100 instances on
MNIST and CIFAR-10 respectively. The MNIST model fol-
lows the setting of the hardest model in the main experiments
of PROVER (Ryou et al., 2021) with ϵ = 0.01. The CIFAR-10
models are trained by ourselves with ϵ = 1/255. “LSTM-7-32”
indicates an LSTM with 7 input frames and 32 hidden neurons,
similar for the other two models.

Method MNIST Model CIFAR-10 Models
LSTM-7-32 LSTM-4-32 LSTM-4-64

PROVER 63 8 3
α only w/o BaB 83 16 9

BaB (BBPS) 86 25 15

Upper bound 98 100 100

4.4. Experiments on ViTs and Sin Networks

Finally, we also experiment on ViTs and NNs with sin ac-
tivation, which contain nonlinearities that are less studied.
For ViTs, we compare with DeepT (Bonaert et al., 2021)
which is specialized for verifying Transformers without us-
ing BaB. We show the results in Table 4, where our methods
outperform DeepT and BaB effectively improves the verifi-
cation. Besides, in Appendix B, we also compare with Wei
et al. (2023) which supports verifying attention networks but
not the entire ViT, and we experiment on models from Wei
et al. (2023), where our methods also outperform Wei et al.
(2023). Moreover, we demonstrate our method on networks
with sin activations as periodic activation functions are im-
portant for applications such as neural rendering (Sitzmann
et al., 2020), and Table 5 shows that our method is also
effective.

Table 4. Number of verified instances on ViTs for CIFAR-10 (ϵ =
1/255). There are fewer than 100 instances after the filtering,
shown as the upper bounds. “ViT-L-H” stands for L layers and
H heads.

Method ViT-1-3 ViT-1-6 ViT-2-3 ViT-2-6

DeepT 0 1 0 1
α only w/o BaB 1 3 11 7

BaB (BBPS) 15 34 28 24

Upper bound 67 92 72 69

5. Related Work
Branch-and-bound (BaB) has been shown to be an effec-
tive technique for NN verification (Bunel et al., 2018; Lu
& Mudigonda, 2020; Wang et al., 2018a; Xu et al., 2021;

Table 5. Number of verified instances on sin networks for CIFAR-
10 (ϵ = 1/255).

Method 4×100 4×200 4×500

α only w/o BaB 75 70 59
BaB (BBPS) 87 86 73

De Palma et al., 2021; Kouvaros & Lomuscio, 2021; Wang
et al., 2021; Henriksen & Lomuscio, 2021), but most of
the existing works focus on ReLU networks and are not
directly applicable to networks with nonlinearities beyond
ReLU. On BaB for NNs with other nonlinearities, Henrik-
sen & Lomuscio (2020) conducted BaB on Sigmoid and
Tanh networks, but their framework still depends on a com-
mercial LP solver which has been argued as less effective
than recent NN verification methods using linear bound
propagation with branching constraints (Wang et al., 2021).
Besides, Wu et al. (2022) studied verifying Sigmoid net-
works with counter-example-guided abstraction refinement
but their method is still specialized for Sigmoid. Moreover,
these works have only considered S-shaped activations, and
there lacks a general framework supporting general nonlin-
earities beyond some particular ones, which we address in
this paper. Without using BaB, there are also other works
studying the relaxation in verifying NNs with various non-
linearities, such as RNNs and LSTMs (Ko et al., 2019; Du
et al., 2021; Ryou et al., 2021; Mohammadinejad et al.,
2021; Zhang et al., 2023), and also Transformers (Shi et al.,
2019; Bonaert et al., 2021; Wei et al., 2023). These works
have orthogonal contributions compared to ours using BaB
for further improvement above a base verifier. In addition,
there are works studying the branching heuristic in verify-
ing ReLU networks, such as filtering initial candidates from
BaBSR (Bunel et al., 2020) with a more accurate computa-
tion, using Graph Neural Networks for the heuristic (Lu &
Mudigonda, 2020), or using a heuristic guided with tighter
multiple-neuron relaxation (Ferrari et al., 2021), which may
inspire future improvement on the BaB for general nonlin-
earities.

6. Conclusions
To conclude, we propose a general BaB framework for NN
verification involving general nonlinearities. We also pro-
pose a new and more effective branching heuristic for BaB
on general nonlinearities and we extend optimized linear
relaxation. Experiments on verifying NNs with various
nonlinearities demonstrate the effectiveness of our method.

Limitations and Future work. There remain several lim-
itations in this work to be resolved in the future. As men-
tioned in Section 3.2, we have only used a simple way for
deciding the branching points, and it will be interesting
for future works to investigate more sophisticated ways.

Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound

Besides, for the branching heuristic, we have not added
mechanisms such as filtering the candidates after the initial
heuristic (De Palma et al., 2021), and we also leave it for
future work to study the possibility of applying the latest
progress on ReLU networks to strengthen the branching
heuristic for general nonlinearities.

References
Bak, S., Liu, C., and Johnson, T. The second interna-

tional verification of neural networks competition (vnn-
comp 2021): Summary and results. arXiv preprint
arXiv:2109.00498, 2021.

Bonaert, G., Dimitrov, D. I., Baader, M., and Vechev, M.
Fast and precise certification of transformers. In Proceed-
ings of the 42nd ACM SIGPLAN International Confer-
ence on Programming Language Design and Implemen-
tation, pp. 466–481, 2021.

Bunel, R., Turkaslan, I., Torr, P. H. S., Kohli, P., and
Mudigonda, P. K. A unified view of piecewise linear
neural network verification. In Advances in Neural Infor-
mation Processing Systems, pp. 4795–4804, 2018.

Bunel, R., Mudigonda, P., Turkaslan, I., Torr, P., Lu, J.,
and Kohli, P. Branch and bound for piecewise linear
neural network verification. Journal of Machine Learning
Research, 21(2020), 2020.

De Palma, A., Bunel, R., Desmaison, A., Dvijotham, K.,
Kohli, P., Torr, P. H., and Kumar, M. P. Improved branch
and bound for neural network verification via lagrangian
decomposition. arXiv preprint arXiv:2104.06718, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021.

Du, T., Ji, S., Shen, L., Zhang, Y., Li, J., Shi, J., Fang,
C., Yin, J., Beyah, R., and Wang, T. Cert-rnn: Towards
certifying the robustness of recurrent neural networks. In
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’21, pp.
516–534, 2021. ISBN 9781450384544. doi: 10.1145/
3460120.3484538.

Dvijotham, K., Stanforth, R., Gowal, S., Mann, T. A., and
Kohli, P. A dual approach to scalable verification of deep
networks. In Proceedings of the Thirty-Fourth Confer-
ence on Uncertainty in Artificial Intelligence, UAI 2018,
Monterey, California, USA, August 6-10, 2018, pp. 550–
559, 2018.

Ferrari, C., Mueller, M. N., Jovanović, N., and Vechev,
M. Complete verification via multi-neuron relaxation
guided branch-and-bound. In International Conference
on Learning Representations, 2021.

Henriksen, P. and Lomuscio, A. Efficient neural network ver-
ification via adaptive refinement and adversarial search.
In ECAI 2020, pp. 2513–2520. IOS Press, 2020.

Henriksen, P. and Lomuscio, A. Deepsplit: An efficient split-
ting method for neural network verification via indirect
effect analysis. In IJCAI, pp. 2549–2555, 2021.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient smt solver for verifying
deep neural networks. In International Conference on
Computer Aided Verification, pp. 97–117, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Ko, C., Lyu, Z., Weng, L., Daniel, L., Wong, N., and Lin,
D. POPQORN: quantifying robustness of recurrent neu-
ral networks. In International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 3468–3477, 2019.

Kouvaros, P. and Lomuscio, A. Towards scalable complete
verification of relu neural networks via dependency-based
branching. In IJCAI, pp. 2643–2650, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical Report TR-2009,
2009.

LeCun, Y., Cortes, C., and Burges, C. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Lu, J. and Mudigonda, P. Neural network branching for
neural network verification. In Proceedings of the Inter-
national Conference on Learning Representations (ICLR
2020). Open Review, 2020.

Lyu, Z., Ko, C., Kong, Z., Wong, N., Lin, D., and Daniel, L.
Fastened CROWN: tightened neural network robustness
certificates. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, pp. 5037–5044, 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations, 2018.

Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound

Mohammadinejad, S., Paulsen, B., Deshmukh, J. V., and
Wang, C. Diffrnn: Differential verification of recurrent
neural networks. In Formal Modeling and Analysis of
Timed Systems: 19th International Conference, FOR-
MATS 2021, Paris, France, August 24–26, 2021, Proceed-
ings 19, pp. 117–134. Springer, 2021.

Müller, M. N., Brix, C., Bak, S., Liu, C., and Johnson,
T. T. The third international verification of neural net-
works competition (vnn-comp 2022): Summary and re-
sults. arXiv preprint arXiv:2212.10376, 2022a.

Müller, M. N., Makarchuk, G., Singh, G., Püschel, M.,
and Vechev, M. Prima: general and precise neural net-
work certification via scalable convex hull approxima-
tions. Proceedings of the ACM on Programming Lan-
guages, 6(POPL):1–33, 2022b.

Paulsen, B. and Wang, C. Linsyn: Synthesizing tight linear
bounds for arbitrary neural network activation functions.
In Tools and Algorithms for the Construction and Anal-
ysis of Systems: 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Mu-
nich, Germany, April 2–7, 2022, Proceedings, Part I, pp.
357–376. Springer, 2022.

Ryou, W., Chen, J., Balunovic, M., Singh, G., Dan, A.,
and Vechev, M. Scalable polyhedral verification of re-
current neural networks. In International Conference on
Computer Aided Verification, pp. 225–248, 2021.

Shi, Z., Zhang, H., Chang, K.-W., Huang, M., and Hsieh,
C.-J. Robustness verification for transformers. In Inter-
national Conference on Learning Representations, 2019.

Singh, G., Gehr, T., Püschel, M., and Vechev, M. An abstract
domain for certifying neural networks. Proceedings of the
ACM on Programming Languages, 3(POPL):41, 2019.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wet-
zstein, G. Implicit neural representations with periodic
activation functions. Advances in Neural Information
Processing Systems, 33:7462–7473, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 5998–6008, 2017.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
Efficient formal safety analysis of neural networks. In
Advances in Neural Information Processing Systems, pp.
6369–6379, 2018a.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
Formal security analysis of neural networks using sym-
bolic intervals. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pp. 1599–1614, 2018b.

Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.-J.,
and Kolter, J. Z. Beta-crown: Efficient bound propaga-
tion with per-neuron split constraints for neural network
robustness verification. Advances in Neural Information
Processing Systems, 34:29909–29921, 2021.

Wei, D., Wu, H., Wu, M., Chen, P.-Y., Barrett, C., and
Farchi, E. Convex bounds on the softmax function with
applications to robustness verification. In International
Conference on Artificial Intelligence and Statistics, pp.
6853–6878. PMLR, 2023.

Wong, E. and Kolter, J. Z. Provable defenses against adver-
sarial examples via the convex outer adversarial polytope.
In International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research,
pp. 5283–5292, 2018.

Wu, H., Tagomori, T., Robey, A., Yang, F., Matni, N., Pap-
pas, G., Hassani, H., Pasareanu, C., and Barrett, C. To-
ward certified robustness against real-world distribution
shifts. arXiv preprint arXiv:2206.03669, 2022.

Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K., Huang,
M., Kailkhura, B., Lin, X., and Hsieh, C. Automatic
perturbation analysis for scalable certified robustness and
beyond. In Advances in Neural Information Processing
Systems, 2020.

Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X.,
and Hsieh, C. Fast and complete: Enabling complete
neural network verification with rapid and massively par-
allel incomplete verifiers. In International Conference on
Learning Representations, 2021.

Zhang, H., Weng, T., Chen, P., Hsieh, C., and Daniel, L. Effi-
cient neural network robustness certification with general
activation functions. In Advances in Neural Information
Processing Systems, pp. 4944–4953, 2018.

Zhang, H., Chen, H., Xiao, C., Gowal, S., Stanforth, R.,
Li, B., Boning, D. S., and Hsieh, C. Towards stable and
efficient training of verifiably robust neural networks. In
International Conference on Learning Representations,
2020.

Zhang, Y., Du, T., Ji, S., Tang, P., and Guo, S. Rnn-guard:
Certified robustness against multi-frame attacks for recur-
rent neural networks. arXiv preprint arXiv:2304.07980,
2023.

Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound

Zhong, Y., Ta, Q.-T., Luo, T., Zhang, F., and Khoo, S.-C.
Scalable and modular robustness analysis of deep neural
networks. In Programming Languages and Systems: 19th
Asian Symposium, APLAS 2021, Chicago, IL, USA, Oc-
tober 17–18, 2021, Proceedings 19, pp. 3–22. Springer,
2021.

Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound

A. Additional Optimizable Linear Relaxation
A.1. Optimizable Linear Relaxation for Multiplication

In this section, we derive our optimizable linear relaxation for multiplication. For each elementary multiplication xy where
x ∈ [x, x], y ∈ [y, y] are the intermediate bounds for x and y, we aim to relax and bound xy as:

∀x ∈ [x, x], y ∈ [y, y], ax+ by + c ≤ xy ≤ ax+ by + c, (11)

where a, b, c, a, b, c are parameters in the linear bounds. Shi et al. (2019) derived optimal parameters that minimize the gap
between the relaxed upper bound and the relaxed lower bound:

argmin
a,b,c,a,b,c

∫
x∈[x,x]

∫
y∈[y,y]

(ax+ by + c)− (ax+ by + c) s.t. Eq. (11). (12)

However, the optimal parameters they found only guarantee that the linear relaxation is optimal for this node, but not the final
bounds after conducting a bound propagation on the entire NN. Therefore, we aim to make these parameters optimizable to
tighten the final bounds as previous works did for ReLU networks or S-shaped activations (Xu et al., 2021; Lyu et al., 2020).

We notice that Shi et al. (2019) mentioned that there are two solutions for a, b, c and a, b, c respectively that solves Eq. (12):
a1 = y

b1 = x

c1 = −xy

,

a1 = y

b1 = x

c1 = −xy

, (13)

a2 = y

b2 = x

c2 = −xy

,

a2 = y

b2 = x

c2 = −xy

. (14)

Therefore, to make the parameters optimizable, we introduce parameters α and α, and we interpolate between Eq. (13) and
Eq. (14) as:

a = αy + (1− α)y

b = αx+ (1− α)x

c = −αxy − (1− α)xy

s.t. 0 ≤ α ≤ 1, (15)

a = αy + (1− α)y

b = αx+ (1− α)x

c = −αxy − (1− α)xy

s.t. 0 ≤ α ≤ 1. (16)

It is easy to verify that interpolating between two sound linear relaxations satisfying Eq. (11) still yields a sound linear
relaxation. And α and α are part of all the optimizable linear relaxation parameters α mentioned in Section 2.

A.2. Optimizable Linear Relaxation for Sine

We also derive new optimized linear relaxation for periodic functions, in particular sin(x) for x ∈ [x, x]. A non-optimizable
linear relaxation for sin already exists in α,β-CROWN and we adopt it as an initialization and focus on making it optimizable.
For each of the lower bound and upper bound, the initial relaxation first checks the line connecting (x, sin(x)) and (x, sin(x)),
and this line is adopted if it is a sound bounding line and no optimization is needed. Otherwise, a tangent line is used as the
bounding line, and we optimize the tangent point. Within [x, x], if sin(x) happens to be monotonic with at most only one
inflection point, the tangent point can be optimized in a way similar to bounding an S-shaped activation (Lyu et al., 2020).
Otherwise, the input range contains extreme points, where sin(x) has extreme points at (2k+1)π

2 (k ∈ Z). Suppose (2k1+1)π
2

is the extreme point closest to x and (2k2+1)π
2 is the one closet to x, within [x, x]. Then we optimize the tangent point within

[x, (2k1+1)π
2] and [(2k2+1)π

2 , x] respectively, which yields two set of lower and upper bounds. We compare them with the
one connecting (x, sin(x)) and (x, sin(x)). We take a sound bounding line that is relatively tighter according to the gap
between the bounding line and sin(x), for the lower bound and upper bound respectively.

Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound

B. Additional Results
B.1. Experiments on Convolutional Neural Networks from Müller et al. (2022b)

Table 6. Number of verified instances out of the first 100 test examples on MNIST for convolutional neural networks with Sigmoid and
Tanh activations respectively. These models are the “ConvSmall” models in Müller et al. (2022b). VeriNet is not included as it depends on
the FICO Xpress solver which requires a non-community license that we cannot obtain (see Section 4.2) for the problem size in these
models.

Method Sigmoid ConvSmall (ϵ = 0.014) Tanh ConvSmall (ϵ = 0.005)

DeepPoly (Singh et al., 2019) 30 16
PRIMA (Müller et al., 2022b) 51 30

Wu et al. (2022) 63 -
Vanilla CROWN (Zhang et al., 2018) 65 55

α only w/o BaB 84 69
BaB (BBPS) 92 75

Upper bound 97 98

Table 6 shows results on convolutional neural networks from Müller et al. (2022b) and the conclusions are consistent with
those for Table 1.

B.2. Experiments on Self-Attention Networks from (Wei et al., 2023)

To compare with Wei et al. (2023) that only supports verifying single-layer self-attention networks but not the entire ViT, we
adopt pre-trained models from (Wei et al., 2023) and run our verification methods under their settings, with 500 test images
in MNIST using ϵ = 0.02. We show the results in Table 7, where our methods also outperform (Wei et al., 2023) on all the
models.

Table 7. Number of verified instances out of 500 instances in MNIST with ϵ = 0.02. A-small, A-medium and A-big are three self-attention
networks with different parameter sizes from (Wei et al., 2023).

Method A-small A-medium A-big

Wei et al. (2023) 406 358 206

α only w/o BaB 444 388 176
BaB (BBPS) 450 455 232

Upper bound 463 479 482

C. Implementation Details
Verification. We implement our verification algorithm based on auto LiRPA2 and α,β-CROWN3, both under the BSD-3-
Clause license. We use the Adam optimizer (Kingma & Ba, 2015) to optimize α and β with an initial learning rate of 0.1
and the learning rate is decayed by 2% after each iteration. To solve Vα(h, C,α) in the initial verification, we optimize α
for at most 100 iterations. And to solve V (h, l,u,α,β) during BaB, we optimize α and β for at most 50 iterations. Our
BaB is batched where multiple domains are branched in parallel, and the batch size is dynamic tuned based on the model
size to fit the GPU memory.

Training the models. To train our models on CIFAR-10, we use PGD adversarial training (Madry et al., 2018). We use 7
PGD steps during the training and the step size is set to ϵ/4. For training the Sigmoid networks in Table 2, we use the SGD
optimizer with a learning rate of 5× 10−2 for 100 epochs; and for training the Tanh networks, we use the SGD optimizer
with a learning rate of 1 × 10−2 for 100 epochs. For training the LSTMs in Table 3, we use the Adam optimizer with a

2https://github.com/Verified-Intelligence/auto_LiRPA
3https://github.com/Verified-Intelligence/alpha-beta-CROWN

https://github.com/Verified-Intelligence/auto_LiRPA
https://github.com/Verified-Intelligence/alpha-beta-CROWN

Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound

learning of 10−3 for 30 epochs. And for training the ViTs, we use the Adam optimizer with a learning of 5× 10−3 for 100
epochs. For Siren, we use the SGD optimizer with a learning rate of 1× 10−3 for 100 epochs

	Introduction
	Background
	Method
	Overall Framework
	Branching for General Nonlinearities
	Encoding the General Branching Constraints
	A New Branching Heuristic for General Nonlinear Functions
	Optimized Linear Relaxation for Less Studied Nonlinearities

	Experiments
	Settings
	Experiments on Sigmoid and Tanh networks
	Experiments on LSTMs
	Experiments on ViTs and Sin Networks

	Related Work
	Conclusions
	Additional Optimizable Linear Relaxation
	Optimizable Linear Relaxation for Multiplication
	Optimizable Linear Relaxation for Sine

	Additional Results
	Experiments on Convolutional Neural Networks from muller2022prima
	Experiments on Self-Attention Networks from wei2023convex

	Implementation Details

