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Abstract
Training certifiably robust neural networks re-
mains a notoriously hard problem. While adver-
sarial training optimizes under-approximations of
the worst-case loss, which leads to insufficient
regularization for certification, certified training
methods, optimize loose over-approximations,
leading to over-regularization and poor accuracy.
In this work, we propose TAPS, a novel certified
training method combining IBP and PGD train-
ing to optimize more precise, although not nec-
essarily sound, worst-case loss approximations,
reducing over-regularization and increasing certi-
fied accuracy. Empirically, TAPS achieves a new
state-of-the-art in many settings, e.g., reaching
a certified accuracy of 22% on TINYIMAGENET
for `∞-perturbations with radius ε = 1/255.

1. Introduction
Adversarial robustness, i.e., a neural network’s resilience to
small input perturbations (Biggio et al., 2013; Szegedy et al.,
2014), has established itself as an important research area.
Certification methods can rigorously prove such robustness.
Adversarial training methods, such as PGD (Madry et al.,
2018), aim to improve robustness by training with samples
that are perturbed to approximately maximize the training
loss. Thus optimizing an under-approximation of the worst-
case loss, they empirically improve robustness significantly,
but are insufficient to certify robustness. Certified training
methods like IBP (Mirman et al., 2018; Gowal et al., 2018),
in contrast, optimize over-approximations of the worst-case
loss, allowing them to increase certified accuracies at the
cost of over-regularization that leads to reduced accuracies.
Recent methods (Balunovic & Vechev, 2020; Palma et al.,
2022; Müller et al., 2022b), compute precise but unsound ap-
proximations of the worst-case loss, reducing regularization
and achieving higher accuracies.
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Figure 1: Histograms of the worst-case loss approximation
errors over the test set (left) for different training methods
show that TAPS (our work) achieves the most precise ap-
proximations and highest certified accuracy (right). Results
shown here are for a small CNN3.

This Work proposes Training via Adversarial
Propagation through Subnetworks (TAPS), a novel
(unsound) certified training method, based on more precise
worst-case loss approximations and increasing both certified
and standard accuracies. We showcase this relationship
between worst-case loss approximation error and accuracies
in Figure 1. Compared to SABR (Müller et al. (2022b),

the current state-of-the-art), TAPS ( ) enjoys a 5-fold
mean approximation error reduction and significantly
reduced variance (Figure 1 left), leading to improved
certified and natural accuracies (right). The key technical
insight behind TAPS is to combine IBP and PGD training
via a gradient connector, a novel mechanism that allows
for joint training, such that the over-approximation of
IBP and under-approximations of PGD cancel out. We
demonstrate, in an extensive empirical study, that TAPS
yields exceptionally tight worst-case loss approximations
which allow it to improve on state-of-the-art results for
MNIST, CIFAR-10, and TINYIMAGENET.

2. Background
We consider a classifier F:X 7→Y parameterized by weights
θ and predicting a class ypred = F (x) = arg maxy∈Y fy(x)

for every input x ∈ X ⊆ Rd with label y ∈ Y =
{1, . . . ,K} where f : X 7→ R|Y| is a neural network, as-
signing a numerical logit oi :=fi(x) to each class i.

Adversarial Robustness We call a classifier adversarially
robust on an `∞-norm ball B(x, ε) := {x′ | ‖x′ − x‖∞ ≤
ε} if it classifies all elements within the ball to the correct
class, i.e., F (x′) = y for all perturbed inputs x′ ∈ B(x, ε).
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Figure 2: Overview of TAPS training. First, forward propagation ( ) of a region B(x, ε) ( , left) around an input x ( )
through the feature extractor fE yields the exact reachable set ( , middle) and its IBP approximation [z, z] ( , middle)
in the embedding space. Further IBP propagation through the classifier fC would yield an imprecise box approximation
( , right) of the reachable set ( , right). Instead, TAPS conducts an adversarial attack ( ) in the embedding space IBP
approximation ( ) yielding an under-approximation ( ) of its reachable set ( , right). We illustrate the points with the
worst-case loss in every output region with and enable back-propagation ( ) through the attack via our gradient connector.

Neural Network Certification can formally prove robust-
ness properties of a neural network, i.e., that all inputs in
the region B(x, ε) yield the correct classification. Inter-
val bound propagation (IBP) (Mirman et al., 2018; Gowal
et al., 2018) is a particularly simple yet effective certifi-
cation method. It computes an over-approximation of a
network’s reachable set by propagating the input region
B(x, ε) layer-by-layer through the network (see Gowal et al.
(2018)) and representing the output of each layer as a BOX
(each dimension is described as an interval) until we obtain
upper (and lower) bounds [o∆,o∆] on the logit differences
o∆ :=o−oy1. Showing o∆

i > 0 for i 6=y proves robustness.

Training for Robustness aims to find model parame-
ters θ that minimize the expected worst-case loss θ =
arg minθ Ex,y

[
maxx′∈B(x,ε) L(x′, y)

]
. As the inner max-

imization objective can generally not be solved exactly,
it is often under- or over-approximated giving rise to ad-
versarial and certified training, respectively. Adversar-
ial Training optimizes a lower bound on the inner maxi-
mization problem by training the network with concrete
samples x′ ∈ B(x, ε) that (approximately) maximize the
loss function. A well-established method for this is Pro-
jected Gradient Descent (PGD) training (Madry et al.,
2018) using the loss LCE(x, y) :=ln

(
1+
∑
i6=y exp(fi(x)−

fy(x))
)
. Starting from a random initialization point x̂0 ∈

B(x, ε), it performs N update steps x̂n+1 = ΠB(x,ε)x̂n +
η sign(∇x̂n

LCE(x̂n, y)) with step size η and projection op-
erator Π. Networks trained this way typically exhibit good
empirical robustness but remain hard to formally certify.
Certified Training, in contrast, aims to train certifiably ro-
bust networks and optimizes a (sound) upper bound of the
inner maximization problem, by evaluating the loss LCE
with upper bounds on the logit differences o∆, e.g. via IBP:

LIBP(x, y, ε) := ln
(
1 +

∑
i6=y

exp(o∆
i )
)
. (1)

3. Precise Worst-Case Loss Approximation
We now introduce TAPS, illustrated in Figure 2. The
key insight behind TAPS is that PGD training and IBP
training complement each other perfectly: We can com-
bine them sequentially such that the over-approximation
errors incurred during IBP are compensated by the under-
approximations of PGD. We first partition a neural network
f with weights θ into a feature extractor fE and a clas-
sifier fC with parameters θE and θC , respectively, such
that we have fθ = fC ◦ fE and θ = θE ∪ θC . We refer
to the output space of the feature extractor as the embed-
ding space. Given an input sample x (illustrated as in
Figure 2) and a corresponding input region B(x, ε) ( in
the input panel), training proceeds as follows: During the
forward pass (black dashed arrows ), we first use IBP to
compute a BOX over-approximation [z, z] (dashed box )
of the feature extractor’s exact reachable set (blue region

), shown in the middle panel of Figure 2. Then, we con-
duct separate adversarial attacks ( ) within this region in
the embedding space ( ) to bound all output dimensions
of the classifier. This yields latent adversarial examples
ẑ ∈ [z, z], defining the TAPS bounds o∆

TAPS (dotted lines
in the output space) on the network’s output. This way,

the under-approximation of the classifier via PGD, partially
compensates the over-approximation of the feature extractor
via IBP. Full IBP propagation, in contrast, continues to
exponentially accumulate approximation errors, yielding
the much larger dashed box . We now compute the TAPS
loss LTAPS analogously to LIBP (Eq. (1)) by plugging the
TAPS bound estimate o∆

TAPS into the Cross-Entropy loss.
Comparing the resulting losses (illustrated as and growing
towards the top right), we see that while the TAPS bounds
are not necessarily sound, they yield a much better approx-
imation of the true worst-case loss. During the backward
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Figure 3: Gradient connector visualization.

pass (orange dotted arrows in Figure 2), we compute the
gradients w.r.t. the classifier’s parameters θC and the latent
adversarial examples ẑ (classifier input) as usual. However,
to compute the gradients w.r.t. the feature extractor’s pa-
rameters θF , we have to compute (pseudo) gradients of the
latent adversarial examples ẑ w.r.t. the box bounds z and
z. As these gradients are not well defined, we introduce
the gradient connector, discussed next, as an interface be-
tween the feature extractor and classifier, imposing such
pseudo gradients. This allows us to train fE and fC jointly,
leading to a feature extractor that minimizes approximation
errors and a classifier that is resilient to the spurious points
included in the approximation. Additionally, TAPS uses an
IBP-based regularization (see App. A).

Gradient Connector The key function of the gradient
connector is to enable gradient computation through the
adversarial example search in the embedding space. Using
the chain rule, this only requires us to define the (pseudo)
gradients ∂ẑ

∂z and ∂ẑ
∂z of the latent adversarial examples ẑ

w.r.t. the box bounds z and z on the feature extractor’s
outputs. Below, we will focus on the ith dimension of the
lower box bound zi and note that other dimensions and the
upper bounds follow analogously.

As the latent adversarial examples can be seen as multi-
variate functions in the box bounds, we obtain the general
form dL

dzi
=
∑
j
dL
dẑj

∂ẑj
∂zi

, depending on all dimensions of
the latent adversarial example. However, the jth dimension
of the latent adversarial example ẑj is independent of the
bounds in the ith dimension zi and zi (for i 6= j) as BOX
approximations do not encode any relational information
between dimensions. Therefore, we have ∂ẑj

∂zi
= 0 for i 6= j

and obtain dL
dzi

= dL
dẑi

∂ẑi
∂zi

, leaving only ∂ẑi
∂zi

for us to define.

The most natural gradient connector is the binary connec-
tor, i.e., set ∂ẑi∂zi

= 1ẑi=zi , as a valid sub-gradient for the
projection in PGD. However, the latent adversarial input
often does not lie on a corner of the BOX approximation,
leading to sparse gradients and thus a less well-behaved
optimization problem. More importantly, the binary con-
nector is very sensitive to the distance between (local) loss
extrema and the box boundary and thus inherently ill-suited
to gradient-based optimization. For example, a local ex-
tremum at ẑi would induce ∂ẑi

∂zi
= 1 in the box [ẑi, 0], but

∂ẑi
∂zi

= 0 for [ẑi − ε, 0], even for arbitrarily small ε.

o∆
1

o∆
2 LTAPS

Lsingle
TAPS

Figure 4: Bounds on o∆
i := oi − ot obtained via single ( )

and multi-estimator ( ) PGD and the points maximizing
the respective losses: for Lsingle

TAPS and for LTAPS.

To alleviate both of these problems, we consider a linear
connector, i.e., set ∂ẑi

∂zi
= zi−ẑi

zi−zi
. However, even when

our latent adversarial example is very close to one bound,
the linear connector would induce non-zero gradients w.r.t.
to the opposite bound. To remedy this undesirable be-
havior, we propose the rectified linear connector, setting
∂ẑi
∂zi

= max(0, 1− ẑi−zi
c(zi−zi)

) where c ∈ [0, 1] is a constant
(visualized in Figure 3 for c = 0.3). Observe that it recovers
the binary connector for c = 0 and the linear connector for
c = 1. To prevent gradient sparsity (c ≤ 0.5) while avoiding
the above-mentioned counterintuitive gradient connections
(c ≥ 0.5), we set c = 0.5 unless indicated otherwise. When
the upper and lower bounds agree in the ith dimension, we
set both gradients to ∂ẑi

∂zi
= ∂ẑi

∂zi
= 0.5.

TAPS Loss & Multi-estimator PGD The standard PGD
attack, used in adversarial training, henceforth called single-
estimator PGD, aims to maximize the loss LCE of a single
input. In the context of TAPS, this results in the overall loss

Lsingle
TAPS(x, y, ε) = max

ẑ∈[z,z]
ln
(

1 +
∑
i6=y

exp(fC(ẑ)i − fC(ẑ)y)
)
,

where the embedding space bounding box [z, z] is obtained
via IBP. However, this loss is not well aligned with ad-
versarial robustness as we show in Figure 4, where only
points in the lower-left quadrant are classified correctly (i.e.,
o∆
i := oi − oy < 0). We compute the latent adversarial

example ẑ by conducting a standard adversarial attack on
the Cross-Entropy loss over the reachable set (optimally
for illustration purposes) and observe that the correspond-
ing output f(ẑ) ( ) is classified correctly. However, if we
instead use the logit differences o∆

1 and o∆
2 as attack objec-

tives, we obtain two misclassified points ( ). Combining
their dimension-wise worst-case bounds ( ), we obtain the
point , which realizes the maximum loss over an optimal
box approximation of the reachable set and (when computed
exactly) directly corresponds to true robustness. We, thus,
propose the multi-estimator PGD variant of LTAPS, which
estimates the upper bounds on the logit differences o∆

i using
separate samples and then computes the loss function using
the per-dimension worst-cases as:

LTAPS(x, y, ε) = ln
(

1 +
∑
i 6=y

exp
(

max
ẑ∈[z,z]

fC(ẑ)i − fC(ẑ)y

))
.
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Table 1: Comparison of natural (Nat.) and certified (Cert.)
accuracy on multiple datasets.

Dataset ε∞ Method Source Nat. [%] Cert. [%]

MNIST

0.1

COLT Balunovic & Vechev (2020) 99.2 97.1
IBP Shi et al. (2021) 98.84 97.95
SORTNET Zhang et al. (2022b) 99.01 98.14
SABR Müller et al. (2022b) 99.23 98.22
TAPS this work 99.19 98.39
STAPS this work 99.15 98.37

0.3

COLT Balunovic & Vechev (2020) 97.3 85.7
IBP Shi et al. (2021) 97.67 93.10
SORTNET Zhang et al. (2022b) 98.46 93.40
SABR Müller et al. (2022b) 98.75 93.40
TAPS this work 97.94 93.62
STAPS this work 98.53 93.51

CIFAR-10

2

255

COLT Balunovic & Vechev (2020) 78.4 60.5
IBP Shi et al. (2021) 66.84 52.85
SORTNET Zhang et al. (2022b) 67.72 56.94
IBP-R Palma et al. (2022) 78.19 61.97
SABR Müller et al. (2022b) 79.24 62.84
TAPS this work 75.09 61.56
STAPS this work 79.76 62.98

8

255

COLT Balunovic & Vechev (2020) 51.7 27.5
IBP Shi et al. (2021) 48.94 34.97
SORTNET Zhang et al. (2022b) 54.84 40.39
IBP-R Palma et al. (2022) 51.43 27.87
SABR Müller et al. (2022b) 52.38 35.13
TAPS this work 49.76 35.10
STAPS this work 52.82 34.65

TINY-
IMAGENET

1

255

IBP Shi et al. (2021) 25.92 17.87
SORTNET Zhang et al. (2022b) 25.69 18.18
SABR Müller et al. (2022b) 28.85 20.46
TAPS this work 28.34 20.82
STAPS this work 28.98 22.16

4. Experimental Evaluation
We now evaluate TAPS as well as STAPS – a version of
TAPS where the IBP parts are replaced with the state-of-
the-art method SABR, for details see App. B. We provide
details on the experimental setup in App. D.

In Table 1, we compare TAPS to state-of-the-art certified
training methods. Most closely related are IBP, recovered
by TAPS if the classifier size is zero, and COLT, which
also combines bound propagation with adversarial attacks
but does not allow for joint training. TAPS dominates
IBP, improving on its certified and natural accuracy in all
settings and demonstrating the importance of avoiding over-
regularization. Compared to COLT, TAPS improves certi-
fied accuracies significantly (sometimes at cost of slightly
reduced natural accuracy), highlighting the importance of
joint optimization. Compared to the recent SABR and IBP-
R, TAPS often achieves higher certified accuracies at the
cost of slightly reduced natural accuracies. Reducing reg-
ularization more uniformly with STAPS achieves higher
certified accuracies in almost all settings and better natu-
ral accuracies in many, highlighting the orthogonality of
TAPS and SABR. Most notably, STAPS increases certified
accuracy on TINYIMAGENET by almost 10% while also
improving natural accuracy. SORTNET, a generalization of
a range of recent architectures (Zhang et al., 2021; 2022a;
Anil et al., 2019), introducing novel activation functions
tailored to yield networks with high `∞-robustness, per-
forms well on CIFAR-10 at ε = 8/255, but is dominated by
STAPS in every other setting.

0 1 2 3 4 5 6
#ReLU in Classifier

20

40

60

80
Accuracy [%]

(a) ε = 2/255

0 1 2 3 4 5 6
#ReLU in Classifier

20

30

40

50

60
Accuracy [%]

Standard

Adversarial

MN-BAB

CROWN-IBP

IBP

(b) ε = 8/255

Figure 5: Effect of split location on the standard and robust
accuracy of TAPS trained networks, depending on the per-
turbation magnitude ε for different certification methods for
CIFAR-10. 0 ReLUs in the classifier recovers IBP training.

Ablation: Split Location TAPS splits a given network
into a feature extractor and classifier. To analyze the effect of
this, we train multiple CNN7s such that we obtain classifiers
with between 0 and 6 (all) ReLU layers and illustrate the
resulting standard, adversarial, and certified (using different
methods) accuracies in Figure 5 for CIFAR-10, Table 10 for
MNIST, and Table 13 for TINYIMAGENET.

For small perturbations (ε = 2/255), increasing classifier
size and thus decreasing regularization yields increasing
natural and adversarial accuracy. While the precise verifica-
tion methods can translate this to rising certified accuracies
up to large classifier sizes, regularization quickly becomes
insufficient for the less precise IBP and CROWN-IBP cer-
tification. For larger perturbations (ε = 8/255), we observe
an initial increase of all accuracies with classifier size, fol-
lowed by a sudden drop and slow recovery. We hypothesize
that this effect is due to the IBP regularization starting to
dominate optimization combined with increased training
difficulty (see App. E for details). For both perturbation
magnitudes, gains in certified accuracy can only be real-
ized with the precise MN-BAB certification (Müller et al.,
2022b), highlighting the importance of recent developments
in neural network verification for certified training.

We further investigate TAPS’s worst-case loss approxima-
tion precision, the impact of single- vs. multi-estimator
PGD, and the effect of our IBP-based regularization in
App. E. For a detailed discussion of how TAPS relates to
other works, see App. F.

5. Conclusion
We propose TAPS, a novel certified training method that
reduces over-regularization by combining IBP and PGD
training to obtain a precise worst-case loss. Crucially, TAPS
enables joint training over the IBP and PGD approximated
components by introducing the gradient connector. Empir-
ically, we confirm that TAPS yields much more precise
approximations of the worst-case loss than existing meth-
ods and demonstrate that this translates to state-of-the-art
performance in certified training in many settings.
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A. Training Objective & Regularization
While complete certification methods can decide any ro-
bustness property, this requires exponential time. Therefore,
networks should not only be regularized to be robust but
also certifiable. Thus, we propose to combine the IBP loss
for easy-to-learn and certify samples with the TAPS loss
for harder samples as follows:

L(x, y, ε) = LTAPS(x, y, ε) · LIBP(x, y, ε).

This expresses that every sample should be either certifiable
with TAPS or IBP bounds1. Further, as by construction
LTAPS ≤ LIBP, we add a scaling term α to the loss gradient:

dL
dθ

:= 2α
dLTAPS

dθ
· LIBP + (2− 2α)

dLIBP

dθ
· LTAPS.

Here, α = 0.5 recovers the standard gradient, obtained
via the product rule (both sides weighted with 1), while
α = 0 and α = 1 correspond to using only the (weighted)
IBP and TAPS gradients, respectively. Henceforth, we
express this as the regularization weight wTAPS = α

1−α ,
which intuitively expresses the weight put on TAPS, using
wTAPS = 5 unless specified otherwise. Lastly, we reduce
the variance of L by averaging LIBP and LTAPS over a mini
batch before multiplying (see App. C).

B. STAPS – Balancing Regularization by
Combining TAPS with SABR

Similar to TAPS, SABR (Müller et al., 2022b) reduces
the over-regularization of certified training by optimizing a
more precise but unsound approximation of the worst-case
loss. However, while SABR’s approach of propagating a
small BOX through the whole network significantly reduces
regularization in early layers, the exponential growth of
BOX abstractions still causes a strong regularization of later
layers. In contrast, TAPS’s approach of propagating the full
input region through the first part of the network (the feature
extractor) before using PGD for the remainder reduces reg-
ularization only in later layers. Thus, we propose STAPS
by replacing the IBP component of TAPS with SABR
to obtain a more uniform reduction of over-regularization
throughout the whole network.

C. Averaging Multipliers Makes Gradients
Efficient

Theorem 1. Let xi be i.i.d. drawn from the dataset and de-
fine fi = fθ(xi) and gi = gθ(xi), where fθ and gθ are two
functions. Further, define L1 = (

∑n
i=1

1
nfi) · (

∑n
i=1

1
ngi)

and L2 =
∑n
i=1

1
nfigi. Then, assuming the function value

and the gradient are independent, Ex
(
∂L1

∂θ

)
= Ex

(
∂L2

∂θ

)
and Varx

(
∂L1

∂θ

)
≤ Varx

(
∂L2

∂θ

)
.

1See Fischer et al. (2019) for further discussion.

Proof. A famous result in stochastic optimization is that
stochastic gradients are unbiased. For completeness, we
give a short proof of this property: Let L = Exf(x) =∫ +∞
−∞ f(x)dP (x), thus ∇xL = ∇x(

∫ +∞
−∞ f(x)dP (x)) =∫ +∞

−∞ ∇xf(x)dP (x) = Ex(∇xf(x)). Therefore, ∇f(xi)
is an unbiased estimator of the true gradient.

Applying that the stochastic gradients are unbiased, we can
write ∇θfi = ∇θf + ηi, where ∇θf is the expectation of
the gradient and ηi is the deviation such that Eηi = 0 and
Var(ηi) = σ2

1 . Since xi is drawn independently, fi are
independent and thus ηi are independent. Similarly, we can
write∇θgi = ∇θg + δi, where Eδi = 0 and Var(δi) = σ2

2 .
ηi and δi may be dependent.

Define f̄ =
∑
i

1
nfi and ḡ =

∑
i

1
ngi. Explicit computation

gives us that ∇L1 = ḡ
(∑

i
1
n∇fi

)
+ f̄

(∑
i

1
n∇gi

)
, and

∇L2 =
∑
i

1
n (fi∇gi + gi∇fi). Therefore,

Ex (∇θL1 | fi, gi) = ḡ∇θf+f̄∇θg = Ex (∇θL2 | fi, gi) .
By the law of total probability,

Ex (∇θL1) = Efi,gi (Ex (∇θL1 | fi, gi))
= Efi,gi (Ex (∇θL2 | fi, gi))
= Ex (∇θL2) .

Therefore, we have got the first result: the gradients of L1

and L2 have the same expectation.

To prove the variance inequality, we will use variance de-
composition formula2:

Varx(∇θLk) = Efi,gi(Varx(∇θLk | fi, gi))+
Varfi,gi(Ex(∇θLk | fi, gi)),

k = 1, 2. We have proved that Ex(∇θL1 | fi, gi) =
Ex(∇θL2 | fi, gi), thus the second term is equal. Next,
we prove that Varx(∇θL1 | fi, gi) ≤ Varx(∇θL2 | fi, gi),
which implies Varx(∇θL1) ≤ Varx(∇θL2).

By explicit computation, we have

Var(∇L1 | fi, gi)

= (ḡ)2Var

(∑
i

1

n
ηi

)
+ (f̄)2Var

(∑
i

1

n
δi

)

=
1

n
σ2

1(ḡ)2 +
1

n
σ2

2(f̄)2, (2)

and

Var(∇L2 | fi, gi)

= Var

(∑
i

1

n
fiδi

)
+ Var

(∑
i

1

n
giηi

)

=
1

n
σ2

1

(∑
i

1

n
g2
i

)
+

1

n
σ2

2

(∑
i

1

n
f2
i

)
. (3)

2https://en.wikipedia.org/wiki/Law_of_total_variance
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Applying Jensen’s formula on the convex function x2, we
have

(∑
i

1
nai
)2 ≤ ∑

i
1
na

2
i for any ai, thus (f̄)2 ≤∑

i
1
nf

2
i and (ḡ)2 ≤ ∑

i
1
ng

2
i . Combining Eq. (2) and

Eq. (3) with these two inequalities gives the desired re-
sult.

D. Experimental Details
We implement TAPS in PyTorch (Paszke et al., 2019) and
use MN-BAB (Ferrari et al., 2022) for certification. We con-
duct experiments on MNIST (LeCun et al., 2010), CIFAR-
10 (Krizhevsky et al., 2009), and TINYIMAGENET (Le &
Yang, 2015) using `∞ perturbations and the CNN7 architec-
ture (Gowal et al., 2018).

Approximation Precision To evaluate whether TAPS
yields more precise approximations of the worst-case loss
than other certified training methods, we compute approxi-
mations of the maximum margin loss with IBP, PGD (50
steps 3 restarts), SABR (λ = 0.4), and TAPS on small
CNN3 trained with IBP, SABR, and TAPS for all MNIST
test set samples. We report histograms over the difference to
the exact worst-case loss computed with a MILP encoding
(Tjeng et al., 2019) in Figure 6. Positive values correspond
to over-approximations while negative values correspond
to under-approximation. We observe that regardless of the
training method, the TAPS approximation is by far the most
precise, achieving the smallest mean and mean absolute
error as well as variance.

D.1. TAPS Training Procedure

Algorithm 1 Train Loss Computation

Input: data XB = {(xb, yb)}b, current ε, target εt, net-
work f
Output: A differentiable loss L
LIBP =

∑
b∈B LIBP(xb, yb, ε)/|B|.

if ε < εt then
// ε annealing regularization from Shi et al. (2021)
Lfast = λ · (Ltightness + Lrelu)
return LIBP + ε/εt · Lfast

end if
LTAPS =

∑
b∈B LTAPS(xb, yb, ε)/|B|.

return LIBP · LTAPS

To obtain state-of-the-art performance with IBP, various
training techniques have been developed. We use two of
them: ε-annealing (Gowal et al., 2018) and initialization
and regularization for stable box sizes (Shi et al., 2021).
ε-annealing slowly increases the perturbation magnitude ε
during training to avoid exploding approximation sizes and
thus gradients. The initialization of Shi et al. (2021) scales
network weights to achieve constant box sizes over network

Table 2: The training epoch and learning rate settings.

Dataset Batch size Total epochs Annealing epochs Decay-1 Decay-2

MNIST 256 70 20 50 60
CIFAR-10 128 160 80 120 140

TINYIMAGENET 128 80 20 60 70

depth. During the ε-annealing phase, we combine the IBP
loss with the ReLU stability regularization Lfast (Shi et al.,
2021), before switching to the TAPS loss as described in
App. A. We formalize this in Algorithm 1.

D.2. Datasets and Augmentation

We use the MNIST (LeCun et al., 2010), CIFAR-10
(Krizhevsky et al., 2009), and TINYIMAGENET (Le & Yang,
2015) datasets, all of which are freely available with no li-
cense specified.

The data preprocessing mostly follows Müller et al. (2022b).
For MNIST, we do not apply any preprocessing. For
CIFAR-10 and TINYIMAGENET, we normalize with the
dataset mean and standard deviation (after calculating per-
turbation size) and augment with random horizontal flips.
For CIFAR-10, we apply random cropping to 32× 32 after
applying a 2 pixel padding at every margin. For TINYIM-
AGENET, we apply random cropping to 56 × 56 during
training and center cropping during testing.

D.3. Model Architectures

Unless specified otherwise, we follow Shi et al. (2021);
Müller et al. (2022b) and use a CNN7 with Batch Norm for
our main experiments. CNN7 is a convolutional network with
7 convolutional and linear layers. All but the last linear layer
are followed by a Batch Norm and ReLU layer.

D.4. Training Details

We follow the hyperparameter choices of Shi et al. (2021)
for ε-annealing, learning rate schedules, batch sizes, and
gradient clipping (see Table 2). We set the initial learning
rate to 0.0005 and decrease it by a factor of 0.2 at Decay-1
and -2. We set the gradient clipping threshold to 10.

We use additional L1 regularization in some settings where
we observe signs of overfitting. We report the L1 regular-
ization and split position chosen for different settings in
Table 3 and Table 5.

We train using single NVIDIA GeForce RTX 3090 for
MNIST and CIFAR-10 and single NVIDIA TITAN RTX
for TINYIMAGENET. Training and certification time are
reported in Table 4 and Table 6.
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Table 3: Hyperparameter for the best classifier splits for
TAPS.

Dataset ε # ReLUs in Classifier L1 w

MNIST 0.1 3 1e-6 5
0.3 1 0 5

CIFAR-10 2/255 5 2e-6 5
8/255 1 2e-6 5

TINYIMAGENET 1/255 1 0 5

Table 4: The training and certification time cost for the best
classifier splits for TAPS.

Dataset ε Train Time (s) Certify Time (s)

MNIST 0.1 42 622 17 117
0.3 12 417 41 624

CIFAR-10 2/255 141 281 166 474
8/255 27 017 26 968

TINYIMAGENET 1/255 306 036 23 497

Table 5: Hyperparameter with the best classifier splits for
STAPS.

Dataset ε # ReLUs in Classifier L1 w

MNIST 0.1 1 2e-5 5
0.3 1 2e-6 5

CIFAR-10 2/255 1 2e-6 2
8/255 1 2e-6 5

TINYIMAGENET 1/255 2 1e-6 5

Table 6: The training and certification time cost with the
best classifier splits for STAPS.

Dataset ε Train Time (s) Certify Time (s)

MNIST 0.1 19 865 12 943
0.3 23 613 125 768

CIFAR-10 2/255 47 631 398 245
8/255 48 706 77 793

TINYIMAGENET 1/255 861 639 35 183

Table 7: Effect of IBP regularization and the TAPS gradient
expanding coefficient α for MNIST ε = 0.3.

wTAPS Avg time (s) Nat (%) Adv. (%) Cert. (%)

LIBP 2.3 97.6 93.37 93.15
0 2.7 97.37 93.32 93.06
1 4.5 97.86 93.80 93.36
5 6.9 98.16 94.18 93.55

10 15.7 98.25 94.43 93.02
15† 42.8 98.53 95.00 91.55
20† 73.7 98.75 94.33 82.67
∞† 569.7 98.0 94.00 45.00
LTAPS

† 817.1 98.5 94.50 17.50
† Only evaluated on part of the test set within a 2-day time limit.

D.5. Certification Details

We combine IBP (Gowal et al., 2018), CROWN-IBP
(Zhang et al., 2020), and MN-BAB (Ferrari et al., 2022)
for certification, running the most precise but also compu-
tationally costly MN-BAB only on samples not certified
by the other methods. We use the same configuration for
MN-BAB as Müller et al. (2022b). The certification is run
on a single NVIDIA TITAN RTX.

MN-BAB (Ferrari et al., 2022) is a state-of-the-art (Brix
et al., 2023; Müller et al., 2022a) neural network verifier,
combining the branch-and-bound paradigm (Bunel et al.,
2020) with precise multi-neuron constraints (Müller et al.,
2022c; Singh et al., 2019a).

We use a mixture of strong adversarial attacks to evaluate
adversarial accuracy. First, we run PGD attacks with 5
restarts and 200 iterations each. Then, we run MN-BaB
to search for adversarial examples with a timeout of 1000
seconds.

E. Extended Evaluation
In this section, we further investigate TAPS’s worst-case
loss approximation precision, the impact of single- vs. multi-
estimator PGD, and the effect of our IBP-based regulariza-
tion.

IBP Regularization To analyze the effectiveness of the
multiplicative IBP regularization discussed in App. A, we
train with IBP in isolation (LIBP), IBP with TAPS weighted
gradients (wTAPS = 0), varying levels of gradient scaling
for the TAPS component (wTAPS ∈ [1, 20]), TAPS with
IBP weighting (wTAPS = ∞), and TAPS loss in isolation,
reporting results in Table 7. We observe that IBP in iso-
lation yields comparatively low standard but moderate cer-
tified accuracies with fast certification times. Increasing
the weight wTAPS of the TAPS gradients reduces regular-
ization, leading to longer certification times. Initially, these
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Figure 6: Distribution of the worst-case loss approximation errors over test set samples, depending on the training and
bounding method. Positive values correspond to over-approximations and negative values to under-approximations. We use
an exact MILP encoding (Tjeng et al., 2019) as reference.

also translate to higher adversarial and certified accuracies,
peaking at wTAPS = 15 and wTAPS = 5, respectively, before
especially certified accuracy decreases as regularization be-
comes insufficient for certification. We confirm these trends
for TINYIMAGENET in Table 12 in App. E.
Table 8: Comparison of single- and multi-estimator PGD,
depending on the split position for MNIST at ε = 0.3.

# ReLU in
Classifier

Single Multi

Certified Natural Certified Natural

1 -† 31.47† 93.62 97.94
3 92.91 98.56 93.03 98.63
6 92.41 98.88 92.70 98.88

† Training encounters mode collapse. Last epoch performance
reported.

Single-Estimator vs Multi-Estimator PGD To evaluate
the importance of our multi-estimator PGD variant, we
compare it to single-estimator PGD across a range of split
positions, reporting results in Table 8. We observe that
across all split positions, multi-estimator PGD achieves
better certified and better or equal natural accuracy. Further,
training collapses reproducibly for single-estimator PGD
for small classifiers, indicating that multi-estimator PGD
additionally improves training stability.

0 0.25 0.5 0.75 1
c

53
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TAPS Accuracy [%]

0 0.25 0.5 0.75 1
c

66

68

70

72
Natural Accuracy [%]

Figure 7: Effect of the gradient connector on TAPS (left)
and natural (right) accuracy.

Table 9: Comparison of TAPS accuracy with certified and
adversarial accuracy.

Dataset cor(TAPS, cert.) cor(TAPS, adv.) TAPS − cert. TAPS − adv.

MNIST 0.9139 0.9633 0.0122 ± 0.0141 0.0033 ± 0.0079
CIFAR-10 0.9973 0.9989 0.0028 ± 0.0095 -0.0040 ± 0.0077

Gradient Connector In Figure 7, we illustrate the effect
of our gradient connector’s parameterization c (see Sec-
tion 3). We report TAPS accuracy (the portion of samples
where all latent adversarial examples are classified correctly)
as a proxy for the goodness of fit. Recall that c = 0 cor-
responds to the binary connector and c = 1 to the linear
connector. We observe that the binary connector achieves
poor TAPS and natural accuracy, indicating a less well-
behaved optimization problem. TAPS accuracy peaks at
c = 0.5, indicating high goodness-of-fit and thus a well-
behaved optimization problem. This agrees well with our
theoretical considerations aiming to avoid sparsity (c < 0.5)
and contradicting gradients (c > 0.5).

TAPS Accuracy as GoF In practice, we want to avoid
certifying every model with expensive certification methods,
especially during hyperparameter tuning and applying early
stopping. Therefore, we need a criterion to select models. In
this section, we aim to show that TAPS accuracy is a good
proxy for goodness of fit (GoF).

We compare the TAPS accuracy to adversarial and certified
accuracy with all models we get on MNIST and CIFAR-
10. The result is shown in Table 9. From Table 9, we can
see that the correlations between TAPS accuracy and both
the adversarial and the certified accuracy are close to 1. In
addition, the differences are small and centered at zero, with
a small standard deviation. Therefore, we conclude that
TAPS accuracy is a good estimate of the true robustness,
thus a good measurement of GoF. In all the experiments, we
perform model selection based on the TAPS accuracy.

Training Difficulty Since TAPS is merely a training tech-
nique, we can test TAPS-trained models trained with a new
classifier split. By design, if the training is successful, then
under a given classifier split for testing, the model trained
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Figure 8: TAPS accuracy of models trained by different
classifier sizes for CIFAR-10.

with the same split should have the best TAPS accuracy.
Although this is often true, we find that in some cases, a
smaller classifier split results in higher TAPS accuracy, indi-
cating the difficulty of training.

Figure 8 shows the tested TAPS accuracy for models trained
with IBP and different splits for CIFAR-10. The result on
MNIST is provided in Figure 9. From these figures, we
can see that for CIFAR-10 ε = 2/255 and MNIST, the
models trained with the same test split has the highest TAPS
accuracy, as expected. However, for CIFAR-10 ε = 8/255,
the model trained with classifier size 4 is consistently better
for all test splits. Furthermore, as we show in Section 4,
this model has the best adversarial and certified accuracy as
well. This means that in this setting, the training of larger
splits is too difficult, such that TAPS is not able to find a
good model to minimize the given loss. However, in other
settings, TAPS is easy enough to train.
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Figure 9: TAPS accuracy of models trained by different
classifier sizes for MNIST.
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Table 10: Effect of split position into the classifier and
feature extractor (overall model size remains unchanged).
All numbers are in percentages. All results for MNIST.

ε # ReLUs in Classifier Nat. Adv.
Cert.

MN-BaB IBP

0.1

0 98.87 98.16 98.13 97.83
1 99.06 98.37 98.31 96.27
2 99.16 98.35 98.25 87.82
3 99.19 98.51 98.39 62.83
4 99.28 98.47 98.03 4.75
5 99.22 98.51 98.17 9.76
6 99.09 98.45 98.27 81.89

0.3

0 97.60 93.37 93.15 93.08
1 97.94 94.01 93.62 92.76
2 98.16 94.18 93.55 91.85
3 98.63 94.48 93.03 89.40
4 98.7 94.85 93.44 89.52
5 98.63 94.64 93.26 89.15
6 98.88 95.11 92.70 85.03

Split Position We include the full tables of the experiment
in Section 4 in Table 10 and Table 11.

Repeatability Due to the large computational cost of up
to 10 GPU-days for some experiments (see Tables 4 and 6),
we could not repeat all experiments multiple times to report
full statistics. However, we repeated the experiments for
MNIST at ε = 0.1 and ε = 0.3 (see Table 14), and find
very small standard deviations, indicating good repeatability
of our results.

F. Related Work
Verification Methods In this work, we only consider de-
terministic verification methods, which analyze a given net-
work as is. While complete (or exact) methods (Tjeng et al.,
2019; Palma et al., 2021; Wang et al., 2021; Müller et al.,
2022c; Zhang et al., 2022c; Ferrari et al., 2022) can de-
cide any robustness property given enough time, incom-
plete methods (Singh et al., 2018; Raghunathan et al., 2018;
Zhang et al., 2018; Dathathri et al., 2020) sacrifice some
precision for better scalability. However, recent complete
methods can be used with a timeout to obtain effective in-
complete methods.

Certified Training Most certified training methods com-
pute and minimize sound over-approximations of the worst-
case loss using different approximation methods: DIFFAI
(Mirman et al., 2018) and IBP (Gowal et al., 2018) use BOX
approximations, Wong et al. (2018) use DEEPZ relaxations
(Singh et al., 2018), Wong & Kolter (2018) back-substitute
linear bounds using fixed relaxations, Zhang et al. (2020)
use dynamic relaxations (Zhang et al., 2018; Singh et al.,
2019b) and compute intermediate bounds using BOX re-
laxations. Shi et al. (2021) significantly shorten training

Table 11: Effect of split position into the classifier and
feature extractor (overall model size remains unchanged).
All numbers are in percentages. All results for CIFAR-10.

ε #ReLUs Nat. Adv.
Cert.

MN-BaB IBP

2
255

0 67.27 56.32 56.14 53.54
1 70.10 57.78 57.48 41.86
2 70.74 57.83 57.39 40.24
3 71.88 58.89 58.23 34.41
4 72.45 60.38 59.47 31.88
5 75.09 63.00 61.56 24.36
6 75.40 62.73 61.11 24.90

8
255

0 48.15 34.63 34.60 34.26
1 49.76 35.29 35.10 32.92
2 47.28 33.54 33.12 28.94
3 48.76 33.50 33.12 29.14
4 50.19 34.78 34.35 29.14
5 50.2 34.33 33.72 28.83
6 51.03 35.25 34.44 29.97

Table 12: Effect of IBP regularization and the TAPS gradi-
ent expanding coefficient α for TINYIMAGENET ε = 1

255 .

wTAPS Avg time (s) Nat. (%) Adv. (%) Cert. (%)

LIBP 0.28 25.00 19.72 19.72
1 1.17 25.83 20.24 20.22
5 2.34 28.34 20.94 20.82

10 4.12 28.23 21.05 20.89
20 5.94 28.44 20.68 20.44

Table 13: Performance of TAPS and STAPS with different
number of ReLU layers included in the classifier on Ima-
geNet.

ReLU TAPS STAPS
Nat. (%) Adv. (%) Cert. (%) Train (s) Certify (s) Nat. (%) Adv. (%) Cert. (%) Train (s) Certify (s)

1 28.34 20.94 20.82 306 036 23 497 28.75 22.25 22.04 350 924 35 894
2 27.02 20.94 20.84 944 520 32 407 28.98 22.40 22.16 861 639 35 183

Table 14: Result statistics for MNIST. Estimated with 3
independent runs.

ε Nat. (%) Adv. (%) Cert. (%)

0.1 99.22 ± 0.03 98.45 ± 0.06 98.28 ± 0.10
0.3 97.96 ± 0.04 93.96 ± 0.04 93.57 ± 0.02
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schedules by combining IBP training with a special initial-
ization. Some more recent methods instead compute and
optimize more precise, but not necessarily sound, worst-case
loss approximations: SABR (Müller et al., 2022b) reduce
the regularization of IBP training by propagating only small
but carefully selected subregions. IBP-R (Palma et al.,
2022) combines adversarial training at large perturbation
radii with an IBP-based regularization. COLT (Balunovic
& Vechev, 2020) is conceptually most similar to TAPS and
thus compared to in more detail below.

COLT (Balunovic & Vechev, 2020), similar to TAPS, splits
the network into a feature extractor and classifier, computing
bounds on the feature extractor’s output (using the ZONO-
TOPE (Singh et al., 2019b) instead of BOX domain) before
conducting adversarial training over the resulting region.
Crucially, however, COLT lacks a gradient connector and,
thus, does not enable gradient flow between the latent ad-
versarial examples and the bounds on the feature extractor’s
output. Therefore, gradients can only be computed for the
weights of the classifier but not the feature extractor, prevent-
ing the two components from being trained jointly. Instead,
a stagewise training process is used, where the split between
feature extractor and classifier gradually moves through the
network starting with the whole network being treated as
the classifier. This has several repercussions: not only is the
training very slow and limited to relatively small networks
(a four-layer network takes almost 2 days to train) but more
importantly, the feature extractor (and thus the whole net-
work) is never trained to allow precise bound propagation.
Instead, only the classifier is trained to become robust to the
incurred imprecisions. As this makes bound propagation
methods ineffective for certification, Balunovic & Vechev
(2020) employ precise but very expensive mixed integer
linear programming (MILP (Tjeng et al., 2019)), further
limiting the scalability of COLT.

In our experimental evaluation (Section 4), we compare
TAPS in detail to the above methods.

Robustness by Construction Li et al. (2019), Lécuyer
et al. (2019), and Cohen et al. (2019) construct probabilis-
tic classifiers by introducing randomness into the inference
process of a base classifier. This allows them to derive
robustness guarantees with high probability at the cost of
significant (100x) runtime penalties. Zhang et al. (2021;
2022a) introduce `∞-distance neurons, generalized to SORT-
NET by Zhang et al. (2022b) which inherently exhibits `∞-
Lipschitzness properties, yielding good robustness for large
perturbation radii, but poor performance for smaller ones.

G. Limitations
TAPS and all other certified training methods can only be
applied to mathematically well-defined perturbations of the

input such as `p-balls, while real-world robustness may
require significantly more complex perturbation models.
Further and similarly to other unsound certified training
methods, TAPS introduces a new hyperparameter, the split
position, that can be tuned to improve performance further
beyond the default choice of 1 ReLU layer in the classifier.
Finally, while training with TAPS is similarly computation-
ally expensive as with other recent methods, it is notably
more computationally expensive than simple certified train-
ing methods such as IBP.

H. Reproducibility
We publish our code, trained models, and detailed instruc-
tions on how to reproduce our results at ANONYMIZED.
Additionally, we provide detailed descriptions of all hyper-
parameter choices, data sets, and preprocessing steps in
App. D.


