
Interpreting Robustness Proofs of Deep Neural Networks

Debangshu Banerjee 1 Avaljot Singh 1 Gagandeep Singh 1 2

Abstract
Numerous methods have emerged to verify the ro-
bustness of deep neural networks (DNNs). While
effective in providing theoretical guarantees, the
proofs generated using these techniques often lack
human interpretability. Our paper bridges this gap
by introducing new concepts, algorithms, and rep-
resentations that generate human-understandable
interpretations of the proofs. Using our approach,
we discover that standard DNN proofs rely more
on irrelevant input features compared to provably
robust DNNs. Provably robust DNNs filter out
spurious input features, but sometimes it comes at
the cost of semantically meaningful ones. DNNs
combining adversarial and provably robust train-
ing strike a balance between the two. Overall, our
work enhances human comprehension of proofs
and sheds light on their reliance on different types
of input features.

1. Introduction
Lack of trust stemming from the black-box behaviors of
DNNs poses a major challenge in their real-world deploy-
ment. To mitigate this issue there has been substantial work
on interpreting individual DNN predictions to understand
their internal workings. However, existing DNN interpre-
tation methods (Sundararajan et al., 2017) fail to provide
human-understandable insights for infinite input sets. Or-
thogonally, the field of DNN verification has emerged to
provide formal guarantees on DNN behaviors on an infinite
set of inputs. DNN verifiers (Singh et al., 2019c; Zhang
et al., 2018) generate formal proofs sufficient to prove net-
work robustness but it is not clear whether they are based
on any meaningful input features learned by the DNN that
are necessary for correct classification. So to improve trust,
we propose for the first time, the problem of interpreting the

*Equal contribution 1Department of Computer Science, Uni-
versity of Illinois, Urbana-Champaign, USA 2VMware Re-
search, Palo Alto, USA. Correspondence to: Debangshu Banejee
<db21@illinois.edu>.

2nd Workshop on Formal Verification of Machine Learning, Hon-
olulu, Hawaii, USA. Colocated with ICML 2023. Copyright 2023
by the author(s).

invariants captured by DNN robustness proofs.

Key Challenges and contributions. State-of-the-art DNN
verifiers generate proofs involving high-dimensional con-
vex shapes across thousands of neurons. Interpreting these
shapes is challenging, so we aim to identify the most impor-
tant parts of the proof. This requires defining importance
and developing methods to identify them. We make the
following contributions to overcome these challenges:

• We introduce a novel concept of proof features that can be
analyzed independently by generating the corresponding
interpretations. We propose a priority function over them
that signifies their importance in the complete proof.

• We design a general algorithm - ProFIt (Proof Feature
Interpretation) that extracts a set of important proof fea-
tures that preserve the proof.

• We compare interpretations of the proof features for stan-
dard DNNs and state-of-the-art robustly trained DNNs
for the MNIST and CIFAR10 datasets. We observe that
the proof features corresponding to the standard networks
rely on spurious input features while the proofs of ad-
versarially trained DNNs (Madry et al., 2018) filter out
some of the spurious features. In contrast, the networks
trained with certifiable training (Zhang et al., 2020) pro-
duce proofs that do not rely on any spurious features but
they also miss out on some meaningful features. Proofs
for training methods that combine both empirical and cer-
tified robustness (Balunovic and Vechev, 2020) provide a
common ground. We empirically show that these obser-
vations are not contingent on any specific DNN verifier.

2. Preliminaries
DNN verification. DNN verification involves proving that
the network outputs Y = N(X) corresponding to all inputs
X from an input region specified by ϕ, satisfy a logical
linear specification ψ. The output specification, is written
as ψ(Y) = (CTY ≥ 0) where C ∈ Rdl defines the linear
inequality for encoding the robustness property. Throughout
the paper, we refer to the input region ϕ and output specifi-
cation ψ together as property (ϕ, ψ).
A DNN verifier V symbolically computes a possibly over-
approximated output region A ⊆ Rdl containing all pos-
sible outputs of N corresponding to ϕ. Let Λ(A) =
minY ∈A C

TY denote the minimum value of CTY where
Y ∈ A. Then N satisfies property (ϕ, ψ) if Λ(A) ≥ 0. In

Interpreting Robustness Proofs of Deep Neural Networks

this paper, we primarily focus on deterministic, sound, and
incomplete verifiers (Singh et al., 2018; Zhang et al., 2018)
over complete verifiers for their lower computational cost.
DNN interpretation with sparse decision layer. DNNs
considered in this paper, have complex multi-layer struc-
tures, making them harder to interpret. Instead of interpret-
ing what each layer of the network is doing, recent works
(Wong et al., 2021; Liao and Cheung, 2022) treat DNNs as
the composition of a deep feature extractor and an affine
decision layer. The output at each neuron of the penultimate
layer represents a single deep feature and the final affine
layer linearly combines them to compute the network output.
This perspective enables us to identify the set of features
used by the network to compute its output and to investigate
their semantic meaning using the existing feature visualiza-
tion techniques (Ribeiro et al., 2016; Simonyan et al., 2014).
However, visualizing each feature is impractical for large
DNNs where the penultimate layer can contain thousands of
neurons. To address this, the work (Wong et al., 2021) tries
to identify a smaller set of features sufficient to maintain
the performance of the network. This smaller but sufficient
feature set retains only the most important features corre-
sponding to a given input. It is shown empirically (Wong
et al., 2021) that a subset of these features of size less than
10 is sufficient to maintain their accuracy.

3. Interpreting DNN Proofs
Proof features. Similar to existing works (Wong et al.,
2021), for proof interpretation, we propose to segregate the
final decision layer from the network and focus at the fea-
tures extracted at the penultimate layer. For a given input
region ϕ, we look at the symbolic shape (for example - in-
tervals, zonotopes, polytopes, etc.) computed by the verifier
at the penultimate layer and then compute its projection on
each dimension of the penultimate layer. The projection is
an interval [ln, un] which contains all possible output values
of the corresponding neuron n with respect to ϕ.

Definition 1 (Proof Features). Given a network N , input
region ϕ and neural network verifier V , for each neuron
ni at the penultimate layer of N , the proof feature Fni

extracted at that neuron ni is an interval [lni , uni] such that
∀X ∈ ϕ, the output at ni always lies in the range [lni , uni].

We use F to denote the set of all proof features at the penul-
timate layer and FS to denote the proof features correspond-
ing to S ⊆ [dl−1] i.e. FS = {Fni

| i ∈ S}. If N is
formally verified by the verifier V to satisfy the property (ϕ,
ψ), then in order to gain insights about the proof generated
by V , we can directly investigate (described in section A.2)
all the proof features F . However, contemporary networks
can have thousands of proof features, but many of them
may be spurious and unimportant. So, we aim to identify a
smaller, more important set of proof features that satisfy the
property (ϕ, ψ). The key challenge lies in defining the most

important set of proof features w.r.t the property (ϕ, ψ).

3.1. Sufficient Proof Features

We argue that an important proof feature set, FS0
⊆ F ,

must prove the property (ϕ, ψ) with verifier V and must
have the minimum number of proof features necessary to
satisfy the property. The minimality of FS0

ensures only the
proof features essential for proving the property are retained.
This hypothesis allows us to view the extraction of important
proof features as finding a minimum proof feature set that
preserves the property (ϕ, ψ) with verifier V .

Definition 2 (Sufficient proof feature set). For the proof
of property (ϕ, ψ) on DNN N with verifier V , a nonempty
set FS ⊆ F of proof features is sufficient if the verifier V
proves the property by using only the proof features in FS .

Definition 3 (Minimum proof feature set). A minimum proof
feature set FS0 ⊆ F for DNN N verified with V on (ϕ, ψ)
is a sufficient proof feature set having the minimum size.

Extracting a minimum set of proof features FS0
from F is

equivalent to pruning maximum number of proof features
from F without violating the property (ϕ, ψ). Let, Wl[:
, i] ∈ Rdl denote the i-th column of the weight matrix Wl

of the final network layer Nl. Pruning any proof feature
Fni

results in setting all weights in Wl[:, i] to 0. Therefore,
to compute FS0

, it is sufficient to devise an algorithm that
can prune maximum number of columns from Wl while
still preserving the property (ϕ, ψ). For any proof feature
set FS ⊆ F , let Wl(S) ∈ Rdl×dl−1 be the weight matrix
of the pruned final layer that only retains proof features
corresponding to FS . Then column Wl(S)[:, i] = Wl[:, i]
if i ∈ S and 0 otherise where 0 ∈ Rdl−1 dentoes a constant
all-zero vector. The proof feature set FS is sufficient iff
the property (ϕ, ψ) can be verified by V on N with the
pruned weight matrix Wl(S). As described in Section 2,
for property verification the verifier V computes an over-
approximated output region A of N over the input region ϕ.
Let A(Wl, S) denote the over-approximated output region
corresponding to Wl(S). The neural network N can be
verified by V on the property (ϕ, ψ) with Wl(S) iff the
lower bound Λ(A(Wl, S)) ≥ 0. Therefore, finding S0

corresponding to a minimum proof feature set FS0
can be

formulated as below where for any S ⊆ [dl−1], |S| denotes
the number of elements in S.

argmin
S ̸=∅, S⊆[dl−1]

|S| s.t. Λ(A(Wl, S)) ≥ 0 (1)

3.2. Approximate Minimum Proof Feature Extraction

The search space for finding FS0
is prohibitively large and

contains 2dl−1 possible candidates. So, computing a mini-
mum solution with an exhaustive search is infeasible. We de-
sign a practically efficient approximation algorithm based on

Interpreting Robustness Proofs of Deep Neural Networks

Table 1. ProFIt Efficacy Analysis

Dataset Training Input No. of Original Mean Proof No. of proofs No. of proofs
Method Region (ϕ) proved Feature Feature Count with ≤ 5 with ≤ 10

eps (ϵ) properties Count proof features proof features
Random Gradient ProFIt (ProFIt) (ProFIt)

MNIST Standard 0.02 459 100 20.31 5.25 1.96 449 457
PGD Trained 0.02 415 1000 93.29 13.73 6.02 315 364
COLT 0.02 480 100 14.45 5.43 3.46 401 461
CROWN-IBP 0.02 482 100 9.51 6.73 6.16 240 401

CIFAR-10 Standard 0.2/255 277 100 30.36 18.28 11.12 127 173
PGD Trained 0.2/255 298 100 31.22 16.58 9.74 173 210
COLT 0.2/255 267 250 30.10 18.13 9.03 170 204
CROWN-IBP 0.2/255 265 256 7.96 7.49 5.30 172 221

a greedy heuristic that can generate a small (may not always
be minimum) sufficient feature set with only O(log(dl−1))
verifier calls. The detailed algorithm is described in ap-
pendix A. At a high level, the heuristic attempts to estimate
whether pruning each proof feature Fni

from a sufficient fea-
ture set violates the property (ϕ, ψ) or not. Subsequently, we
prioritize pruning those proof features Fni that, if pruned,
will likely preserve the proof of the property (ϕ,ψ) with the
verifier V . Given a sufficient proof features set FS , for a
proof feature Fni

∈ FS , we compute its importance by esti-
mating the change ∆(Fni

,FS) that occurs to Λ(A(Wl, S))
if Fni

is pruned from FS . Let, the over-approximated output
region computed by verifier V corresponding to FS \{Fni}
be A(Wl, S \ {i}) then ∆(Fni ,FS) is defined as follows

∆(Fni
,FS) = |Λ(A(Wl, S))− Λ(A(Wl, S \ {i}))|

However, ∆(Fni
,FS) depends on the specific FS and

doesn’t estimate the global importance of Fni
. To ad-

dress this, we define the priority P (Fni
) as the maximum

∆(Fni
,FS) over all sufficient feature set FS containing

Fni . Since iterating over all FS is impractical, we com-
pute an upper bound Pub(Fni) for P (Fni) that holds for all
FS . This global upper bound enables efficient computation
without iterating over all FS . For the network N and input
region ϕ, let Al−1 denote the over-approximate region com-
puted by V at the penultimate layer. Then, the global uppper
bound of ∆(Fni ,FS) can be computed as follows where
for any vector X ∈ Rdl−1 , xi denotes its i-th coordinate:

∆(Fni ,FS) ≤ max
X∈Al−1

|(CTWl(S)X − CTWl(S \ {i})X)|

P (Fni
) = max

FS

∆(Fni
,FS) ≤ max

X∈Al−1

|(CTWl[:, i]) · xi)|

Now, any proof feature Fni
= [lni

, uni
] computed by V

contains all possible values of xi where X ∈ Al−1. Lever-
aging this observation, we can further simplify the upper
bound Pub(Fni) of P (Fni) as shown below. This simplifi-
cation ensures that Pub(Fni) for all Fni can be computed

with O(dl−1) elementary vector operations.

Pub(Fni
) = |(CTWl[:, i])| ·max(|lni

|, |uni
|) (2)

4. Experimental Evaluation
4.1. Efficacy of ProFIt Algorithm

In this section, we evaluate the effectiveness of ProFIt in
extracting sufficient proof feature sets and the usefulness
of the proposed priority ordering. We assess the size of the
extracted feature sets used for interpretation, as it reflects
the ease of interpreting the proof. We compare ProFIt with
two other priority heuristics: (i) a random ordering of proof
features and (ii) sorting proof features based on gradient
magnitudes computed w.r.t the verifier output. For each net-
work, we use the first 500 images from their corresponding
test sets for defining input specification ϕ. We conduct ex-
periments with two different ϵ values for defining L∞ input
region. The ϵ values used for MNIST networks are 0.02 and
0.1 and that for CIFAR-10 networks are 0.2/255 and 2/255.
For experiments with high ϵ values (0.1 for MNIST and
2/255 for CIFAR-10), we omit standard DNNS as they do
not satisfy robustness properties defined with larger ϵ. Un-
less specified otherwise, we use state-of-the-art incomplete
verifier α-Crown (Xu et al., 2021) for all our experiments.

Mean proof feature set size comparison: In Table 1,
we summarize the results of the experiments for different
networks. We show that the mean size of the proof fea-
ture set computed using ProFIt (column 8) is significantly
smaller than that of the random and gradient-based base-
lines (columns 6 and 7 respectively). Detailed results are in
Appendix D.1 and D.2.

Evaluation of proof feature priority: Next, we evaluate
the efficacy of the priority ordering of proof features defined
in Eq. 2 against the random and gradient-based priority or-
dering defined above. For these experiments, we fix the
proof feature set size and compare the extracted proof fea-
ture sets with the fixed size based on two metrics - (i) %

Interpreting Robustness Proofs of Deep Neural Networks

(a) Percentages of proof preserved (b) Mean relative change in verifier output

Figure 1. Efficacy analysis of the priority heuristic on PGD-trained MNIST networks.

cases the extracted proof feature set preserves the prop-
erty (ϕ, ψ) that was satisfied initially and (ii) mean relative
change in verifier output after every proof feature, not part
of the extracted set is removed. Since we fix the extracted
proof feature set size, the feature set is no longer guaranteed
to be sufficient. For proof feature set size varying from 2
to 20, we show that the priority ordering used by ProFIt
preserves a higher % of proofs (Fig. 1a) while also achiev-
ing a lower relative change from the original verifier output
(Fig. 1b) compared to both the baselines. These plots are
generated on PGD-trained MNIST networks for ϵ = 0.1.
Plots for other MNIST networks and CIFAR-10 networks
are shown in Appendix D.3. Additionally, in Appendix D.4
we provide a qualitative evaluation of the priority order-
ing of proof features where we show that interpretations of
proof features with higher priority capture meaningful input
features while interpretations of proof features with lower
priority are less informative.

4.2. Qualititive comparison of robustness proofs

In this section, we interpret proof features obtained with
ProFIt and use these interpretations to qualitatively evaluate
different proofs of the same robustness property generated
on standard and robustly trained networks with the same ver-
ifier - α-Crown. We also study the effect of certified robust
training methods like CROWN-IBP (Zhang et al., 2020),
empirically robust training methods like PGD (Madry et al.,
2018) and training methods that combine both adversarial
and certified training like COLT (Balunovic and Vechev,
2020) on the proof features. For an input region ϕ, we say
that a robustness proof is semantically meaningful if it fo-
cuses on the relevant features of the output class for images
contained inside ϕ. In the case of MNIST or CIFAR-10 im-
ages, spurious features are the pixels that form a part of the
background of the image, whereas meaningful features are
the pixels that are a part of the actual object being identified
by the network. Gradient map of the extracted proof fea-

tures w.r.t. to the input region ϕ gives us an idea of the input
pixels that the network focuses on. We obtain the gradient
maps by calculating the mean gradient over 500 uniformly
drawn samples from ϕ as described in Appendix A.2.

In Fig. 2, we compare the gradient maps corresponding
to the top proof feature (the one having the highest prior-
ity Pub(Fni)) on networks from Table 1 on representative
images of different output classes in the MNIST and CI-
FAR10 test sets. These experiments lead us to interesting
observations - even if some property is verified for both the
standard network and the robustly trained network, there
is a difference in the human interpretability of the types of
input features that the proofs rely on. The standard networks
and the provably robust trained networks like CROWN-IBP
are the two extremes of the spectrum. For the networks
obtained with standard training, we observe that although
the top-proof feature does depend on some of the semanti-
cally meaningful regions of the input image, the gradient
at several spurious features is also non-zero. On the other
hand, the top proof feature corresponding to state-of-the-art
provably robust training method CROWN-IBP filters out
most of the spurious features, but it also misses out on some
meaningful features. The proofs of PGD-trained networks
filter out the spurious features and are, therefore, more se-
mantically aligned than the standard networks. The proofs
of the training methods that combine both empirical robust-
ness and provable robustness like COLT in a way provide
the best of both worlds by not only selectively filtering out
the spurious features but also highlighting the more human
interpretable features, unlike the certifiably trained networks.
So, as the training methods tend to regularize more for ro-
bustness, their proofs become more selective in the type of
input features that they rely on. To further support our ob-
servation, we show additional plots for the top proof feature
visualization in Appendix D.5 and visualization for multi-
ple proof features in Appendix D.6. The extracted proof
features set and their gradient maps computed w.r.t high ϵ

Interpreting Robustness Proofs of Deep Neural Networks

(a) Gradient maps generated on MNIST networks. (b) Gradient maps generated on CIFAR-10 networks.

Figure 2. Gradient map corresponding to the top proof feature corresponding to DNNs trained using different methods rely on different
input features.

values (ϵ = 0.1 for MNIST and ϵ = 2/255 for CIFAR-10)
are similar to those generated with smaller ϵ as shown in Ap-
pendix D.7. In Appendix E, we empirically show that these
observations are not contingent on the verifier - α-Crown.

5. Conclusion
In this work, we develop a novel method called ProFIt to
interpret neural network robustness proofs. We empirically
establish that even if a property holds for a DNN, the proof
for the property may rely on spurious or semantically mean-
ingful features depending on the training method used to
train the DNNs. We believe that ProFIt can be applied for
diagnosing the trustworthiness of DNNs inside their devel-
opment pipeline.

Interpreting Robustness Proofs of Deep Neural Networks

References
Ross Anderson, Joey Huchette, Will Ma, Christian Tjan-

draatmadja, and Juan Pablo Vielma. Strong mixed-integer
programming formulations for trained neural networks.
Mathematical Programming, 2020.

Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Tay-
lor T. Johnson. Improved geometric path enumeration
for verifying relu neural networks. In Shuvendu K.
Lahiri and Chao Wang, editors, Computer Aided Ver-
ification - 32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21-24, 2020, Proceedings,
Part I, volume 12224 of Lecture Notes in Computer
Science, pages 66–96. Springer, 2020. doi: 10.1007/
978-3-030-53288-8\ 4. URL https://doi.org/
10.1007/978-3-030-53288-8_4.

Mislav Balunovic and Martin T. Vechev. Adversarial train-
ing and provable defenses: Bridging the gap. In 8th
International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata
Lapedriza, Bolei Zhou, and Antonio Torralba. Under-
standing the role of individual units in a deep neural net-
work. Proceedings of the National Academy of Sciences,
117(48):30071–30078, 2020.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Pushmeet Kohli,
P Torr, and P Mudigonda. Branch and bound for piece-
wise linear neural network verification. Journal of Ma-
chine Learning Research, 21(2020), 2020a.

Rudy R Bunel, Oliver Hinder, Srinadh Bhojanapalli, and
Krishnamurthy Dvijotham. An efficient nonconvex re-
formulation of stagewise convex optimization problems.
Advances in Neural Information Processing Systems, 33,
2020b.

Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium
on security and privacy (sp), pages 39–57. Ieee, 2017.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified
adversarial robustness via randomized smoothing. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 1310–1320. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/
v97/cohen19c.html.

Ruediger Ehlers. Formal verification of piece-wise linear
feed-forward neural networks. In International Sympo-
sium on Automated Technology for Verification and Anal-
ysis, 2017.

Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović,
and Martin Vechev. Complete verification via multi-
neuron relaxation guided branch-and-bound. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=l_amHf1oaK.

Aymeric Fromherz, Klas Leino, Matt Fredrikson, Bryan
Parno, and Corina Pasareanu. Fast geometric projections
for local robustness certification. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=zWy1uxjDdZJ.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen,
Petar Tsankov, Swarat Chaudhuri, and Martin Vechev.
Ai2: Safety and robustness certification of neural net-
works with abstract interpretation. In 2018 IEEE Sympo-
sium on Security and Privacy (SP), 2018.

Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh,
and Stefan Lee. Counterfactual visual explanations. In
International Conference on Machine Learning, pages
2376–2384. PMLR, 2019.

Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu,
Pradeep Kumar Ravikumar, Seungyeon Kim, Sanjiv
Kumar, and Cho-Jui Hsieh. Evaluations and meth-
ods for explanation through robustness analysis. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=4dXmpCDGNp7.

Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Ex-
amples are not enough, learn to criticize! criticism for
interpretability. Advances in neural information process-
ing systems, 29, 2016.

Pang Wei Koh and Percy Liang. Understanding black-box
predictions via influence functions. In International con-
ference on machine learning, pages 1885–1894. PMLR,
2017.

Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009.

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie
Henderson, Richard E. Howard, Wayne E. Hubbard, and
Lawrence D. Jackel. Handwritten digit recognition with
a back-propagation network. In NIPS, pages 396–404,
1989.

Zukang Liao and Michael Cheung. Automated invariance
testing for machine learning models using sparse linear
layers. In ICML 2022: Workshop on Spurious Corre-
lations, Invariance and Stability, 2022. URL https:
//openreview.net/forum?id=VP8ATzLGyQx.

https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
https://proceedings.mlr.press/v97/cohen19c.html
https://proceedings.mlr.press/v97/cohen19c.html
https://openreview.net/forum?id=l_amHf1oaK
https://openreview.net/forum?id=l_amHf1oaK
https://openreview.net/forum?id=zWy1uxjDdZJ
https://openreview.net/forum?id=zWy1uxjDdZJ
https://openreview.net/forum?id=4dXmpCDGNp7
https://openreview.net/forum?id=4dXmpCDGNp7
https://openreview.net/forum?id=VP8ATzLGyQx
https://openreview.net/forum?id=VP8ATzLGyQx

Interpreting Robustness Proofs of Deep Neural Networks

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In Proc. Inter-
national Conference on Learning Representations (ICLR),
2018.

Denis Mazzucato and Caterina Urban. Reduced products of
abstract domains for fairness certification of neural net-
works. In Cezara Dragoi, Suvam Mukherjee, and Kedar S.
Namjoshi, editors, Static Analysis - 28th International
Symposium, SAS 2021, Chicago, IL, USA, October 17-
19, 2021, Proceedings, volume 12913 of Lecture Notes
in Computer Science, pages 308–322. Springer, 2021.
doi: 10.1007/978-3-030-88806-0\ 15. URL https://
doi.org/10.1007/978-3-030-88806-0_15.

Alessandro De Palma, Harkirat S. Behl, Rudy R. Bunel,
Philip H. S. Torr, and M. Pawan Kumar. Scaling the
convex barrier with active sets. In 9th International Con-
ference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021, 2021.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
” why should i trust you?” explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and
data mining, pages 1135–1144, 2016.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and
Pengchuan Zhang. A convex relaxation barrier to tight
robustness verification of neural networks. In Advances
in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, 2019.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. In Yoshua Ben-
gio and Yann LeCun, editors, 2nd International Confer-
ence on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Workshop Track Proceed-
ings, 2014. URL http://arxiv.org/abs/1312.
6034.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus
Püschel, and Martin Vechev. Fast and effective robustness
certification. Advances in Neural Information Processing
Systems, 31, 2018.

Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and
Martin Vechev. Beyond the single neuron convex barrier
for neural network certification. In Advances in Neural
Information Processing Systems, 2019a.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Mar-
tin Vechev. An abstract domain for certifying neural

networks. Proceedings of the ACM on Programming
Languages, 3(POPL), 2019b.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin
Vechev. Robustness certification with refinement. In
International Conference on Learning Representations,
2019c. URL https://openreview.net/forum?
id=HJgeEh09KQ.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B.
Viégas, and Martin Wattenberg. Smoothgrad: removing
noise by adding noise. CoRR, abs/1706.03825, 2017.
URL http://arxiv.org/abs/1706.03825.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Ax-
iomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–3328.
PMLR, 2017.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness
may be at odds with accuracy. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=SyxAb30cY7.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang,
and Suman Jana. Efficient formal safety analysis of neural
networks. In Advances in Neural Information Processing
Systems, 2018.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana,
Cho-Jui Hsieh, and J Zico Kolter. Beta-crown: Effi-
cient bound propagation with per-neuron split constraints
for complete and incomplete neural network verification.
arXiv preprint arXiv:2103.06624, 2021a.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana,
Cho-Jui Hsieh, and J Zico Kolter. Beta-CROWN: Effi-
cient bound propagation with per-neuron split constraints
for neural network robustness verification. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, edi-
tors, Advances in Neural Information Processing Systems,
2021b. URL https://openreview.net/forum?
id=ahYIlRBeCFw.

Eric Wong, Shibani Santurkar, and Aleksander Madry.
Leveraging sparse linear layers for debuggable deep net-
works. In International Conference on Machine Learning,
pages 11205–11216. PMLR, 2021.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-
Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin,
and Cho-Jui Hsieh. Automatic perturbation analysis for
scalable certified robustness and beyond. 2020.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman
Jana, Xue Lin, and Cho-Jui Hsieh. Fast and com-
plete: Enabling complete neural network verification

https://doi.org/10.1007/978-3-030-88806-0_15
https://doi.org/10.1007/978-3-030-88806-0_15
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
https://openreview.net/forum?id=HJgeEh09KQ
https://openreview.net/forum?id=HJgeEh09KQ
http://arxiv.org/abs/1706.03825
https://openreview.net/forum?id=SyxAb30cY7
https://openreview.net/forum?id=SyxAb30cY7
https://openreview.net/forum?id=ahYIlRBeCFw
https://openreview.net/forum?id=ahYIlRBeCFw

Interpreting Robustness Proofs of Deep Neural Networks

with rapid and massively parallel incomplete verifiers. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=nVZtXBI6LNn.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing,
Laurent El Ghaoui, and Michael Jordan. Theoretically
principled trade-off between robustness and accuracy. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 7472–7482. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/
v97/zhang19p.html.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh,
and Luca Daniel. Efficient neural network robustness cer-
tification with general activation functions. In Advances
in neural information processing systems, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal,
Robert Stanforth, Bo Li, Duane S. Boning, and Cho-Jui
Hsieh. Towards stable and efficient training of verifiably
robust neural networks. In Proc. International Conference
on Learning Representations, ICLR, 2020.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman
Jana, Cho-Jui Hsieh, and J Zico Kolter. General cutting
planes for bound-propagation-based neural network veri-
fication. In Alice H. Oh, Alekh Agarwal, Danielle Bel-
grave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=5haAJAcofjc.

https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=nVZtXBI6LNn
https://proceedings.mlr.press/v97/zhang19p.html
https://proceedings.mlr.press/v97/zhang19p.html
https://openreview.net/forum?id=5haAJAcofjc
https://openreview.net/forum?id=5haAJAcofjc

Interpreting Robustness Proofs of Deep Neural Networks

A. ProFIt algorithm
A.1. Proof feature extraction

Next, we describe how we compute an approximate proof feature set using the feature priorities Pub(Fni). For any proof
feature Fni

, Pub(Fni
) estimates the importance of Fni

in preserving the proof. So, a trivial step is to just prune all the
proof features from F whose Pub is 0. These features do not have any contribution to the proof of the property (ϕ, ψ) by the
verifier V . This step forms a trivial algorithm. However, this is not enough. We can further prune some more proof features
leading to a yet smaller set. For this, we propose an iterative algorithm ProFIt shown in Algorithm 1 which maintains
two set namely, F S0 and F S . F S0 contains the features guaranteed to be included in the final answer computed by ProFIt
and F S contains the candidate features yet to be pruned by the algorithm. At every step, the algorithm ensures that the set
F S ∪ F S0

is sufficient and iteratively reduces its size by pruning proof features from F S . The algorithm iteratively prunes
the feature Fni

with the lowest value of Pub(Fni
) from F S to maximize the likelihood that F S ∪ F S0

remains sufficient
at each step. At Line 8 in the algorithm, F S0

and F S are initialized as empty set ({}) and F respectively. Removing a
single feature in each iteration and checking the sufficiency of the remaining features in the worst case leads to O(dl−1)
incremental verification calls which are expensive. Instead, at each step, from F S our algorithm greedily picks top-|S|/2
features (line 10) F S1 based on their priority and invokes the verifier V to check the sufficiency of F S0 ∪ F S1 (line 12).
If the feature set F S0

∪ F S1
is sufficient (line 13), ProFIt removes all features in F S \ F S1

from F S and therefore F S

is updated as F S1
in this step (line 14). Otherwise, if F S0

∪ F S1
does not preserve the property (ϕ,ψ) (line 15), ProFIt

adds all feature in F S1
to F S0

(line 16) and replaces F S with F S \ F S1
(line 17). The algorithm terminates after all

features in F S are exhausted. Since at every step, the algorithm reduces size of F S by half, it always terminates within
O(log(dl−1)) incremental verifier calls. In Appendix B, we derive mathematical guarantees about the correctness and
efficacy of Algorithm 1. For correctness, we prove that the feature set F S0 is always sufficient (Definition 2). For efficacy,
we theoretically find a non-trivial upper bound on the size of F S0

.

Algorithm 1 Approx. minimum proof feature computation

1: Input: DNN N , property (ϕ, ψ), verifier V .
2: Output: approx. minimum proof features F S0 ,
3: if V can not verify N on (ϕ, ψ) then
4: return
5: end if
6: Calculate all proof features for input region ϕ.
7: Calculate priority Pub(Fni) all proof features.
8: Initialization: F S0

= {}, F S = F
9: while F S is not empty do

10: F S1
= top-|S|/2 features based on Pub(Fni

)
11: F S2

= F S \ F S1

12: Check sufficiency of F S0 ∪ F S1 with V
13: if F S0 ∪ F S1 is sufficient then
14: F S = F S1

15: else
16: F S0

= F S0
∪ F S1

17: F S = F S2

18: end if
19: end while
20: return proof features F S0

.

A.2. Visualization of extracted proof features

To interpret DNN robustness proofs, we analyze the semantic meaning of extracted features. We adapt existing local
visualization techniques (Sundararajan et al., 2017; Smilkov et al., 2017) to estimate the relevance of proof features within
an input region ϕ. Using a large, uniformly drawn sample from ϕ, we compute G(Fni , ϕ) as the mean gradient of ni’s
output with respect to inputs, i.e., G(Fni , ϕ) = EX∼ϕ G(ni, X).

Interpreting Robustness Proofs of Deep Neural Networks

B. Theoretical Guarantees of ProFIt
B.1. Proof of sufficiency of the extracted proof feature set

Theorem 1. If the verifier V can prove the property (ϕ, ψ) on the network N , then F S0 computed by Algorithm 1 is
sufficient (Definition 2).

Proof. Proof of theorem 1 by induction on the number of steps of the while loop.
Induction Hypothesis: At each step of the loop, F S0

∪ F S is sufficient.
Base Case: At step 0, i.e., at initialization, F S0

= {} and F S = F . So, F S0
∪ F S = F . Given that V proves the property

(ϕ, ψ) on N , from Definition 2, F is sufficient.
Induction Case: Let F S0

∪ F S be sufficient for n-th step of the loop. Consider the following cases for (n+ 1)-th step of
the loop.

1. Let F S0
∪ F S1

be sufficient at line 12. In this case, F S is updated by F S1
(line 14). So, F S0

∪ F S is sufficient.

2. Let F S0 ∪ F S1 be not sufficient at line 12. In this case, F S0 and F S are updated as in lines 16 and 17. Let the new
F S0 and F S be F ′

S0
and F ′

S . So, F ′
S0

= F S0 ∪ F S1 and F ′
S = F S2 . So, F ′

S0
∪ F ′

S = F S0 ∪ F S1 ∪ F S2 . Also,
F S1

∪ F S2
= F S . So, F ′

S0
∪ F ′

S = F S0
∪ F S . So, from induction hypothesis, F ′

S0
∪ F ′

S is sufficient.

B.2. Upper bound on the size of the extracted proof feature set

Lemma 1. ∀S ⊆ [dl−1] if i ∈ S then |Λ(A(Wl, S))− Λ(A(Wl, S \ {i}))| ≤ max
X∈Al−1

|CTW [: i]X|.

Proof. Without loss of generality let assume, Λ(A(Wl, S)) ≤ Λ(A(Wl, S \ {i})). Suppose, Λ(A(Wl, S) =
CTWl(S)Xmin where Xmin ∈ Al−1.

Λ(A(Wl, S)) ≤ Λ(A(Wl, S \ {i}))
CTWl(S)Xmin ≤ Λ(A(Wl, S \ {i})) ≤ CTWl(S \ {i})Xmin

|Λ(A(Wl, S))− Λ(A(Wl, S \ {i}))| = |CTWl(S)Xmin − Λ(A(Wl, S \ {i}))|
≤ |CTWl(S)Xmin − |CTWl(S \ {i})Xmin|
= |CTWl[:, i]Xmin|
≤ max

X∈Al−1

|CTWl[:, i]X|

Lemma 2. ∀FS ⊆ F , δ(FS) ≤
∑

Fni
∈F\FS

Pub(Fni
) where Pub(Fni

) is defined in (2) and ∆(FS) = |Λ(A) −

Λ(A(Wl, S))|.

Proof.

∆(FS) = |Λ(A)− Λ(A(Wl, S))|

≤ max
X∈Al−1

|
∑

Fni
∈F\FS

CTW [: i]X|

≤ max
X∈Al−1

∑
Fni

∈F\FS

|CTW [: i]X|

≤
∑

Fni
∈F\FS

max
X∈Al−1

|CTW [: i]X|

=
∑

Fni
∈F\FS

Pub(Fni) [From (2)]

Interpreting Robustness Proofs of Deep Neural Networks

Lemma 3. A feature set FS ⊆ F with ∆(FS) ≤ Λ(A) is sufficient provided Λ(A) ≥ 0.

Proof. ∆(FS) = |Λ(A)− Λ(A(Wl, S))|. So, there can be two cases:

1. Λ(A(Wl, S)) = Λ(A) + ∆(FS). Since, Λ(A) ≥ 0 and ∆(FS) ≥ 0, Λ(A(Wl, S)) ≥ 0. So, FS is sufficient.

2. Λ(A(Wl, S)) = Λ(A)−∆(FS)
Λ(A) ≥ 0 and ∆(FS) ≤ Λ(A).
So, Λ(A(Wl, S)) ≥ 0. So, FS is sufficient.

Lemma 4. Let, Pmax denote the maximum of all priorities Pub(Fni
) over F .

Let FS ⊆ F . If |FS | ≤ ⌊ Λ(A)
Pmax

⌋, then proof feature set Fc
S = F \ FS is sufficient provided Λ(A) ≥ 0.

Proof.

∀Fni ∈ F , Pub(Fni) ≤ Pmax

From Lemma 2, ∆(Fc
S) ≤ |FS | × Pmax

Also, |FS | ≤ ⌊Λ(A)

Pmax
⌋

So, ∆(Fc
S) ≤ Λ(A)

From Lemma 3, Fc
S is sufficient.

Definition 4. Zero proof features set Z(F) denotes the proof features Fni
∈ F with Pub(Fni

) = 0.

Theorem 2. Let, Pmax denote the maximum of all priorities Pub(Fni
) over F . Given any network N is verified on (ϕ, ψ)

with verifier V then |F S0
| ≤ dl−1 − |Z(F)| − ⌊ Λ(A)

Pmax
⌋

Proof of theorem 2. The algorithm 1 arranges the elements of the proof feature set F in decreasing order according to the
priority defined by Pub.
Let F ′ be the ordered set corresponding to F . So, F ′ = Fn1

:: · · · :: Fnm
, where :: is the list concatenation.

The elements of Z(F) will be at the end of this ordering. So, F ′ can be written as F ′′ :: Z(F) where
Z(F) = Fnk+1

:: · · · :: Fnm
and F ′′ = Fn1

:: · · · :: Fnk
and p be some of the last elements of F ′′ s.t. the

sum of their priorities just less than ⌊ Λ(A)
Pmax

⌋, i.e.,

p = Fnj
:: · · · :: Fnk

k∑
i=j

Pub(Fni) ≤ ⌊Λ(A)

Pmax
⌋

k∑
i=j−1

Pub(Fni
) ≥ ⌊Λ(A)

Pmax
⌋

Further, let p′ = p :: Z(F), i.e., p′ = Fnj :: · · · :: Fnm . Since Pub is 0 for all elements of Z(F),

m∑
i=j

Pub(Fni
) ≤ ⌊Λ(A)

Pmax
⌋ (3)

Interpreting Robustness Proofs of Deep Neural Networks

Also, |p′| = |Z(F)|+ ⌊ Λ(A)
Pmax

⌋ Now, we prove by induction on the number of steps of the while loop in the algorithm 1 that
the set F S0

never contains any elements from p′.
Induction Hypothesis: F S0

∩ p′ = {}
Base Case: At initialization, F S0

= {}. So, the induction hypothesis holds trivially.
Induction Step: Let the induction hypothesis be true for the n-th step of the algorithm 1. For the (n+ 1)-th step, let the
new F S0 and F S be F ′

S0
and F ′

S respectively. Consider the following two cases:

1. Let F S0 ∪ F S1 be sufficient at line 12. In this case, F ′
S0

= F S0 . So, the induction hypothesis holds.

2. Let F S0
∪ F S1

be not sufficient at line 12.
Claim: F S0

∩ p′ = {}
Let the above claim be false.
=⇒ F S0 ∩ p′ ̸= {}
=⇒ F \ (F S0 ∪ F S1) ⊂ p′

=⇒
∑

Fni∈F\(FS0
∪FS1

)

Pub < ⌊ Λ(A)
Pmax

⌋ [From (6)]

=⇒ (F S0
∪ F S1

) is sufficient. (From Lemma 4)
=⇒ Contradiction.
So, F S1

∩ p′ = {}. In this step, F ′
S0

= F S0
∪ F S1

. Also, from induction hypothesis, F S0
∩ p′ = {}. Therefore, the

induction hypothesis holds, i.e., F ′
S0

∩ p′ = {}.

C. Experimental setup
For evaluation we use convolutional networks trained on two popular datasets - MNIST (LeCun et al., 1989) CIFAR-10
(Krizhevsky, 2009) shown in Table 1. The networks are trained with standard training and three state-of-the-art robust
training methodologies - adversarial training (PGD training) (Madry et al., 2018), certified robust training (CROWN-IBP)
(Zhang et al., 2020) and a combination of both adversarial and certified training (COLT) (Balunovic and Vechev, 2020).
For experiments, we use pre-trained publically available networks - the standard and PGD networks are from the ERAN
project (Singh et al., 2019c), COLT and CROWN-IBP networks taken from COLT (Balunovic and Vechev, 2020) and
CROWN-IBP repository (Zhang et al., 2020) respectively. Similar to most of the existing works on DNN verification (Singh
et al., 2019c; Zhang et al., 2018), we use L∞-based local robustness properties (Carlini and Wagner, 2017). Here, the input
region ϕ contains all images obtained by perturbing the intensity of each pixel in the input image independently within
a bound ϵ. ψ specifies a region where the network output for the correct class is higher than all other classes. We use
ϵtrain = 0.1 and ϵtrain = 8/255 for training all robustly trained MNIST and CIFAR-10 networks respectively. Unless
specified otherwise, the proofs are generated by running the state-of-the-art incomplete verifier α-Crown (Xu et al., 2021).
We run all experiments on a 16-core 12th-gen i7 machine with 16 GB of RAM.

Interpreting Robustness Proofs of Deep Neural Networks

D. Additional Experiments
D.1. Detailed results of ProFIt efficacy analysis

Table 2. ProFIt Efficacy Analysis

Dataset Training Input No. of Original Mean Proof No. of proofs No. of proofs
Method Region (ϕ) proved Feature Feature Count with ≤ 5 with ≤ 10

eps (ϵ) properties Count proof features proof features
Random Gradient ProFIt (ProFIt) (ProFIt)

MNIST Standard 0.02 459 100 20.31 5.25 1.96 449 457
PGD Trained 0.02 415 1000 93.29 13.73 6.02 315 364
COLT 0.02 480 100 14.45 5.43 3.46 401 461
CROWN-IBP 0.02 482 100 9.51 6.73 6.16 240 401

MNIST PGD Trained 0.1 191 1000 162.39 35.79 3.29 131 149
COLT 0.1 281 100 29.57 12.22 3.16 240 271
CROWN-IBP 0.1 473 100 10.09 7.36 6.23 232 384

CIFAR-10 Standard 0.2/255 277 100 30.36 18.28 11.12 127 173
PGD Trained 0.2/255 298 100 31.22 16.58 9.74 173 210
COLT 0.2/255 267 250 30.10 18.13 9.03 170 204
CROWN-IBP 0.2/255 265 256 7.96 7.49 5.30 172 221

CIFAR-10 PGD Trained 2/255 173 100 39.57 24.46 6.19 122 144
COLT 2/255 229 250 34.64 23.25 7.76 146 181
CROWN-IBP 2/255 206 256 9.41 9.21 5.10 140 176

Interpreting Robustness Proofs of Deep Neural Networks

D.2. Distribution plots of the size of the extracted sufficient proof feature set

In this section, we show plots for the distribution of the sufficient proof feature set size extracted by ProFIt and two baseline
methods based on random and gradient-based priority heuristics. In the following histograms, the x-axis represents the size
of the extracted proof feature set and the y-axis represents the number of local robustness properties. The results show that
ProFIt consistently outperforms both the baselines and extracts sufficient proof feature sets that are smaller in size. All the
plots in this section are generated on 500 local robustness properties with α-Crown verifier.

(a) Random (b) Gradient (c) ProFIt

Figure 3. Distribution of the extracted proof feature set size - Standard MNIST network & ϵ = 0.02.

(a) Random (b) Gradient (c) ProFIt

Figure 4. Distribution of the extracted proof feature set size - PGD MNIST network & ϵ = 0.02.

Interpreting Robustness Proofs of Deep Neural Networks

(a) Random (b) Gradient (c) ProFIt

Figure 5. Distribution of the extracted proof feature set size - Colt MNIST network & ϵ = 0.02.

(a) Random (b) Gradient (c) ProFIt

Figure 6. Distribution of the extracted proof feature set size - Crown-IBP MNIST network & ϵ = 0.02.

(a) Random (b) Gradient (c) ProFIt

Figure 7. Distribution of the extracted proof feature set size - PGD MNIST network & ϵ = 0.1.

Interpreting Robustness Proofs of Deep Neural Networks

(a) Random (b) Gradient (c) ProFIt

Figure 8. Distribution of the extracted proof feature set size - Colt MNIST network & ϵ = 0.1.

(a) Random (b) Gradient (c) ProFIt

Figure 9. Distribution of the extracted proof feature set size - Crown-IBP MNIST network & ϵ = 0.1.

(a) Random (b) Gradient (c) ProFIt

Figure 10. Distribution of the extracted proof feature set size - Standard Cifar-10 network & ϵ = 0.2/255.

Interpreting Robustness Proofs of Deep Neural Networks

(a) Random (b) Gradient (c) ProFIt

Figure 11. Distribution of the extracted proof feature set size - PGD Cifar-10 network & ϵ = 0.2/255.

(a) Random (b) Gradient (c) ProFIt

Figure 12. Distribution of the extracted proof feature set size - Colt Cifar-10 network & ϵ = 0.2/255.

(a) Random (b) Gradient (c) ProFIt

Figure 13. Distribution of the extracted proof feature set size - Crown-IBP Cifar-10 network & ϵ = 0.2/255.

Interpreting Robustness Proofs of Deep Neural Networks

(a) Random (b) Gradient (c) ProFIt

Figure 14. Distribution of the extracted proof feature set size - PGD Cifar-10 network & ϵ = 2/255.

(a) Random (b) Gradient (c) ProFIt

Figure 15. Distribution of the extracted proof feature set size - Colt Cifar-10 network & ϵ = 2/255.

(a) Random (b) Gradient (c) ProFIt

Figure 16. Distribution of the extracted proof feature set size - Crown-IBP Cifar-10 network & ϵ = 2/255.

Interpreting Robustness Proofs of Deep Neural Networks

D.3. Additional plots for priority order evaluation

In this section, we evaluate the efficacy of the priority ordering of proof features defined in Eq. 2 against the random
and gradient-based priority ordering on Cifar-10 networks and the standard MNIST network. We use ϵ = 0.2/255 for
all Cifar-10 networks and ϵ = 0.02 for the standard MNIST network. We show that the priority ordering used by ProFIt
preserves a higher % of proofs while better approximating the original verifier output i.e. achieving a lower relative change
compared to both the baselines. All the plots in this section generated on 500 local properties with α-Crown verifier.

(a) PGD Network (b) Colt Network (c) Crown-IBP Network

Figure 17. Percentages of proofs preserved by different heuristics on robust CIFAR-10 networks.

(a) PGD Network (b) Colt Network (c) Crown-IBP Network

Figure 18. Relative change in verifier output with different heuristics on robust CIFAR-10 networks.

(a) PGD Network (b) Colt Network (c) Crown-IBP Network

Figure 19. Percentages of proofs preserved by different priority heuristics on robust MNIST networks.

Interpreting Robustness Proofs of Deep Neural Networks

(a) PGD Network (b) Colt Network (c) Crown-IBP Network

Figure 20. Relative change in verifier output with different heuristics on robust MNIST networks.

(a) Standard MNIST Network (b) Standard CIFAR-10 Network

Figure 21. Percentages of proofs preserved by different heuristics on standard networks.

(a) Standard MNIST Network (b) Standard CIFAR-10 Network

Figure 22. Relative change in verifier output with different heuristics on standard networks.

Interpreting Robustness Proofs of Deep Neural Networks

D.4. Qualitative evaluation of the priority ordering of the proof features

Figure 23. Comparing gradients of the top proof features retained by the ProFIt algorithm to pruned proof features with a low priority.
The columns are sorted in decreasing order of priority with the right-most proof feature having the lowest priority. As expected, proof
features with low priority are noisier (as in column 4). The proof features which are further down in the priority order do not give any
relevant information about the input (column 5 - completely white). This shows that the proposed algorithm extracts proof features
that are important to the proof while removing insignificant and uninformative proof features. The shown gradients are computed on
COLT-trained MNIST network.

Interpreting Robustness Proofs of Deep Neural Networks

D.5. Additional plots for the top proof feature visualization

(a) Gradient maps generated on MNIST networks

(b) Gradient maps generated on CIFAR-10 networks

Figure 24. Additional plots for the top proof feature visualization (in addition to Fig. 2) - Visualization of gradient map of top proof
feature (having highest priority) generated for networks trained with different training methods. It is evident that the top proof feature
corresponding to the standard network highlights both relevant and spurious input features. In contrast, the top proof feature of the
provably robust network does filter out the spurious input features, but it comes at the expanse of some important input features. The top
proof features of the networks trained with PGD filter out more spurious features as compared to standard networks. Finally, the top proof
features of the networks trained with COLT filter out the spurious input features and also correctly highlight the relevant input features.

Interpreting Robustness Proofs of Deep Neural Networks

D.6. Visualization of multiple proof features from the extracted proof feature set

(a) Gradient maps generated on MNIST networks

(b) Gradient maps generated on CIFAR-10 networks

Figure 25. Visualization of gradient maps of top-4 proof features (having highest priority) extracted for networks trained with different
robust training methods. The gradient maps of the proof features are presented in decreasing order of priority with the top row showing
the gradient map corresponding to the top proof feature of each network.

Interpreting Robustness Proofs of Deep Neural Networks

(a) Gradient maps generated on MNIST networks

(b) Gradient maps generated on CIFAR-10 networks

Figure 26. Visualization of gradient maps of top-5 proof features (having highest priority) extracted for networks trained with different
robust training methods. The gradient maps of the proof features are presented in decreasing order of priority with the top row showing
the gradient map corresponding to the top proof feature of each network.

Interpreting Robustness Proofs of Deep Neural Networks

D.7. Visualization of the top proof feature for higher ϵϵϵ values

(a) Gradient maps generated on MNIST networks

(b) Gradient maps generated on CIFAR-10 networks

Figure 27. Visualization of gradient map of top proof feature (having highest priority) generated for networks trained with different robust
training methods. For these networks, we define local properties with higher ϵ values. For MNIST networks and CIFAR-10 networks, we
take ϵ = 0.1 and ϵ = 2/255 respectively.

Interpreting Robustness Proofs of Deep Neural Networks

D.8. Comparing proofs on Networks with same architecture

Figure 28. Gradient maps generated on MNIST networks trained with different training methods (Standard, COLT, CROWN-IBP) with the
same architecture. The gradient maps show that observations in Section 4.2 and in Figure 2 of the paper also hold on different networks
with the same architecture.

Interpreting Robustness Proofs of Deep Neural Networks

D.9. Plots for sensitivity analysis w.r.t ϵtrainϵtrainϵtrain

Figure 29. Plots for visualizing gradients of the top proof feature for PGD and COLT networks trained using different values of
ϵtrain ∈ {0.1, 0.3} The gradient map corresponding to the networks trained with the higher value of ϵtrain filter out more input features
than the ones trained with smaller ϵtrain value.

Interpreting Robustness Proofs of Deep Neural Networks

E. Ablation Studies
E.1. Ablation study with different verifiers

As described earlier, the extracted proof features are specific to the proof generated by a particular verifier. In this section,
we examine whether the proof features corresponding to different proofs generated by different verifiers are the same. In
Table 3, we compare the top proof features (ordered by the priority order described in Eq. 2) of the proofs generated by
the DeepZ (Singh et al., 2018) verifier and α-Crown verifier. We observed that more than 97% of the cases the top feature
remains the same. In this case, for different verifiers though the proof features Fni

= [lni
, uni

] change, their relative priority
ordering computed by Eq. 2 remains the same. For this experiment, we use 500 local robustness properties for each network
and each ϵ value. Note, while comparing proof features from two different verifiers we only consider those properties that
can be proved by both the verifiers.

Table 3. Comparing extracted proof features of DeepZ & α-Crown
Dataset Training Input % properties % properties % proofs with the % proofs with the % proofs with the

Method Region (ϕ) proved by DeepZ proved by α-Crown same top feature same top-5 feature same top-10 feature
eps (ϵ)

MNIST Standard 0.02 90.0 % 91.8 % 99.8 % 98.4 % 98.3 %
PGD Trained 0.02 82.0 % 83.0 % 99.75 % 99.0 % 98.0 %
COLT 0.02 95.4 % 96 % 99.50 % 98.95 % 96.25 %
CROWN-IBP 0.02 96.4 % 96.4 % 99.8 % 99.0 % 95.9 %

MNIST PGD Trained 0.1 32.6 % 38.2 % 99.38 % 95.7 % 91.41 %
COLT 0.1 43.0 % 56.2 % 98.6 % 93.95 % 87.90 %
CROWN-IBP 0.1 89.4 % 94.6 % 97.0 % 88.3 % 80.26 %

CIFAR-10 Standard 0.2/255 51.0 % 58.0 % 99.5 % 98.3 % 98.0 %
PGD Trained 0.2/255 47.0 % 62.5 % 99.7 % 98.5 % 97.8 %
COLT 0.2/255 53.0 % 53.0 % 100.0 % 99.5 % 98.2 %
CROWN-IBP 0.2/255 54.5 % 54.5 % 100.0 % 98.90 % 97.8 %

CIFAR-10 PGD Trained 2/255 26.5 % 32.5 % 99.7 % 95.45 % 92.45 %
COLT 2/255 45.5 % 46.0 % 99.8 % 95.9 % 97.3 %
CROWN-IBP 2/255 37.5 % 38.0 % 99.6 % 97.92 % 95.89 %

Next, in Table 4 we compare the top proof feature (having the highest priority) corresponding to the proofs generated by
DeepZ, Crown (Zhang et al., 2018), α-Crown and state-of-the-art complete verifier α, β-Crown (Wang et al., 2021b) on the
property. We use PGD and Colt MNIST network for this experiment. We evaluate 200 local robustness properties defined
with ϵ = 0.02. We observed that for these two networks, more than 99% of the cases the top feature remains the same.

Table 4. % cases different verifiers have the same top proof feature

Verifier DeepZ Crown α-Crown α, β-Crown

DeepZ 100.0 % 99.55 % 99.75 % 99.50 %
Crown 99.55 % 100.0 % 99.80 % 99.60 %
α-Crown 99.75 % 99.80 % 100.0 % 99.80 %
α, β-Crown 99.50 % 99.60 % 99.80 % 100.0 %

(a) PGD MNIST Network

Verifier DeepZ Crown α-Crown α, β-Crown

DeepZ 100.0 % 99.50 % 99.50 % 99.40 %
Crown 99.50 % 100.0 % 100.0 % 99.70 %
α-Crown 99.50 % 100.0 % 100.0 % 99.70 %
α, β-Crown 99.40 % 99.70 % 99.70 % 100.0 %

(b) Colt MNIST Network

E.2. Ablation study with Training parameters

Next, we compare proofs generated on networks with the same architecture trained with different training methods to
validate that the underlying network architecture does not play any role in the conclusions presented in Section 4.2. We also
analyze the sensitivity of the extracted proof features to the training parameter ϵtrain that is used to define the L∞ region
during training (Appendix D.9). We observe that networks trained with higher ϵtrain are more robust and the top-proof
feature filters out more input features that align with the observations in Section 4.2.

Interpreting Robustness Proofs of Deep Neural Networks

F. Related Work
DNN interpretability. There has been an extensive effort to develop interpretability tools for investigating the internal
workings of DNNs. These include feature attribution techniques like saliency maps (Sundararajan et al., 2017; Smilkov
et al., 2017), using surrogate models to interpret local decision boundaries (Ribeiro et al., 2016), finding influential (Koh and
Liang, 2017), prototypical (Kim et al., 2016), or counterfactual inputs (Goyal et al., 2019), training sparse decision layers
(Wong et al., 2021), utilizing robustness analysis (Hsieh et al., 2021). Most of these interpretability tools focus on generating
local explanations that investigate how DNNs work on individual inputs. Another line of work, rather than explaining
individual inputs, tries to identify specific concepts associated with a particular neuron (Simonyan et al., 2014; Bau et al.,
2020). However, to the best of our knowledge, there is no existing work that allows us to interpret DNN robustness proofs.
DNN verification. Unlike DNN interpretability methods, prior works in DNN verification focus on formally proving
whether a DNN satisfies desirable properties like robustness (Singh et al., 2019c; Wang et al., 2021b), fairness (Mazzucato
and Urban, 2021), etc. The DNN verifiers are broadly categorized into three main categories - (i) sound but incomplete
verifiers which may not always prove property even if it holds (Gehr et al., 2018; Singh et al., 2018; 2019b;a; Zhang et al.,
2018; Xu et al., 2020; Salman et al., 2019), (ii) complete verifiers that can always prove the property if it holds (Wang
et al., 2018; Gehr et al., 2018; Bunel et al., 2020a;b; Bak et al., 2020; Ehlers, 2017; Ferrari et al., 2022; Fromherz et al.,
2021; Wang et al., 2021a; Palma et al., 2021; Anderson et al., 2020; Zhang et al., 2022) and (iii) verifiers with probabilistic
guarantees (Cohen et al., 2019).
Robustness and interpretability. Existing works (Madry et al., 2018; Balunovic and Vechev, 2020; Zhang et al., 2020)
in developing robust training methods for neural networks provide a framework to produce networks that are inherently
immune to adversarial perturbations in input. Recent works (Tsipras et al., 2019; Zhang et al., 2019) also show that there
may be a robustness-accuracy tradeoff that prevents highly robust models achieve high accuracy. Further, in (Tsipras
et al., 2019) authors show that networks trained with adversarial training methods learn fundamentally different input
feature representations than standard networks where the adversarially trained networks capture more human-aligned data
characteristics.

