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Abstract

The verification of the security of neural networks
is cruicial, especially for the field of autonomous
driving. Although there are currently benchmarks
for the verification of the robustness of neural net-
works, there are hardly any benchmarks related to
the field of autonomous driving, especially those
related to object detection and semantic segmen-
tation. Thus, a notable gap exists in formally
verifying the robustness of semantic semantic seg-
mentation and object detection tasks under com-
plex, real-world conditions. To address this, we
present an innovative approach to benchamark
formal verification for autonomous driving per-
ception tasks. Firstly, we propose robust verifica-
tion benchmarks for semantic segmentation and
object detection, supplementing existing methods.
Secondly, and more significantly, we introduce a
novel patch-level disturbance approach for object
detection, providing a more realistic representa-
tion of real-world scenarios. By augmenting the
current verification benchmarks with our novel
proposals, our work contributes towards develop-
ing a more comprehensive, practical, and realistic
benchmarking methodology for perception tasks
in autonomous driving, thereby propelling the
field towards improved safety and reliability. Our
dataset and code used in this work are publicly
available 1 2.
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1. Introduction
The advent of autonomous driving technologies has ushered
in a new paradigm for transportation, offering promise for
improved safety and efficiency. Yet, they also pose signifi-
cant challenges, particularly in perception tasks which are
fundamental to their safe operation. For example, by ac-
curately segmenting the drivable road surface from other
areas, the vehicle can know where it can go. In the other
case, the autonomous vehicle needs to detect pedestrians to
ensure that it stops or slows down in time to avoid collisions.
Reliable perception necessitates precise object detection and
semantic segmentation under varied and often unpredictable
real-world conditions (Shen et al., 2022), where semantic
segmentation is the task of clustering parts of images to-
gether which belong to the same object class (Thoma, 2016)
and object detection is the task of identifying objects in
the image along with their localizations and classifications
(Chahal & Dey, 2018).

Formal verification, grounded in rigorous mathematical and
logical principles, has been identified as a potent mechanism
for assuring the safety and performance of neural network.
Many formal approaches are already able to verify variants
of classification tasks (Anderson et al., 2019; Botoeva et al.,
2020; Dathathri et al., 2020; Fazlyab et al., 2022; Katz et al.,
2019; Mohapatra et al., 2020; Ruan et al., 2018; Singh et al.,
2019; Tjeng et al., 2017; Tran et al., 2020; Zhang et al.,
2018; Xu et al., 2020; Salman et al., 2019; Xu et al., 2021;
Wang et al., 2021; Zhang et al., 2022b;a; Ferrari et al., 2022;
Henriksen & Lomuscio, 2020; 2021; Henriksen et al., 2021;
Khedr et al., 2020; Bak, 2021; Brix & Noll, 2020). The
verification of safety and robustness specification of neu-
ral network controlled systems is explored by many works
(Huang et al., 2019; Ivanov et al., 2019; Tran et al., 2019).
Furthermore, the performance of image-based controllers is
discussed by concatenating the generator network with the
control network (Katz et al., 2021). However, only few work
focuses on the formal approach for verifying semantic seg-
mentation and object detection networks robustness using
reachability analysis (Tran et al., 2021). Moreover, existing
formal verification methods often rely on assumptions of
ideal operational environments, creating a potential diver-
gance from the often unpredictable conditions encountered
in real-world scenarios.
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Given this context, although we have many benchmarks
for formal verification methods (Bak et al., 2021; Müller
et al., 2023; Brix et al., 2023), there is still a significant and
unexplored need to benchmark formal verification methods
for autonomous driving system in the wild. This approach
allows for a more realistic assessment of perception neural
networks’ robustness under challenging real-world condi-
tions, while also facilitating calibration of verification tools
to better mirror reality. The motivation behind our work
arises from the necessity to enhance the verification bench-
marks for object detection and semantic segmentation tasks
and to better align them with actual autonomous driving
scenarios.

In this paper,we present a comprehensive approach to bench-
mark formal verification for autonomous driving perception
tasks. Our primary contributions are two-fold: firstly, we
propose robust verification benchmarks for object detection
and semantic segmentation tasks. Secondly, and more im-
portantly, we introduce a patch-level disturbance approach
for object detection tasks, mirroring the complexities of
real-world scenarios in a more realistic manner. Although
adversarial samples can effectively attack our perceptiion
models, in the real world, we seldom encounter disturbance
patterns that exactly match adversarial samples. That is, it’s
nearly impossible to replicate pixel-level disturbances in the
real world, so it’s questionable whether we will encounter
adversarial samples’ interference patterns in the real world.
On the contrary, patch-level disturbance patterns are a more
common type of interference, and they are easier to replicate
in the real world and are more likely to occur. For example,
we only need to simply cut some black paper pieces to repli-
cate the disturbance patterns we want to appear in the real
world. By augmenting the existing verification benchmarks
and proposing a novel patch-level disturbance approach, this
work aims to provide a more comprehensive and practical
benchmarking methodology for autonomous driving percep-
tion tasks, thereby advancing the field towards greater safety
and reliability.

The paper is organized as follows: In Section 2, we provide
a detailed relevent work. Section 3 introduces our semantic
segmentation benchmark. In Section 4, we delve into our
patch-level object detection benchmark. Finally, Section 5
presents the experiment of two benchmarks, and Section 6
concludes the paper with future work directions.

2. Related Work
Perception tasks in autonomous driving: Perception tasks
hold a key role by playing a critical function in recognizing
and understanding the various elements in the surrounding
environments (Yurtsever et al., 2019). This understanding
allows these perception tasks to extract vital semantic in-
formation necessary for safe and efficient driving. Such

information includes the identification and detection of dif-
ferent road onjects. These could be pedestriants crossing the
street, other vehicles in transit, or even potential obstacles
that could hinder the smooth progress of the autonomous
vehicle.

Moreover, object tracking is another crucial perception task,
ensuring a continous understanding of the movement and
position of surrounding entites. Another aspect of percep-
tion tasks involves semantic segmentation, a process that
categorizes each pixel in an image to a particular class to
help the vehicle better understand its environment. This not
only includes road and off-road classification but also recog-
nizes different lanes and traffic lights, aiding the vehicle’s
decision-making progress in different traffic scenarios.

These perception tasks rely heavily on the integration of
multiple sensor inputs. These sensors typically include
cameras, Light Detection and Ranging (LiDAR) systems
and Radio Detection and Ranging (RADAR) sensors.The
confluence of data from these diverse sensor systems feeds
into the perception tasks, aiding the autonomous vehicle in
understanding and navigating its surroundings efficiently
and safely.

In this paper, we mainly focus on semantic segmentation
and object detection tasks. Considering that the research
in formal verification of neural networks is still unable to
handle complex neural network models, we have simplified
the model in our benchmarks, which is not intended for
commercial mass production or practical use. At the same
time, we are only considering the data of a single target in a
single camera as the models’ input. We will treat more com-
plex perception models and multi-sensor inputs as future
research directions.

Benchmarks: Well-known benchmarks for perception tasks
are typically KITTI (Geiger et al., 2012), nuScenes (Caesar
et al., 2019) and Waymo (Sun et al., 2020) in autonomous
driving area, however they were designed for general pur-
pose instead of performing robustness evaluation. In order
to conduct evaluations of robustness, recent studies have
been actively either developing new benchmarks based on
the existing autonomous driving datasets (Dong et al., 2023),
or constructing new datasets that consist of road anomalies,
or those that represent extrem weather conditions (Chan
et al., 2021; Hendrycks et al., 2022; Li et al., 2022; Ping-
gera et al., 2016; Bijelic et al., 2020; Diaz-Ruiz et al., 2022;
Pitropov et al., 2020).

In the field of robustness verification of neural networks,
benchmarks are typically image classification tasks, though
some recent studies have been actively proposing new bench-
marks in many other tasks (Bak et al., 2021; Müller et al.,
2023; Brix et al., 2023). However, to the best of our knowl-
edge, so far there is no paper focusing on benchmarks which
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evaluate formal verification tools for perception tasks of au-
tonomous driving in the wild.

In this paper, we propose two benchmarks which are related
to autonomous driving scenarios, and we present a detailed
description of the background to highlight our benchmarks’
relevance and the characteristics of the verification problems.
The ONNX format and the VNN-LIB format were adpoted
for our benchmarks.

3. Semantic Segmentation Benchmark –
Carvana Unet

The motivation behind our proposed benchmarks is primar-
ily the predominant focus of existing networks in the litera-
ture on image classification. We perceive the need for more
emphasis on aspects such as object detection or semantic
segmentation, particularly in real-world scenarios such as
autonomous driving. In this section, we introduce a new
suite of simplified Unet (Ronneberger et al., 2015) bench-
marks designed specifically for neural network verification
on the Carvana dataset (Brian Shaler, 2017). To respond
to the practicality of current verification tools and the intri-
cate nature of semantic segmentation, we construct this new
series of simplified Unet benchmarks (model one consists
of four Conv2d layers followed by BatchNorm (BN) and
ReLu; model two builds upon model one, adding an Aver-
agePool layer and a Transposed Conv Upsampling layer).
We believe that it’s vital for tools to address more pragmatic
architectures and consider this simplified Unet as a step in
that direction.

Furthermore, the Carvana dataset, composed of 5088 im-
ages representing 318 cars (16 images per car), has been
divided into a test set of 318 images (one per car) and a
training set of the remaining 4700 images. The input images
should be normalized to a [0, 1] range. Ground truth masks,
generated by running the model on original images, assign
either a 0 or 1 to each pixel. Our proposal is to select 16
images randomly for verification from those whose over
98.8 percent and 99.0 percent of pixels are predicted cor-
rectly by model one and model two respectively. The input
size is [1, 4, 31, 47], where ’1’ corresponds to the batch
size, ’4’ to the number of channels, ’31’ and ’47’ to the
height and width of samples respectively. The first three
channels signify RGB values of images, and the last channel
denotes the model-produced mask used for computing the
quantity of accurately predicted pixels by the model. The
model output is the count of pixels predicted correctly by
the model, juxtaposed with the model-produced mask.

4. Patch-level Object Detection Benchmark –
CCTSDB YOLO

While the Carvana Unet benchmark in section 3 allows
the application of neural network verification tools in au-
tonomous driving scenarios, the pixel-level perturbation
is still challenging to reflect the real-world situation. In
this section, we are stepping up the challenge by introduc-
ing a new set of benchmarks for object detection within
autonomous driving scenes. Given the practicality of cur-
rent verification tools, we have modified Yolo-FastestV2
(Ma, 2021), based on a well-known end-to-end object detec-
tion framework Yolo. This architecture comprise backbone,
neck, and head components.

To further alleviate computational burden, we have sim-
plified the backbone and neck. For the head, we aim to
facilitate single object detection while bypassing the need to
conduct non-maximum suppression (NMS) operation within
the model. To this end, we have replaced the box regression
method with landmark regression for coordinate detection.

To the best of our knowledge, previous benchmarks were
designed to test the model’s digital world robustness. How-
ever, with an eye towards real-world practicality, we now
suggest testing the model’s robustness within the physical
world. Specifically, we will supply an image with its corre-
sponding label, as well as a fixed-size patch (either 1×1 or
3×3). Our goal is for the community to verify the model’s
robustness after applying the patch to any position within
the image, all within the allocated time of specific time.

We utilized the training set from CCTSDB 2021 (Zhang
et al., 2022c), which encompasses a total of 16356 images
(26838 instances). Further division of all instances in a 9:1
ratio resulted in a training set comprising 23856 instances
and a test set featuring 2982 instances. The input images
and target coordinates need normalization within the range
of 0 - 1. Targets are divided into three categories, signified
by 0 (mandatory), 1 (prohibitory), and 2 (warning). We
picked images with an intersection over union (IoU) greater
than 0.5 and correct category classification from the test
set. Eventually, 16 images will be selected at random for
verification.

The model input consists of an array of 12296 elements,
which include images (12288 elements), position (2 ele-
ments), and targets (6 elements). The model’s single output
is a combination of IoU between the predicted and actual
bounding box, and the consistency of the predicted category
with the actual category, as Equation (1).

output = IoU ×
{

1, pred cls = gt cls
0, pred cls ̸= gt cls

(1)

If the final output for the input with the added patch is less
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Table 1. Object detection accuracy for the dataset with/without
patches.

MODEL WITHOUT PATCH WITH PATCH

MODEL1 (PATCH SIZE 1×1) 0.968 0.805
MODEL2 (PATCH SIZE 3×3) 0.978 0.253

than 0.5, the model is deemed non-robust for that patch.
And vice versa.

5. Experiments
For the Carvana Unet benchmark, three formal verifica-
tion tools (α, β Crown (Zhang et al., 2018; Xu et al., 2020;
Salman et al., 2019; Xu et al., 2021; Wang et al., 2021;
Zhang et al., 2022b;a), MN-BAB (Ferrari et al., 2022), and
VeriNet (Henriksen & Lomuscio, 2020; 2021; Henriksen
et al., 2021)) have been successfully applied to our bench-
mark in VNN-COMP 2022 (Müller et al., 2023). The num-
ber of instances that were solved by the different formal
verification tools within a certain runtime for our benchmark
is as illustrated in Figure 1. We expect more formal verifica-
tion tools could be applied to the Carvana Unet benchmark
in the future.
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Figure 1. The number of instances that were solved by the different
formal verification tools within a certain runtime for Carvana Unet
in VNN-COMP 2022 (Müller et al., 2023).

For the CCTSDB YOLO benchmark, we further conduct
extensive experiments to prove the following properties; (1)
The simplified object detection model can still accurately
identify targets within the dataset. (2) By adding patches
randomly, we can ensure an anomalous detection in some
images while maintaining correct detection in others, thus
preventing situations where all data are either hold or vio-
lated. The object detection model and the dataset are same
as the description in section 4. We summarize our experi-
ment results in the Table 1.

As illustrated in the Table 1, the result shows that without
the patch added, the model achieves successful detection

rates of 0.968 and 0.978, indicating that its performance on
our dataset has not significantly declined due to simplifica-
tion. Moreover, after adding the patch, the detection rates
drop to 0.805 and 0.253, ensuring that some data fails detec-
tion, thereby validating the effectiveness of our benchmark
in evaluating the performance of formal verification tools
(within a certain time limitation).

6. Conclusion
In this paper, we show how perception tasks’ performance
can be further connected with robustness verification field
by benchmarking formal verification for autonomous driv-
ing in the wild. Specifically, we propose two benchmarks
consist of the pixel-level semantic segmentation benchmark
(Carvana Unet) and the patch-level object detection bench-
mark (CCTSDB YOLO). Experiments results demonstrate
the effectiveness of the proposed benchmark for evaluating
formal verification tools in autonomous driving perception
tasks. Future work will take into account more real-world
autonomous driving tasks (e.g., 3D object detection, ob-
ject tracking and LiDAR localization) and more variants of
attached patches.

References
Anderson, G., Pailoor, S., Dillig, I., and Chaudhuri, S. Op-

timization and abstraction: A synergistic approach for
analyzing neural network robustness. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, pp.
731–744, New York, NY, USA, 2019. Association for
Computing Machinery.

Bak, S. nnenum: Verification of relu neural networks with
optimized abstraction refinement. In NASA Formal Meth-
ods Symposium, pp. 19–36. Springer, 2021.

Bak, S., Liu, C., and Johnson, T. T. The second international
verification of neural networks competition (vnn-comp
2021): Summary and results. ArXiv, abs/2109.00498,
2021.

Bijelic, M., Gruber, T., Mannan, F., Kraus, F., Ritter, W.,
Dietmayer, K., and Heide, F. Seeing through fog with-
out seeing fog: Deep multimodal sensor fusion in un-
seen adverse weather. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
11679–11689, 2020.

Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., and
Misener, R. Efficient verification of relu-based neural
networks via dependency analysis. In AAAI Conference
on Artificial Intelligence, 2020.



Benchmarking Formal Verification for Autonomous Driving in the Wild

Brian Shaler, DanGill, M. M. M. P. W. C. Carvana image
masking challenge, 2017.

Brix, C. and Noll, T. Debona: Decoupled boundary net-
work analysis for tighter bounds and faster adversarial
robustness proofs. ArXiv, abs/2006.09040, 2020.

Brix, C., Muller, M. N., Bak, S., Johnson, T. T., and
Liu, C. First three years of the international verifica-
tion of neural networks competition (vnn-comp). ArXiv,
abs/2301.05815, 2023.

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E.,
Xu, Q., Krishnan, A., Pan, Y., Baldan, G., and Beijbom, O.
nuscenes: A multimodal dataset for autonomous driving.
2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 11618–11628, 2019.

Chahal, K. S. and Dey, K. A survey of modern ob-
ject detection literature using deep learning. ArXiv,
abs/1808.07256, 2018.

Chan, R., Lis, K., Uhlemeyer, S., Blum, H., Honari, S.,
Siegwart, R. Y., Salzmann, M., Fua, P., and Rottmann, M.
Segmentmeifyoucan: A benchmark for anomaly segmen-
tation. ArXiv, abs/2104.14812, 2021.

Dathathri, S., Dvijotham, K., Kurakin, A., Raghunathan, A.,
Uesato, J., Bunel, R. R., Shankar, S., Steinhardt, J., Good-
fellow, I., Liang, P. S., and Kohli, P. Enabling certification
of verification-agnostic networks via memory-efficient
semidefinite programming. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, volume 33,
pp. 5318–5331. Curran Associates, Inc., 2020.

Diaz-Ruiz, C. A., Xia, Y., You, Y., Nino, J., Chen, J., Mon-
ica, J., Chen, X., Luo, K., Wang, Y., Emond, M., Chao,
W.-L., Hariharan, B., Weinberger, K. Q., and Campbell,
M. Ithaca365: Dataset and driving perception under
repeated and challenging weather conditions. In 2022
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 21351–21360, 2022.

Dong, Y., Kang, C., Zhang, J., Zhu, Z., Wang, Y., Yang,
X., Su, H., Wei, X., and Zhu, J. Benchmarking robust-
ness of 3d object detection to common corruptions in
autonomous driving. ArXiv, abs/2303.11040, 2023.

Fazlyab, M., Morari, M., and Pappas, G. J. Safety ver-
ification and robustness analysis of neural networks
via quadratic constraints and semidefinite programming.
IEEE Transactions on Automatic Control, 67(1):1–15,
2022.

Ferrari, C., Mueller, M. N., Jovanović, N., and Vechev,
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A. Network Details
In our benchmarks, we used a total of three networks, namely Unet simp, Unet upsample, and Yolo. Among them,
Unet simp and Unet upsample correspond to benchmark Carvana Unet, while Yolo corresponds to benchmark CCTSDB
YOLO. We have summarized the amount of parameters and the size of the models corresponding to these thress networks in
the Table 2. The networks in benchmark Carvana Unet used operation such as Conv, BN, ReLu, AvgPool, ConvTranspose,
etc., whereas the networks in benchmark CCTSDB YOLO used operations like Conv, BN, ReLu, MaxPool, interpolate, etc.

Table 2. Summary of the amount of parameters and model sizes of the three networks

NETWORKS THE AMOUNT OF PARAMETERS MODEL SIZES (M)

UNET SIMP 149826 0.608
UNET UPSAMPLE 330370 1.333
YOLO 144583 0.668

B. Implementation Details
For the benchmark Carvana Unet, we used the RMSprop optimizer, where the weight decay was set to 1× 10−8 and the
momentum was set to 0.9. We initialized the learning rate to 1× 10−5, with a decay strategy of ReduceLROnPlateau, where
the mode was chosen as max and patience was set to 2. We trained it for a total of 5 epochs.

For the benchmark CCTSDB YOLO, we used the SGD optimizer, where the weight decay was set to 0.0005 and the
momentum was set to 0.949. We initialized the learning rate to 0.001, with a decay strategy of MultiStepLR, where the
milestones was set to an array as [150, 250] and gamma was set to 0.1. We trained it for a total of 300 epochs.


