
Meaning in Language Models: A Formal Semantics Approach

Charles Jin 1 Martin Rinard 1

Abstract
We present a framework for studying the emer-
gence of meaning in language models based on
the formal semantics of programs. Working with
programs enables us to precisely define concepts
relevant to meaning in language (e.g., correctness
and semantics), making this domain well-suited
as an intermediate testbed for characterizing the
presence (or absence) of meaning in language
models. Specifically, we first train a Transformer
model on the corpus of programs, then probe the
trained model’s hidden states as it completes a
program given a specification. Our findings in-
clude evidence that (1) the model states linear
encode an abstraction of the program semantics,
(2) such encodings emerge nearly in lockstep with
the ability of the model to generate correct code
during training, and (3) the model learns to gener-
ate correct programs that are, on average, shorter
than those in the training set. In summary, this
paper does not propose any new techniques for
improving language models, but develops an ex-
perimental framework for and provides insights
into the acquisition and representation of (formal)
meaning in language models.

1. Introduction
Despite the rapidly improving performance of large, pre-
trained language models (LMs) in a range of downstream
tasks, a major open question is whether such LMs capture
any semantically meaningful information about the text that
they consume and generate (Mitchell & Krakauer, 2023).
One possibility is that LMs trained purely on form—such as
the conditional distribution of tokens in the training corpus—
do not acquire meaning. Instead, they produce text only
according to surface statistical correlations gleaned from
the training data (Bender & Koller, 2020), with any appar-

*Equal contribution 1Massachusetts Institute of Technology.
Correspondence to: Charles Jin <ccj@csail.mit.edu>.

Presented at the 2nd Workshop on Formal Verification of Machine
Learning, co-located with the 40 th International Conference on
Machine Learning, Honolulu, Hawaii, USA., 2023. Copyright
2023 by the author(s).

ently sophisticated behavior attributable to the scale of the
model and training data. Indeed, a recent meta-survey re-
veals a sharp divide within the NLP community, with 51%
of respondents agreeing to the statement, “Some generative
model trained only on text, given enough data and computa-
tional resources, could understand natural language in some
non-trivial sense” (Michael et al., 2022).

We aim to empirically evaluate the extent to which meaning
can emerge in LMs trained solely to perform next token pre-
diction on text, specifically, the following two hypotheses:

Main Hypotheses. LMs trained only to perform next token
prediction on text are (H1) fundamentally limited to repeat-
ing the surface-level statistical correlations in their training
corpora; and (H2) unable to assign meaning to the text that
they consume and generate.

This paper presents a framework for conducting empirical
research on LMs based on the semantics of programming
languages (Section 2). Specifically, we apply language mod-
eling to the task of program synthesis, or synthesizing a
program given a specification in the form of input-output ex-
amples. Our methods consist of training an LM on a corpus
of programs and their specifications, then probing the LM’s
hidden states for a representation of the program semantics
using a linear classifier. Working with programs allows us
to define, measure, and experiment with concepts from the
precise formal semantics of the underlying programming
language, yielding novel insights that contribute toward a
principled understanding of the capabilities of current LMs.
This setting also enables us to rigorously experiment with
the roles of form and semantics in the apparent emergence
of meaning in the LM by intervening only on the semantics
of the language (while preserving the lexicon and syntax).

Section 3 presents a brief overview of our results within
this experimental framework. We find the probe’s ability to
extract semantics is random at initialization, then undergoes
a phase transition during training, with the phase transition
strongly correlated with the LM’s ability to generate a cor-
rect program in response to previously unseen specifications.
Going forward, we believe methods similar to those devel-
oped in the present work can offer a complementary formal
perspective on how key concepts related to language and
cognition can be mapped to the setting of LMs and, more
generally, machine intelligence.

2. Background
This section provides a short overview of the trace semantics
as our chosen model of meaning in programs, and introduces
our experimental setting and procedure.

2.1. Program tracing as meaning

A foundational topic in the theory of programming lan-
guages, formal semantics (Winskel, 1993) is the study of
how to formally assign meaning to strings in the language.
In this work, our model of semantics consists of tracing a
program’s execution (Cousot, 2002): given a set of inputs
(i.e, assignments to variables), the meaning of a (syntactic)
program is identified with the (semantic) value computed
from the expression, and the trace is the sequence of inter-
mediate values generated as the program executes on the
inputs.

Beyond its amenability to formal analysis, tracing is attrac-
tive as a model of program meaning for several reasons. In
novice programmers, the ability to accurate trace a piece a
code has been directly linked to the ability to explain the
code (Lopez et al., 2008; Lister et al., 2009), and computer
science education has emphasized tracing as a method of
developing program understanding (Hertz & Jump, 2013)
and localizing reasoning errors (Sorva, 2013). Expert pro-
grammers also rely on tracing, both as a mental process
(Letovsky, 1987) and as implemented in the vast array of
trace-based debuggers.

Abstract interpretation Given a program semantics, ab-
stract interpretation (Cousot & Cousot, 1977) is one way
to coarsen the semantics while preserving its composi-
tional structure. For instance, given the multiplication
operator × over the integers Z, we could define an ab-
stract interpretation α by mapping each integer to its sign
α : Z 7→ {−, 0,+}, with the corresponding abstract op-
erator ×α defined in the natural way. This abstraction is
precise because, for any two integers x, y ∈ Z, we have
that α(x× y) = α(x)×α α(y) (i.e., α is a homomorphism).
We leverage abstract interpretation to precisely isolate a
subset of the trace semantics. As compositionality is often
described as a key tenet of human-like intelligence and lan-
guage (Fodor & Lepore, 2002; Chomsky, 2002; Mikolov
et al., 2018), we believe our techniques can be applied as
a formal framework to test claims of intelligence in LMs
beyond the present work.

2.2. Methods

Karel Karel is an educational programming language (Pat-
tis, 1994) developed at Stanford in the 1970s, which is still in
use in their introductory programming course today (Piech
& Roberts, January 2019; CS106A, 2023). The domain

features a robot (named Karel) navigating a grid world with
obstacles while leaving and picking up markers. Since being
introduced by Devlin et al. (2017), Karel has been adopted
by the program synthesis community as a standard bench-
mark (Bunel et al., 2018; Shin et al., 2018; Sun et al., 2018;
Chen et al., 2019; 2021b), in which input-output examples
are provided, and the task is to produce a program which
maps the inputs to the outputs.

Figure 1 gives an overview of our domain. Each 8x8 grid
world contains 4 types of tokens: the robot controlled by
the program, which is represented by an arrow indicating
the direction the robot currently faces (∧, <, ∨, >); mark-
ers (a space can accumulate up to 10 markers); obstacles
(#); or an empty space. We focus on the subset of the lan-
guage consisting of straight line programs composed from
the following 5 operations: move advances the robot by
one space in the facing direction if there is not an obstacle
ahead (otherwise, the robot does not move); turnRight
and turnLeft turn the robot right and left, respectively;
putMarker and pickMarker increment and decrement
the number of markers on the space occupied by the robot
(with no effect if there are 10 and 0 markers), respectively.
Note that the robot obscures the number of markers on the
space it currently occupies, and the obscured markers have
no effect on the correctness of a program.

Karel synthetic dataset construction Our training set
consists of one million randomly sampled Karel programs.1

For each program, we randomly sample 5 grid worlds to
serve as input, then evaluate the output of the program on
each input. We create textual representations for Karel grid
worlds by scanning the grid in row order, with one token
per grid space. Each training sample consists of the con-
catenation of the input-output examples (the specification),
followed by the reference program. Note that the training
set consists only of programs which are correct with respect
to their specification, and furthermore the correctness of a
program can be evaluated solely on the basis of the textual
representations of the input-output examples (i.e., the syn-
thesis task is well-defined). We also generate a test set of
5000 specifications in the same manner. At test time, we
consider any program that satisfies the input-output exam-
ples to be correct (not just the reference program).

Training an LM to synthesize programs We train an
off-the-shelf2 Transformer (Vaswani et al., 2017) to perform
next token prediction on our dataset. To measure synthesis
accuracy, we use the LM to generate text starting from a

1We use the official implementation from the Karel benchmark
(Devlin et al., 2017). The sampled programs range in length from
1 to 8 operations, with an average length of 2.5.

2Specifically, we train a 350M parameter variant of the Code-
Gen architecture (Nijkamp et al., 2023) in the HuggingFace Trans-
formers library (Wolf et al., 2020) from initialization.

Figure 1: An overview of the Karel domain. We construct training examples by sampling a random reference program, then
sampling 5 random inputs and executing the program to obtain the corresponding 5 outputs. The LM is trained to perform
next token prediction on a corpus of examples. At test time, we provide only the input-output prefix to the LM, and use
greedy decoding to complete the program. The figure depicts an actual reference program and completion from the final
trained LM.

specification using greedy decoding. The completion is
correct if it is a well-formed program that maps each input
in the specification to its corresponding output. We refer
to this as the generative accuracy of the LM. After 64000
training steps (roughly 1.5 epochs), the final trained LM
achieves a generative accuracy of 96.4% on the test set.

Trace dataset construction Every 2000 training steps,
we also capture a trace dataset. Namely, we use the LM
to complete a specification using greedy decoding, and for
each generated token, we take a snapshot of (1) the hidden
states of the LM and (2) the corresponding program states
after evaluating the partially generated program on each of
the 5 specified inputs. We average the hidden state over the
layer dimension, so that the snapshot is a 1-dimensional ten-
sor of size 1024 (= number of attention heads * dimension
per head), and call this the model state. Syntactically mal-
formed text (i.e., programs that do not parse) is excluded,
but we do include traces of programs that do not imple-
ment their specifications. We repeat this process for each
of the training and test sets, producing two trace datasets
consisting of pairs of model and program states.

Probing experiments Finally, for each training trace
dataset, we train a linear probe to predict the facing di-
rection in all 5 program states given the model state. As the
facing direction yields a precise abstraction of the full trace

semantics, we say the probe predicts a semantic state of
the partial program. We then evaluate the accuracy of the
probe on the test trace dataset from the same step, and refer
to this as the semantic content of the LM. The semantic
content captures, in a precise sense, the extent to which
model state is aligned with semantic state, i.e., a subset of
the semantics.

3. Emergence of meaning
We investigate the hypothesis that representations of the
semantic state emerge in the model state as a byproduct of
training the LM to perform next token prediction. Given
that the final trained LM achieves generative accuracy of
96.4%, rejecting this hypothesis would be consistent with
H2, namely, that the LM has learned to “only” leverage
surface statistics to consistently generate correct programs.

To test this hypothesis, we train a linear probe to extract
the semantic state from the model state as 5 separate 4-way
classification tasks (one facing direction for each input).

3.1. Emergence of meaning is correlated with generative
accuracy

Figure 2 plots our main results. Our first observation is that
the semantic content starts at the baseline performance of

Figure 2: Plotting generative accuracy (blue line) and se-
mantic content (green line) over time. The dotted line at 25%
plots the baseline semantic content for random guessing.

random guessing (25%), and increases significantly over
the course of training. This result indicates that the hidden
states of the LM do in fact contain (linear) encodings of the
semantic state, and crucially this meaning emerges within an
LM trained purely to perform next token prediction on text.
Linearly regressing generative accuracy against semantic
content yields a surprisingly strong, statistically significant
linear correlation across training steps (R2 = 0.968, p <
0.001), i.e., the variability in the LM’s ability to synthesize
correct programs is almost completely explained by the
semantic content of the LM’s hidden layers. This suggests
that, within the scope of our experimental setup, learning to
model the distribution of correct programs is directly related
to learning the meaning of programs,3 which refutes that
LMs are unable to acquire meaning (H2).

3.2. Semantic content is attributable to model states (not
the probe)

We next evaluate the possibility that semantics are learned
by the probe instead of latent in the model state. Because
the probe is explicitly supervised on semantic state, one
explanation for the semantic content is that (1) the LM
encodes only lexical and syntactic structure, while (2) the
probe learns to infer the semantics. For instance, the model
states may simply encode the inputs and a list of tokens
in the program generated thus far, while the probe reads
off then interprets the tokens one-by-one. We refer to this
hypothesis as the LM learning a syntactic transcript (as
opposed to semantic state).

3Or more precisely, the ability of a linear probe to extract
meaning; Section 3.2 strengthens this claim by attributing the
semantic content directly to the model states, rather than what is
learned by the probe.

To test this hypothesis, we design a novel interventional
experiment that preserves the lexical and syntactic structure
of the language, and intervenes only on the semantics. In
particular, we define an alternative semantics by exchang-
ing the meaning of individual operations in the language.
Then, we retrace the program according to the alternative se-
mantics and train a new probe to decode the original model
states to the alternative semantic states. This experimental
design allows us to distinguish between the two cases where
either (1) the model states directly encode a representation
of the semantic state, and so the probe needs to learn to
map from the original semantic state directly to the alterna-
tive semantic state; or (2) the model states merely encode a
(syntactic) transcript of the partial program, and the probe
just needs to learn to interpret the transcript according to
the alternative semantics. In this case, because we limit the
alternative semantics to exchanging the meaning of individ-
ual operations in the language4 (as opposed to inventing
completely new operations, e.g., move two spaces in one
step), the probe should be able to interpret the transcript
equally well, resulting in comparable measurements of the
alternative semantic content. Figure 3 illustrates our setup.

Note that exhibiting any alternative semantics (within the
limitations described above) which degrades the alternative
semantic content is sufficient to reject the syntactic transcript
hypothesis. As such, the experiment relies crucially on the
difficulty of (1), i.e., the harder the task of mapping from
the original to alternative semantic state, the easier it will
be to distinguish (1) and (2) based on the outcome of the
experiment. Hence, we design the alternative semantics to
be as distinct as possible from the original semantics with
respect to the semantic state of interest, while still using the
same set of base operations.

Details of the specific alternative semantics we use and the
results of the experiment are provided in Appendix B. We
find that the semantic content for the alternative semantics
is significantly degraded when compared to the original se-
mantics, which supports rejecting the hypothesis that the
model states only encode a syntactic transcript (i.e., lexical
and syntactic information only) while the probe learns to in-
terpret the transcript (i.e., semantics). We thus conclude that
the probing results of the previous section can be attributed
to meaning being represented in the model states.

3.3. Generated outputs differ from the training
distribution

We next present evidence against H1 by comparing the dis-
tribution of programs generated by the trained LM with the
distribution of programs in the training set. If H1 holds,

4Specifically, given a formal grammar and semantics, the inter-
vention should only exchange the meaning of terminals that are on
the right hand side of the same production.

Figure 3: The proposed interventional experiment. We use green for the original semantics, red for the alternative semantics,
and gray for non-semantic components (such as syntax). Solid arrows indicate a (supervised) training signal. We aim to
distinguish between two hypotheses: (1) the LM only records a syntactic transcript, while the probe learns to infer semantics
from the transcript (left), and (2) the LM learns to represent the semantic state, and the probe just extracts the latent meaning
(right). We mark the emergent connection between the original semantics and the LM representations in the latter case by a
dashed green line. The top row depicts how, pre-intervention, both cases can lead to the high semantic content measured in
Section 3.1. The bottom row displays how intervening on the semantics while preserving the form of programs distinguishes
the two hypotheses: if the LM representations are not meaningful (bottom left), then the probe’s job is the same as before,
i.e., it simply learns to interpret the transcript according to the alternative semantics (and achieves high alternative semantic
content); however, if the LM representations encode the original semantic state (bottom right), then the probe needs to
extract the alternative meaning from the original semantic state, leading to a low alternative semantic content.

one would expect the two distributions to be roughly equiv-
alent, since the LM would just be repeating the statistical
correlations of text in the training set.

First, we find a statistically significant difference between
the average length of (1) the programs generated by the LM
and (2) the reference prorams in the training set,5 which
indicates that the output distribution of the LM is indeed
distinct from the distribution of programs in its training set.6

This contradicts the view put forth in H1 that LMs can only
repeat the statistical correlations in their training data.

Moreover, the LM output length is, on average, 1 token
shorter than the reference program length. Indeed, though
there are trivial ways to make programs longer (for in-
stance, by inserting no-ops like a turnRight followed by
a turnLeft), being able to reliably generate programs that
are shorter would intuitively require some level of semantic
knowledge. For instance, Figure 1 depicts an actual comple-
tion generated by the LM, which is equivalent to the original
reference program that is 2 operations longer. This equiva-
lence requires 3 steps to prove: starting from the reference

595% confidence intervals for the mean lengths of the reference
programs and LM outputs at the end of training are (2.417, 2.521)
and (1.565, 1.629), respectively, measured using the BCa bootstrap
with 9999 samples.

6Strictly speaking, this result is specific to the output distribu-
tion induced by greedy decoding, but our conclusion still holds for
the LM as an end-to-end system.

Figure 4: Perplexity of LM on (1) the reference program
tokens in the training set (solid green line), (2) the generated
program tokens in the test set (dashed green line), and (3)
all tokens in the training set (dotted green line), with the
generative accuracy as a comparison (blue line) over time.
Note that the perplexity of the LM output approaches the
average perplexity of the training set, while the perplexity
of the reference programs does not converge.

program, (1) putMarker commutes with turnLeft, (2)
turnLeft,turnRight is a no-op that can be removed,
and (3) turnRight,move,turnLeft,move is equiva-
lent to move,turnRight,move,turnLeft (assuming
no obstacles, as is the case in the full specification). Though
each step might seem simple to a human, we emphasize that
the training procedure provides no inductive bias toward
discovering equivalent expressions of the same program.

Finally, we also measure the perplexity of the LM on pro-
grams in the training set across time. Figure 4 displays our
results. We see that while the perplexity of the generated
programs approaches the average perplexity of the dataset,
the LM never learns to fit the distribution of programs in the
training set very well, which further supports rejecting H1.
This can be attributed to the fact that the randomly sampled
programs in the training set contain many no-ops, while the
LM prefers to generate more concise programs.

4. Related work
Meaningful representations in LMs Li et al. (2023) train
a Transformer on transcripts of Othello, then probe the
model activations (not the hidden states) to extract the board
state. Li et al. (2021) fine-tune several pretrained LMs on
text that describes evolving situations, then probe the model
states to test propositions about entities in the situation. Ab-
dou et al. (2021) find that pretrained LMs’ representations of
color terms are geometrically aligned with CIELAB space.

This work makes several novel contributions within this
body of literature. We are the first to explore how meaning
in LMs emerges over time (instead of a single snapshot
at the end of training), and find a strong, linear relation-
ship between the emergence of meaning and correctness.
In addition, while prior work has studied the differences
between an LM’s output and its training corpus based on
surface statistics (Meister & Cotterell, 2021; LeBrun et al.,
2022), we are, to the best of our knowledge, the first to
identify a semantically meaningful difference between an
LM’s outputs and its training corpus. We leave the study of
this phenomenon and its implications to future work.

Analyzing the behavior of LMs Researchers have inves-
tigated the ability of LMs to successfully complete a range
of semantically meaningful tasks (Austin et al., 2021; Tosh-
niwal et al., 2022; Patel & Pavlick, 2022; Liu et al., 2023).
Unlike our research, which probes the internal state of the
LM to determine the presence or absence of semantically
meaningful state, this line of research works only with the
externally observable behavior of the LM.

Probing Probing (Shi et al., 2016; Belinkov & Glass,
2019) is widely used as a technique to investigate the inner
workings of LMs. A key challenge is controlling for what is
learned by the probe rather than latent in the LM (Belinkov,

2022). A standard method is to establish a baseline measure-
ment on a task for which the model states are assumed to be
meaningless. Hewitt & Liang (2019) develop control tasks
for word-level properties in the context of probing for parts
of speech in LM representations. They compare against the
performance of a probe that maps from the model states
to a dataset with a random part of speech assigned to each
word. In our case, the control task approach would assign
a random label to each program state; however, this would
destroy the compositional structure of the program. Instead,
we establish a baseline by intervening on the semantics
of program constructs, and generate a new label for each
program state by evaluating the program according to the
alternative semantics. Preserving the syntax of the language
enables us to reject the hypothesis that the model states en-
code syntax while the probe learns semantics, making our
technique better suited than control tasks when probing for
compositional semantics.

Program synthesis with LMs There is a growing body
of work on training large-scale, Transformer-based LMs
for program synthesis (Chen et al., 2021a; Li et al., 2022;
Nijkamp et al., 2023; Fried et al., 2023; Austin et al., 2021),
as well as program synthesis as a benchmark for LMs
(Hendrycks et al., 2021; Liang et al., 2022), but none of
this previous research investigates the internal representa-
tions of LMs for evidence of semantic state. These papers
have also observed that the BLEU score given a reference so-
lution is not a good predictor of quality, which complements
our results regarding perplexity on the training corpus.

Grounding programs from text Prior work has argued
specifically that LMs cannot ground programs given only
textual hints of semantics (Merrill et al., 2021). Bender &
Koller (2020) concede that meaning could be learned from
programs paired with unit tests, but assert this requires a
“learner which has been equipped by its human developer
with the ability to identify and interpret unit tests,” implying
that an LM would require an additional supervised signal
to associate unit tests with the meaning of programs. In
contrast, our results indicate that an LM learns the meaning
of programs from textual instances of input-output behavior
using only next token prediction.

5. Conclusion
The question of whether semantics can be learned from text
has garnered considerable interest in recent years. This pa-
per presents empirical support for the position that meaning
is learnable from form. More broadly, the formal approach
to meaning presented here offers a principled foundation
for studying meaning in models of language—a question of
both practical and philosophical importance.

References
Abdou, M., Kulmizev, A., Hershcovich, D., Frank, S.,

Pavlick, E., and Søgaard, A. Can language models encode
perceptual structure without grounding? a case study in
color. In Proceedings of the 25th Conference on Compu-
tational Natural Language Learning, pp. 109–132, 2021.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Belinkov, Y. Probing classifiers: Promises, shortcomings,
and advances. Computational Linguistics, 48(1):207–
219, March 2022. doi: 10.1162/coli a 00422. URL
https://aclanthology.org/2022.cl-1.7.

Belinkov, Y. and Glass, J. Analysis methods in neu-
ral language processing: A survey. Transactions of
the Association for Computational Linguistics, 7:49–
72, 2019. doi: 10.1162/tacl a 00254. URL https:
//aclanthology.org/Q19-1004.

Bender, E. M. and Koller, A. Climbing towards nlu: On
meaning, form, and understanding in the age of data. In
Proceedings of the 58th annual meeting of the association
for computational linguistics, pp. 5185–5198, 2020.

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and Kohli,
P. Leveraging grammar and reinforcement learning for
neural program synthesis. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=H1Xw62kRZ.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021a.

Chen, X., Liu, C., and Song, D. Execution-guided neu-
ral program synthesis. In International Conference on
Learning Representations, 2019.

Chen, X., Song, D., and Tian, Y. Latent execution for neu-
ral program synthesis beyond domain-specific languages.
Advances in Neural Information Processing Systems, 34:
22196–22208, 2021b.

Chomsky, N. Syntactic structures. Mouton de Gruyter,
2002.

Cousot, P. Constructive design of a hierarchy of semantics of
a transition system by abstract interpretation. Theoretical
Computer Science, 277(1-2):47–103, 2002.

Cousot, P. and Cousot, R. Abstract interpretation: a unified
lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In Proceedings of the

4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 238–252, 1977.

CS106A. CS106A: Programming Methodologies (spring
2023). https://web.archive.org/web/
20230515003120/https://web.stanford.
edu/class/cs106a/, 2023. URL https:
//web.stanford.edu/class/cs106a/. Ac-
cessed: 2023-05-14.

Devlin, J., Bunel, R. R., Singh, R., Hausknecht, M., and
Kohli, P. Neural program meta-induction. Advances in
Neural Information Processing Systems, 30, 2017.

Fodor, J. A. and Lepore, E. The compositionality papers.
Oxford University Press, 2002.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace,
E., Shi, F., Zhong, R., Yih, S., Zettlemoyer, L., and
Lewis, M. Incoder: A generative model for code infilling
and synthesis. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=hQwb-lbM6EL.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., et al.
Measuring coding challenge competence with apps. arXiv
preprint arXiv:2105.09938, 2021.

Hertz, M. and Jump, M. Trace-based teaching in early
programming courses. In Proceeding of the 44th ACM
technical symposium on Computer science education, pp.
561–566, 2013.

Hewitt, J. and Liang, P. Designing and interpreting probes
with control tasks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2733–2743,
Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1275.
URL https://aclanthology.org/D19-1275.

LeBrun, B., Sordoni, A., and O’Donnell, T. J. Evaluating
distributional distortion in neural language modeling. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=bTteFbU99ye.

Letovsky, S. Cognitive processes in program comprehen-
sion. Journal of Systems and software, 7(4):325–339,
1987.

Li, B. Z., Nye, M., and Andreas, J. Implicit representations
of meaning in neural language models. In Proceedings
of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1:
Long Papers), pp. 1813–1827, 2021.

https://aclanthology.org/2022.cl-1.7
https://aclanthology.org/Q19-1004
https://aclanthology.org/Q19-1004
https://openreview.net/forum?id=H1Xw62kRZ
https://openreview.net/forum?id=H1Xw62kRZ
https://web.archive.org/web/20230515003120/https://web.stanford.edu/class/cs106a/
https://web.archive.org/web/20230515003120/https://web.stanford.edu/class/cs106a/
https://web.archive.org/web/20230515003120/https://web.stanford.edu/class/cs106a/
https://web.stanford.edu/class/cs106a/
https://web.stanford.edu/class/cs106a/
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://aclanthology.org/D19-1275
https://openreview.net/forum?id=bTteFbU99ye
https://openreview.net/forum?id=bTteFbU99ye

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H.,
and Wattenberg, M. Emergent world representations:
Exploring a sequence model trained on a synthetic task.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=DeG07_TcZvT.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D.,
Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar,
A., et al. Holistic evaluation of language models. arXiv
preprint arXiv:2211.09110, 2022.

Lister, R., Fidge, C., and Teague, D. Further evidence of
a relationship between explaining, tracing and writing
skills in introductory programming. Acm sigcse bulletin,
41(3):161–165, 2009.

Liu, R., Wei, J., Gu, S. S., Wu, T.-Y., Vosoughi, S., Cui, C.,
Zhou, D., and Dai, A. M. Mind’s eye: Grounded language
model reasoning through simulation. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=4rXMRuoJlai.

Lopez, M., Whalley, J., Robbins, P., and Lister, R. Rela-
tionships between reading, tracing and writing skills in
introductory programming. In Proceedings of the fourth
international workshop on computing education research,
pp. 101–112, 2008.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2019. URL https://openreview.
net/forum?id=Bkg6RiCqY7.

Meister, C. and Cotterell, R. Language model evaluation
beyond perplexity. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 5328–
5339, 2021.

Merrill, W., Goldberg, Y., Schwartz, R., and Smith, N. A.
Provable limitations of acquiring meaning from un-
grounded form: What will future language models under-
stand? Transactions of the Association for Computational
Linguistics, 9:1047–1060, 2021.

Michael, J., Holtzman, A., Parrish, A., Mueller, A., Wang,
A., Chen, A., Madaan, D., Nangia, N., Pang, R. Y.,
Phang, J., et al. What do nlp researchers believe? re-
sults of the nlp community metasurvey. arXiv preprint
arXiv:2208.12852, 2022.

Mikolov, T., Joulin, A., and Baroni, M. A roadmap towards
machine intelligence. In Computational Linguistics and
Intelligent Text Processing: 17th International Confer-
ence, CICLing 2016, Konya, Turkey, April 3–9, 2016,
Revised Selected Papers, Part I 17, pp. 29–61. Springer,
2018.

Mitchell, M. and Krakauer, D. C. The debate over un-
derstanding in AI’s large language models. Proceed-
ings of the National Academy of Sciences, 120(13), mar
2023. doi: 10.1073/pnas.2215907120. URL https:
//doi.org/10.1073%2Fpnas.2215907120.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H.,
Zhou, Y., Savarese, S., and Xiong, C. Codegen: An
open large language model for code with multi-turn pro-
gram synthesis. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=iaYcJKpY2B_.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Patel, R. and Pavlick, E. Mapping language models to
grounded conceptual spaces. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=gJcEM8sxHK.

Pattis, R. E. Karel the robot: a gentle introduction to the art
of programming. John Wiley & Sons, 1994.

Piech, C. and Roberts, E. Karel Reader: Python
version. https://compedu.stanford.edu/
karel-reader/docs/python/en/intro.
html, January 2019. Accessed May 8, 2023.

Shi, X., Padhi, I., and Knight, K. Does string-based
neural MT learn source syntax? In Proceedings of
the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 1526–1534, Austin, Texas,
November 2016. Association for Computational Lin-
guistics. doi: 10.18653/v1/D16-1159. URL https:
//aclanthology.org/D16-1159.

Shin, E. C., Polosukhin, I., and Song, D. Improving neural
program synthesis with inferred execution traces. Ad-
vances in Neural Information Processing Systems, 31,
2018.

Sorva, J. Notional machines and introductory programming
education. ACM Trans. Comput. Educ., 13(2), jul 2013.
doi: 10.1145/2483710.2483713. URL https://doi.
org/10.1145/2483710.2483713.

https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=4rXMRuoJlai
https://openreview.net/forum?id=4rXMRuoJlai
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1073%2Fpnas.2215907120
https://doi.org/10.1073%2Fpnas.2215907120
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=gJcEM8sxHK
https://openreview.net/forum?id=gJcEM8sxHK
https://compedu.stanford.edu/karel-reader/docs/python/en/intro.html
https://compedu.stanford.edu/karel-reader/docs/python/en/intro.html
https://compedu.stanford.edu/karel-reader/docs/python/en/intro.html
https://aclanthology.org/D16-1159
https://aclanthology.org/D16-1159
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713

Sun, S.-H., Noh, H., Somasundaram, S., and Lim, J. Neural
program synthesis from diverse demonstration videos.
In International Conference on Machine Learning, pp.
4790–4799. PMLR, 2018.

Toshniwal, S., Wiseman, S., Livescu, K., and Gimpel, K.
Chess as a testbed for language model state tracking. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 11385–11393, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Winskel, G. The formal semantics of programming lan-
guages: an introduction. MIT press, 1993.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45, Online,
October 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6

A. Experimental details
A.1. Karel grammar specification

We use the same grammar as Devlin et al. (2017), except with loops and conditionals removed.

Prog p := def run():s

Stmt s := s1; s2 | a
Action a := move() | turnRight() | turnLeft() | pickMarker() | putMarker()

A.2. Facing direction abstraction

The facing direction abstraction maps a program state to the facing direction of the robot within that program state. It
follows that the abstraction function α is simply a projection operator that forgets all information about the program state
except for the facing direction of the robot. The abstract semantics are given by:

full semantics pickMarker putMarker turnRight turnLeft move

abstract semantics id id turnRight turnLeft id

where id is the identity operator that does not affect the facing direction. Clearly, α is a homomorphism, and so the
abstraction is exact.

We identify an important property of this choice of α, which is relevant to the experimental design. First, note that α, being a
projection, is linear. Second, recall that the abstraction is exact when the abstract semantics are a subset of the full semantics,
in a precise sense. Combining these two facts yields that any conclusions we draw satisfy soundness with respect to the full
semantics, i.e., we are not looking for anything “extra”: if there exists a linear representation of the full semantics, then
there exists a linear representation of the abstract semantics; additionally, if the semantic content with respect to the abstract
semantics is high, this constitutes evidence that the model has indeed acquired an aspect of the original full semantics. Note
that if the abstract semantics were not a subset of the full semantics, then the semantic content may be high due to measuring
something which conceptually “falls outside of” (or is unrelated to) the full semantics—in this case, high semantic content
with respect to the abstract semantics may not constitute evidence that the model has acquired an aspect the full semantics.
Hence, using a precise abstraction (as we do) is one way to ensure a positive result is still sufficient grounds for rejecting H1
and H2.

A.3. Karel synthetic dataset statistics

The default program sampler of Devlin et al. (2017) samples random programs by selecting a right hand side of each
production rule uniformly at random, starting from the start symbol p, down to a maximum depth of 5 in the parse tree,
which translates to a maximum length of 8 actions (since the start symbol and initial statement each constitute a level of the
parse tree). This yields a skewed distribution of program lengths, with an average length of roughly 2.5 tokens.

Figure 5 plots a histogram of the lengths of reference programs in the test set (the distribution of lengths of reference
programs in the training set is nearly identical). For comparison, we also plotted the lengths of the generated programs on
the test set using the final trained LM. Note that there are no programs of length 3 in the generated programs due to the
trained LM appending a no-op (specifically, a putMarker) to all programs which would otherwise have been length 3.
Additionally, despite the skewed distribution, we note that the LM is able to synthesize correct programs of all lengths (see
Appendix B).

A.4. Training and language model details

We used the non-pretrained 350M parameter variant of the CodeGen architecture (Nijkamp et al., 2023) from the Hugging-
Face Transformers library (Wolf et al., 2020), implemented in PyTorch (Paszke et al., 2019). We used the AdamW optimizer
(Loshchilov & Hutter, 2019) (but no weight decay), a learning rate of 5e-5, a block size of 2048, and a batch size of 16. All
program and grid world tokens are represented by special tokens, and the embeddings are trained from scratch. We trained
for 64000 steps, or approximately 1.5 epochs. Using a single NVIDIA A100 GPU with 80GB of VRAM, training the LM
takes around 8 days.

Figure 5: Distributions of the lengths of reference programs (red) and generated programs (blue) out of the 5000 examples
in the test set.

The probe consists of a layer normalization followed by a single linear layer. Note that the hidden states of the CodeGen
architecture are passed through a layer normalization as the final layer, so we just re-normalize after average pooling the
hidden states. The training set is formed from the first 100000 aligned traces in the training trace dataset. We train for a total
of 100 epochs using the AdamW optimizer with a weight decay of 1e-4, a learning rate of 0.01 that decays by .1 at 75 and
90 epochs, and a batch size of 256. Using a single NVIDIA A100 GPU, training each probe takes around 30 seconds.

B. Additional experimental results
B.1. Other alternative semantics

To complement the interventional experiments presented in Section 3.2 of the main text, we additionally present results for 3
additional alternative semantics.

Opposite is the alternative semantics used for the results in Section 3.2, which is designed to be as different as possible with
respect to the probed property of facing direction:

original pickMarker putMarker turnRight turnLeft move

opposite turnRight turnLeft move turnRight turnLeft

Swap exchanges the pairs of operations which are most semantically similar but opposed (and in particular, does not change
the meaning of the move operator):

original pickMarker putMarker turnRight turnLeft move

swap putMarker pickMarker turnLeft turnRight move

Shift shifts all operators right by 1 in the (arbitrary) order:

original pickMarker putMarker turnRight turnLeft move

shift putMarker turnRight turnLeft move pickMarker

Random exchanges the operators according to a random permutation:

original pickMarker putMarker turnRight turnLeft move

random turnLeft move pickMarker putMarker turnRight

Note that Swap, Shift, and Random are all permutations on operators, and hence, these alternative semantics also preserve
the distribution of tokens, which is a stronger property than Opposite (though not strictly necessary for the purposes of
our experiment, namely, rejecting the syntactic transcript hypothesis). Swap, is, in theory the “easiest” of the semantics,
given that the facing direction under the alternative semantics is simply the mirror of the facing direction under the original
semantics (reflected across the input facing direction).

(a) Probing 2 states into the past. (b) Probing 1 state into the past. (c) Probing the current state.

(d) Probing 1 state into the future. (e) Probing 2 states into the future.

Figure 6: Comparing the semantic content of the Opposite, Swap, Shift, and Random alternative and original (green)
semantics, with the generative accuracy (blue) plotted for context.

Figure 6 plots the results of probing up to 2 states into the past and future for the alternative and original semantics. In
all cases, the original semantics consistently yield the highest semantic content. We see the most significant gap when
probing for current and past states. There is a moderate gap for probing 1 state into the future, and only a slight gap in
the case of Shift alternative semantics for probing 2 states into the future. In all cases, the Opposite semantics have the
lowest semantic content, which is consistent with their design being the most different from the original semantics (in
terms of the abstraction). Furthermore, Swap does not have significantly higher semantic content relative to the other
alternative semantics (and has lower semantic content compared to the original semantics), despite there being a simple
mapping from the original to the alternative semantics, which is further evidence that the probe cannot just be executing
a syntactic transcript. We emphasize that, to reject the syntactic transcript hypothesis, it suffices to exhibit only a single
alternative semantics with degraded semantic content. Nonetheless, all the considered alternative semantics exhibit degraded
performance, which reinforces our conclusion that the LM representations contain semantic state (rather than the probe
learning semantics).

Length Accuracy Count

1 100.0% 2551
2 99.7% 623
3 99.2% 301
4 98.9% 638
5 96.4% 457
6 94.6% 239
7 92.7% 159
8 85.6% 32

Table 1: The generative accuracy of the final trained LM on the test set, separated by the length of the reference program
used to generate the specification. The final column displays the number of reference programs of each length in the test set.

B.2. Results by program length

This section presents additional analyses of our previous results, broken down by program length.

LM learns to synthesize correct programs of all lengths This section presents results which demonstrate that, despite
the average reference program length being 2.5 and fully half of the training set consisting of reference programs of length 1
(see Figure 5), the LM still learns to synthesize correct programs for specifications generated by reference programs of up to
length 8.

Table 1 displays the results of this analysis. We see that the LM is able to accurate generate programs that satisfy the
specifications across all lengths, with only a moderate drop in accuracy as the reference program length approaches the
maximum length of 8.

Alternative semantic content drops significantly for semantic states that are deeper in the program. This section
presents results that complement the results of Section 3.2 by demonstrating that the alternative semantic content can be
attributed almost entirely to probing for the first semantic state in the program trace. Specifically, we separated the semantic
content by the depth of the semantic state in the trace (for instance, a program of length 5 would have 5 semantic states; the
semantic state after executing the first program operation is at depth 1, the semantic state after executing the second program
operation is at depth 2, and so on).

Figure 7 displays the results of this analysis. We see that the alternative semantic content drops to essentially random
guessing for any semantic state which is not the first semantic state in the program (whereas the semantic content for the
original semantics remains significantly above the random guessing threshold). This also provides a partial explanation for
why probing into the future with alternative semantics is easier than probing into the past (as the first model state is excluded
from consideration).

Additionally, Figure 8 shows the semantic contents over time for the first 4 depths. The alternative semantic content past
depth 1 stays around the level of random guessing throughout training, whereas the original semantic content improves
significantly. This further supports our conclusion that the LM learns a representation that is inherently tied to the semantic
state, and the probe extracts meaning from the LM representation.

Figure 7: Original (green) and alternative (red) semantic contents for the final trained LM, separated by the depth of the
semantic states in the program.

(a) Semantic content at depth 1. (b) Semantic content at depth 2.

(c) Semantic content at depth 3. (d) Semantic content at depth 4.

Figure 8: Comparing the semantic content of the alternative (red) and original (green) semantics over time, separated by the
depth of the semantic state.

B.3. Regression plots and residuals

In this section, we provide plots of the regression results presented in Section 3.1 in the main text, alongside the residual
plots.

(a) Regression plot. (b) Residual plot.

Figure 9: Regressing the generative accuracy against the semantic content for two states into the past, with observations
taken over the course of training.

(a) Regression plot. (b) Residual plot.

Figure 10: Regressing the generative accuracy against the semantic content for one states into the past, with observations
taken over the course of training.

(a) Regression plot. (b) Residual plot.

Figure 11: Regressing the generative accuracy against the semantic content, with observations taken over the course of
training.

(a) Regression plot. (b) Residual plot.

Figure 12: Regressing the generative accuracy against the semantic content for one state into the future, with observations
taken over the course of training.

(a) Regression plot. (b) Residual plot.

Figure 13: Regressing the generative accuracy against the semantic content for two states into the future, with observations
taken over the course of training.

Figures 9 to 13 display our results. We note the cluster of residuals at high semantic contents for all offsets, which may
be an artifact of the capacity of the probe being saturated toward the end of training (while the accuracies are still slightly
increasing).

B.4. Perplexity and Loss over Time

To better understand how the perplexity of the LM evolves over time and complement the results in Section 3.3, we present
some additional analyses of the perplexity and loss over time on semantically distinct subsets of the dataset.

Figure 14 displays the average perplexity on each of the 5 input examples in the specifications of the test set. Because input
examples are randomly generated, we see that the LM does not distinguish much between the 5 inputs. In contrast, Figure 15
displays the average perplexity on each of the 5 outputs in the specifications of the test set over time. Note that, while the
first output example is generated by a random reference program, each successive output should become easier to predict,
since the previous input-output examples in the specification place constraints on the reference program (and hence the
subsequent outputs). Indeed, we see that the perplexity of each subsequent output example is lower than those earlier in the
specification. This suggests that the LM has learned to perform program induction, which is the problem of predicting the
output of a program given examples of its behavior (contrast this with program synthesis, where the objective is to produce
the program itself).

Figure 14: Perplexity of the final trained LM on the input examples in the specifications.

Figure 15: Perplexity of the final trained LM on the output examples in the specifications.

Finally, for completeness, we also display the loss (rather than the perplexity) in the Figure 16. Note the divergence between
the losses of the reference and generated programs, and the convergence between the losses of the generated programs and
the rest of the training set: both trends are even more apparent on the linear scale (cf. Figure 4, which is the same figure but
with perplexity instead of the loss).

Figure 16: Loss of the LM on (1) reference programs (dashed green line), (2) generated programs (solid green line), and (3)
all tokens in the test set (solid red line).

C. Further discussions of related work
Austin et al. (2021) evaluate a 137 billion parameter LM trained on a mixture of natural language and programs to synthesize
Python programs given a natural language description and three input-output assertions. They find that sampling 80 programs
from the LM yields at least one accurate program on around 60% of the tasks, but the LM is only able to generate the output
of the program 29% of the time when using greedy decoding. They conclude that LMs do not learn any substantial amount
of semantics, despite being able to synthesize correct programs.

We offer three possible explanations: (1) repeating their experiment and taking measurements over time would reveal a
relationship between their definitions of correctness and semantics; (2) continuing to train the LM beyond 60% accuracy
would yield an LM that is better at predicting the output of the program; and (3) we use greedy decoding for both synthesis
and semantic grounding, which gives a more direct connection between correctness and semantics since both metrics use the
same model states.

