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Abstract

As robustness verification methods are becoming
more precise, training certifiably robust neural
networks is becoming ever more relevant. To
this end, certified training methods compute and
then optimize an upper bound on the worst-case
loss over a robustness specification. Curiously,
training methods based on the imprecise interval
bound propagation (IBP) consistently outperform
those leveraging more precise bounding methods.
Still, we lack an understanding of the mechanisms
making IBP so successful. In this work, we thor-
oughly investigate these mechanisms theoretically
and empirically by leveraging a novel metric mea-
suring the tightness of IBP bounds.

1. Introduction
As significant progress has been made on certifying neural
networks (Zhang et al., 2022; Ferrari et al., 2022) against
adversarial examples (Biggio et al., 2013; Szegedy et al.,
2014), the focus in the field is shifting to the development of
novel training methods that improve certifiable robustness
while minimizing the accompanying reduction in accuracy.

Certified training aims to compute and then optimize
approximations of the network’s worst-case loss over an
input region defined by an adversary specification. To this
end, most methods compute an over-approximation of the
network’s reachable set using symbolic bound propagation
methods (Singh et al., 2018; 2019; Gowal et al., 2018).
Surprisingly, training methods based on the least precise
bounds, obtained via interval bound propagation (IBP), em-
pirically yield the best performance (Jovanovic et al., 2021).

This work We take a first step towards building a deeper
understanding of the mechanisms underlying this surpris-
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ing success of IBP training. To this end, we derive neces-
sary and sufficient conditions on a network’s weights under
which IBP bounds become tight, a property we call prop-
agation invariance, and prove that it implies an extreme
regularization, agreeing well with the observed trade-off
between certifiable robustness and accuracy. To investigate
how close real networks are to full propagation invariance,
we introduce the metric propagation tightness as the ratio
of optimal and IBP bounds. This novel metric enables us
to theoretically investigate the effects of model architecture,
weight initialization, and training methods on IBP bound
tightness for deep linear networks (DLNs). Conducting an
extensive empirical study, we confirm the predictiveness of
our theoretical results for deep ReLU networks and observe
that: (i) increasing network width but not depth improves
state-of-the-art certified accuracy, (ii) IBP (-based) training
increases tightness, while (iii) non-IBP-based (certified)
training methods do not increase tightness, leading to higher
accuracy but worse robustness.

2. Background
We consider a classifer f : Rdin 7→ Rc predicting a numeri-
cal score y := f(x) per class given an input x ∈ X ⊆ Rdin .
A classifier f is adversarially robust if it predicts the target
class t for all perturbed inputs x′ in an `p-norm ball Bεpp (x)
(we use p =∞ and drop the subscript) of radius εp:

arg max
j

f(x′)j = t, ∀x′ ∈ {x′ ∈ X | ‖x− x′‖p ≤ εp}.

IBP Certification (Gowal et al., 2018; Mirman et al.,
2018) can be used to formally prove the robustness of a
classifier f for a given input region Bε(x) by propagating it
through f and computing BOX over-approximations (each
dimension is described as an interval) of the state after every
layer until we reach the output space. Consider an L-layer
network f = hL ◦ σ ◦ hL−2 ◦ . . . ◦ h1, with linear layers
hi and ReLU activation functions σ. After expressing the
Bε(x) as BOX with radius δ0 := ε and center ẋ0 := x, such
that we have x0

i ∈ [
¯
xi, x̄i] := [ẋ0

i − δ0
i , ẋ

0
i + δ0

i ] for the ith

dimension of the input. Propagating such a BOX through the
linear layer hi(xi−1) = Wxi−1 + b =: xi, we obtain the
output hyperbox with centre ẋi = Wẋi−1 + b and radius
δi = |W |δi−1, where |·| denotes the element-wise absolute
value. To propagate a BOX through the ReLU activation
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ReLU(xi−1) := max(0,xi−1), we propagate the lower
and upper bound separately, resulting in an output BOX with
ẋi =

x̄i+
¯
xi

2 and δi =
x̄i−

¯
xi

2 where
¯
xi = ReLU(ẋi−1 −

δi−1) and x̄i = ReLU(ẋi−1 + δi−1). Thus obtaining an
upper bound ȳ∆ on the logit difference y∆

i := yi − yt,
we can show robustness on the considered input region if
ȳ∆
i < 0, ∀i 6= t.

IBP Training To train for robustness, we, aim to mini-
mize the expected worst-case loss for a given robustness
specification, leading to a min-max optimization problem:

θrob = arg min
θ

ED
[

max
x′∈Bε(x)

LCE(fθ(x′), t)

]
. (1)

As computing the worst-case loss by solving the inner max-
imization problem is generally intractable, it is commonly
under- or over-approximated (e.g., by IBP bounds). Sur-
prisingly, the imprecise IBP bounds consistently yield bet-
ter performance (Shi et al., 2021a) than methods based
on tighter approximations (Zhang et al., 2020; Balunovic
& Vechev, 2020b; Wong et al., 2018), even though they
severely reduce standard accuracies. Jovanovic et al. (2021)
trace this back to the optimization problems induced by the
more precise methods becoming intractable to solve. Re-
cent training methods utilize IBP bounds, for regularization
(Palma et al., 2022) or to compute more precise but unsound
bound approximations (Müller et al., 2022b; Mao et al.,
2023) to obtain state-of-the-art results.

3. Understanding IBP Training
We focus our theoretical analysis on deep linear networks
(DLNs), i.e., f(x) = ΠL

i=1W
(i)x, popular for theoretical

discussion of neural networks (Saxe et al., 2014; Ji & Telgar-
sky, 2019; Wu et al., 2019). While they are linear functions,
they perfectly describe ReLU networks for infinitesimal per-
turbation magnitudes, retaining their layer-wise structure
and joint non-convexity in the weights of different layers,
making them a popular analysis tool (Ribeiro et al., 2016).
We defer all proofs to App. B.

We define the optimal hyper-box Box∗(f ,Bε(x)) as the
smallest hyper-box [z, z] such that it contains the im-
age f(x′) of all points x′ in Bε(x), i.e., f(x′) ∈
[z, z],∀x′ ∈ Bε(x). Similarly, we define the layer-
wise box approximation Box† as the result of ap-
plying the optimal approximation to every layer in-
dividually, in a recursive fashion Box†(f ,Bε(x)) :=
Box∗(WL,Box∗(· · · ,Box∗(W (1),Bε(x)))). We write
their upper- and lower-bounds as [z∗, z∗] and [z†, z†], re-
spectively. Optimal box bounds on the logit differences
y∆ := y − yt are sufficient for exact verification (see
Lemma A.1 in App. A). For DLNs, we can efficiently com-
pute both optimal Box∗ and layerwise Box† box bounds:

Theorem 3.1. For an L-layer DLN f = ΠL
k=1W

(k), we
obtain the box centres ż∗ = ż† = f(x) and the radii
z∗−z∗

2 =
∣∣ΠL

k=1W
(k)
∣∣ ε, and z†−z†

2 =
(
ΠL
k=1

∣∣W (k)
∣∣) ε.

Comparing the radius computations of the optimal and layer-
wise approximations, we observe that the main difference
lies in where the element-wise absolute value | · | of the
weight matrix is taken. For the optimal box, we first mul-
tiply all weight matrices before taking the absolute value
|ΠL
k=1W

(k)|, thus allowing for cancellations of terms of
opposite signs. For the layer-wise approximation, in con-
trast, we first take the absolute value of each weight matrix
before multiplying them together ΠL

k=1|W (k)|, thereby los-
ing all relational information between variables. Let us now
investigate under which conditions layer-wise and optimal
bounds become identical.

Propagation Invariance We call a network (globally)
propagation invariant (PI) if the layer-wise and optimal
box over-approximations are identical for every input box.
Clearly, non-negative weight matrices lead to propagation
invariant networks (Lin et al., 2022), as the absolute value
in Theorem 3.1 loses its effect. However, non-negative
weights significantly reduce network expressiveness and
performance (Chorowski & Zurada, 2014), raising the ques-
tion of whether they are a necessary condition. Indeed, we
show that they are not necessary, by deriving the following
sufficient and necessary condition for a two-layer DLN:

Lemma 3.2. A two-layer DLN f = W (2)W (1) is prop-
agation invariant if and only if for every fixed (i, j), we

have
∣∣∣∑kW

(2)
i,k ·W

(1)
k,j

∣∣∣ =
∑
k |W

(2)
i,k ·W

(1)
k,j |, i.e., either

W
(2)
i,k ·W

(1)
k,j ≥ 0 for all k or W (2)

i,k ·W
(1)
k,j ≤ 0 for all k.

Conditions for Propagation Invariance To see how strict
the condition described by Lemma 3.2 is, we observe that
propagation invariance requires the sign of the last element
in any two-by-two block inW (2)W (1) to be determined by
the signs of the other three elements:

Theorem 3.3. Assume ∃i, i′, j, j′, such that W (1)
·,j , W (1)

·,j′ ,

W
(2)
i,· and W

(2)
i′,· are all non-zero. If (W (2)W (1))i,j ·

(W (2)W (1))i,j′ · (W (2)W (1))i′,j · (W (2)W (1))i′,j′ < 0,
then f = W (2)W (1) is not propagation invariant.

To obtain a propagation invariant network with the weights
W (2),W (1) ∈ Rd×d, we can thus only choose 2d − 1
(e.g., one row and one column) of the d2 signs freely (see
Corollary A.2 in App. A). The statements of Lemma 3.2
and Theorem 3.3 naturally extend to DLNs with more than
two layers L > 2. However, the conditions within Theo-
rem 3.3 become increasingly complex and strict as more
and more terms need to yield the same sign. Thus, we focus
our analysis on L = 2 for clarity.
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IBP Bound Tightness To analyze the tightness of IBP
bounds for networks that do not satisfy the strict conditions
for propagation invariance, we relax it to propagation tight-
ness as the ratio between the optimal and layer-wise box
radius, simply referred to as tightness in this paper.

Definition 3.4. Given a DLN f , we define the global
propagation tightness τ as the ratio between optimal
Box∗(f ,Bε(x)) and layer-wise Box†(f ,Bε(x)) approx-
imation radius, i.e., τ = z∗−z∗

z†−z† .

Intuitively, tightness measures how much smaller the exact
dimension-wise bounds Box∗ are, compared to the layer-
wise approximation Box†, thus quantifying the gap between
IBP certified and true adversarial robustness. When tight-
ness equals 1, the network is propagation invariant and can
be certified exactly with IBP; when tightness is close to 0,
IBP bounds become arbitrarily imprecise.

ReLU Networks The nonlinearity of ReLU networks
leads to locally varying tightness and makes the compu-
tation of optimal box bounds intractable. However, for
infinitesimal perturbation magnitudes, the activation pat-
terns of ReLU networks remain stable, making them locally
linear. We thus introduce a local version of tightness around
concrete inputs, which we will later use to confirm the ap-
plicability of our results on DLNs to ReLU networks.

Definition 3.5. For an L-layer ReLU network with
weight matrices W (k) and activation pattern d(k)(x) =
1x(k−1)>0 ∈ {0, 1}dk (1 for active and 0 for inactive) de-
pending on the input x, we define its local tightness as

τ =
d
dε (z

∗ − z∗)
∣∣
ε=0

d
dε (z

† − z†)
∣∣
ε=0

=

∣∣ΠL
k=1 diag(d(k))W (k)

∣∣1
(ΠL

k=1 diag(d(k))
∣∣W (k)

∣∣)1 .
Beyond the results discussed here, this metric enables our
study of how architecture impacts propagation tightness
at initialization and allows us to show that IBP training
increases tightness (see App. A.3 and A.4, respectively).

We, now, study the reconstruction loss of a linear embed-
ding into a low-dimensional subspace as a proxy for the
network performance as many high-dimensional computer
vision datasets were shown to possess a small intrinsic data
dimensionality (Pope et al., 2021). Let us consider a k-
dimensional data distribution, linearly embedded into a d
dimensional space with d� k, i.e., the data matrix X has a
rank-k eigendecomposition Var(X) = UΛU>. We know
that in this setting, the optimal reconstruction X̂ = UkU

>
k X

of the original data is exact for rank k matrices and obtained
by choosing Uk as the k columns of U associated with the
non-zero eigenvalues. Interestingly, this is not the case even
for optimal box propagation:

Theorem 3.6. Consider the linear embedding and recon-
struction x̂ = UkU

>
k x of a d dimensional data distribution
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Figure 3: Effect of network depth
and width on tightness and training
set IBP-certified accuracy.

x ∼ X into a k dimensional space with d� k and eigen-
matrices U drawn uniformly at random from the orthogonal
group. Propagating the input box Bε(x) layer-wise and op-
timally, thus, yields Bδ†(x̂), and Bδ∗(x̂), respectively. Then,
we have, (i) E(δi/ε) = ck ∈ Θ(k) for a positive constant c
depending solely on d and c→ 2

π ≈ 0.64 for large d; and

(ii) E(δ∗i /ε)→ 2√
π

Γ( 1
2 (k+1))

Γ( 1
2k)

∈ Θ(
√
k).

Intuitively, Theorem 3.6 implies that while input points can
be embedded into and reconstructed from a k dimensional
space losslessly, box propagation will yield a box growth
of Θ(

√
k) for optimal and Θ(k) for layer-wise propagation.

However, as soon as we have k = d, we can choose Uk to
be an identity matrix, thus obtaining lossless "reconstruc-
tion", even for layer-wise propagation. This highlights that
sufficient network width is crucial for box propagation, even
in the linear setting.

4. Empirical Evaluation Analysis
Here, we leverage our novel tightness metric and specifi-
cally its local variant (see Definition 3.5) to gain a deeper
understanding of IBP-based training methods and confirm
that our analysis of DLNs carries over to ReLU networks.
We defer details of our experimental setup to App. C.

Network Architechture We first confirm our predictions
on the inherent hardness of linear reconstruction in Figure 1,
where we plot the ratio of recovered and original box radius
for optimal and IBP propagation, given a bottleneck layer of
width w and data with intrinsic dimensionality k = w. As
predicted by Theorem 3.6, IBP propagation leads to linear
growth while optimal propagation yields sublinear growth.

Next, we study the interaction of network architecture and
IBP training. To this end, we train networks with 3 to 13
layers on CIFAR-10 for ε = 2/255, visualizing results in
Figure 3 (left), reporting the IBP-certified accuracy on the
training set as a measure of the goodness of fit. Generally,
we would expect that increasing network depth increases ca-
pacity, thus reducing the robust training loss and increasing
training set IBP-certified accuracy. However, we only ob-
serve such an increase in accuracy until a depth of 7 layers
before accuracy starts to drop. This maximum in accuracy
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Figure 4: Standard and certified accuracy and tightness
for CNN3 on CIFAR-10 depending on training method and
perturbation magnitude ε used for training and evaluation.

coincides with a minimum of tightness, agreeing well with
the popularity of the 7-layer CNN7 in literature (Gowal et al.,
2018; Shi et al., 2021b; Müller et al., 2022b).

Varying the width of a standard CNN7 (using IBP training),
we observe in Figure 3 (right) that increasing capacity via
width yields a monotone although diminishing increase in
accuracy as tightness decreases gradually. The different
trends for width and depth increases agree well with our the-
oretical results showing that, at initialization, tightness de-
creases exponentially with depth (Corollary A.4) and poly-
nomially with width (Lemma A.3) and predicting that suf-
ficient network width is essential for trained networks (see
Theorem 3.6). Intuitively, this suggests that less regulariza-
tion is required to offset the tightness penalty of increasing
network width rather than depth. We thus increase the width
of a SABR-trained CNN7 and improve upon their SOTA per-
formance on a magnitude comparable to years of progress
on certified training methods: On MNIST (ε = 0.3) 4×
width pushes certified accuracy from 93.38 to 93.85 and
on CIFAR-10 (ε = 2

255 ) 2× width yields 62.84→ 63.28.

Certified Training Increases Tightness Next, we com-
pare IBP, PGD (Madry et al., 2018), and SABR training,
on CNN3 for CIFAR-10 across a wide range of perturbation
magnitudes (ε ∈ [10−5, 5 · 10−2]), illustrating results in
Figure 4. While IBP propagates the whole input region,
SABR propagates only a small subregion via IBP. PGD,
in contrast, trains with samples that approximately yield
the worst-case loss. We observe that IBP-based methods
increase tightness with perturbation magnitude until net-
works become almost propagation invariant for ε = 0.05
with a tightness of τ = 0.98. In contrast, PGD barely influ-
ences tightness. The regularization required to yield such
high tightness also severely reduces standard accuracies.
However, while this reduced standard accuracy translates
to smaller certified accuracies for very small perturbation
magnitudes (ε ≤ 5 · 10−3), the increased tightness improves
certifiability sufficiently to yield higher certified accura-
cies for larger perturbation magnitudes (ε ≥ 10−2). We
further investigate this dependency between (certified) ro-
bustness and tightness by varying the subselection ratio λ
when training with SABR, where λ = 1 recovers IBP and
λ = 0 PGD. In Figure 5, we observe that while decreasing
λ severely reduces tightness and thus regularization, it not
only leads to increasing natural but also certified accuracies

until tightness falls below τ < 0.5 at λ = 0.4. This high-
lights that reducing tightness while maintaining sufficient
certifiability is a promising path to new certified training
methods. In App. D.1 we show simlar trends when varying
the regularization level for other training methods.

Table 1: Multiple training methods.
Method ε Accuracy Tightness Certified

PGD 2/255 81.2 0.001 -
8/255 69.3 0.007 -

COLT 2/255 78.4 0.009 60.7
8/255 51.7 0.057 26.7

SABR 2/255 75.6 0.182 57.7
8/255 48.2 0.950 31.2

IBP 2/255 63.0 0.803 51.3
8/255 42.2 0.977 31.0
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Figure 5: Acc. and tightness of
CNN7 for CIFAR-10 ε = 2

255 on reg-
ularization strength λ with SABR.

We now investigate
whether non-IBP-
based certified
training methods af-
fect a similar increase
in tightness as IBP-
based methods. To
this end, we consider
COLT (Balunovic
& Vechev, 2020a)
which combines
precise ZONOTOPE
bounds with adversar-
ial training. However,
as COLT does not
scale to the popular
CNN7, we compare
with it on their 4-layer CNN architecture. In Table 1,
we observe that the ordering of tightness and accuracy
is exactly inverted, thus highlighting the large accuracy
penalty associated with the strong regularization for
tightness. While COLT only affects a minimal increase
in tightness compared to SABR or IBP, it still yields net-
works, an order of magnitude tighter than PGD, suggesting
that slightly increased tightness might be desirable for
certified robustness. This is further corroborated by the
observation that while COLT reaches the highest certified
accuracies at small perturbation magnitudes, the more
heavily regularizing SABR performs better at larger radii.

For a detailed discussion of related work, please see App. E.

5. Conclusion
Motivated by the surprising dominance of IBP-based certi-
fied training methods, we investigated its underlying mecha-
nisms. Quantifying the tightness of IBP compared to opti-
mal BOX bounds, we were able to predict the influence of
architecture choices on deep linear networks at initialization
and after training. Our experimental results confirm the ap-
plicability of these results to ReLU networks and show that
wider networks improve the performance of state-of-the-art
methods, while deeper networks do not. Finally, we show
that IBP-based certified training methods, in contrast to
non-IBP-based methods, significantly increase propagation
tightness at the cost of strong regularization. We believe
that this insight and the novel metric of propagation tight-
ness will constitute a key step towards developing novel and
more effective certified training methods.
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A. Additional Theoretical Results
A.1. Optimal Box Bounds Allow for Exact Certification

Below we present a Lemma, showing that optimal BOX
bounds are indeed sufficient for exact certification, as sug-
gested in Section 3.

Lemma A.1. Any C0 continuous classifier f , computing
the logit difference y∆

i := yi − yt,∀i 6= t, is robustly
correct on Bε(x) if and only if Box∗(f ,Bε(x)) ⊆ Rc−1

<0 ,
i.e., ȳ∆∗

i < 0,∀i 6= t.

Proof. On the one hand, assume yi−ytrue < 0 for all i. Then
for the ith output dimension, the optimal bounding box is
max yi−ytrue. Since the classifier is continuous, f(B(x, ε))
is a closed and bounded set. Therefore, by extreme value
theorem, ∃η ∈ B(x, ε) such that η = arg max yi − ytrue,
thus max yi − ytrue < 0. Since this holds for every i,
Box∗(f ,B(x, ε)) ⊆ RK−1

<0 .

On the other hand, assume Box∗(f ,B(x, ε)) ⊆ RK−1
<0 .

Since f(B(x, ε)) ⊆ Box∗(f ,B(x, ε)) ⊆ RK−1
<0 , we get

yi − ytrue < 0 for all i.

A.2. Propagation Invariance Regularization Strength

Below we present a corollary, formalizing the intuitions
on the regularization strength of propagation invariance we
provided in Section 3.

Corollary A.2. Assume all elements of W (1), W (2) and
W (2)W (1) are non-zero and W (2)W (1) is propagation
invariant. Then choosing the signs of one row and one
column ofW (2)W (1) fixes all signs ofW (2)W (1).

Proof. For notational reasons, we define W := W (2)W (1).
Without loss of generality, assume we know the signs of
the first row and the first column, i.e., W1,· and W·,1. We
prove via a construction of the signs of all elements. The
construction is given by the following: whenever ∃i, j, such
that we know the sign of Wi,j , Wi,j+1 and Wi+1,j , we fix
the sign of Wi+1,j+1 to be positive if there are an odd num-
ber of positive elements among Wi,j , Wi,j+1 and Wi+1,j ,
otherwise negative.

By Theorem 3.3, propagation invariance requires us to fix
the sign of the last element in the Wi:i+1,j:j+1 block in
this way. We only need to prove that when this process
terminates, we fix the signs of all elements. We show this
via recursion.

When i = 1 and j = 1, we have known the signs of Wi,j ,
Wi,j+1 and Wi+1,j , thus the sign of Wi+1,j+1 is fixed.
Continuing towards the right, we gradually fix the sign
of W2,j+1 for j = 1, . . . , d − 1. Continuing downwards,
we gradually fix the sign of Wi+1,2 for i = 1, . . . , d − 1.
Therefore, all signs of the elements of the second row and

the second column are fixed. By recursion, we would finally
fix all the rows and the columns, thus the whole matrix.

A.3. Tightness at Initialization

We first investigate the (expected) tightness τ =
EDθ

(z∗−z∗)
EDθ

(z†−z†) (independent of the dimension due to symme-
try) at initialization, i.e., w.r.t. a weight distribution Dθ.
Let us consider a two-layer DLN at initialization, i.e., with
i.i.d. weights following a zero-mean Gaussian distribution
N (0, σ2) with an arbitrary but fixed variance σ2 (Glorot &
Bengio, 2010; He et al., 2015), again deferring a proof to
App. B.

Lemma A.3 (Initialization Tightness w.r.t. Width). Given
a 2-layer DLN with weight matrices W (1) ∈ Rd1×d0 ,
W (2) ∈ Rd2×d1 with i.i.d. entries from N (0, σ2

1) and
N (0, σ2

2) (together denoted as θ), we obtain the expected
tightness τ(d1) = Eθ(z∗−z∗)

Eθ(z†−z†) =
√
π Γ( 1

2 (d1+1))

d1Γ( 1
2d1)

∈ Θ( 1√
d1

).

Even for just two linear layers, the tightness at initialization
decreases quickly with internal width (Θ( 1√

d1
)), e.g., by a

factor of τ(500) ≈ 0.056 for the penultimate layer of the
popular CNN7 (Gowal et al., 2018; Zhang et al., 2020). It,
further, follows directly that tightness will decrease expo-
nentially w.r.t. network depth.

Corollary A.4 (Initialization Tightness w.r.t. Depth). The
expected tightness of an L-layer DLN f with minimum
internal dimension dmin is at most τ ≤ τ(dmin)b

L
2 c at initial-

ization.

Note that this result is independent of the variance σ2
1 , σ

2
2 ,

chosen for weight initialization. Thus, tightness at initializa-
tion can not be increased by scaling σ2, as proposed by Shi
et al. (2021b) to achieve constant box radius over network
depth.

A.4. IBP Training Increases Tightness

As we have seen that networks are initialized with low
tightness, we now investigate the effect of IBP training
and show that it indeed increases tightness. To this end,
we again consider a DLN with layer-wise propagation ma-
trix W † = ΠL

i=1|W (i)| and optimal propagation matrix
W ∗ = |ΠL

i=1W
(i)|, obtaining the expected risk for IBP

training as R(ε) = Ex,yL(Box†(f ,Bε(x)), y), again de-
ferring a proof to App. B.

Theorem A.5 (IBP Training Increases Tightness). Assume
homogenous tightness, i.e.,W ∗ = τW †, and

‖∇θW ∗ij‖2
W ∗ij

≤
1
2

‖∇θW †ij‖2
W †ij

for all i, j, then, the gradient difference between

the IBP and standard loss is aligned with an increase in
tightness, i.e., 〈∇θ(R(ε)−R(0)),∇θτ〉 ≤ 0 for all ε > 0.
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B. Deferred Proofs
Proof of Theorem 3.1 We first prove Theorem 3.1 for a
2-layer DLN as Lemma B.1.

Lemma B.1. For a two-layer DLN f = W (2)W (1),
(z∗ − z∗)/2 =

∣∣W (2)W (1)
∣∣ ε and (z† − z†)/2 =∣∣W (2)

∣∣ ∣∣W (1)
∣∣ ε. In addition, Box∗ and Box† have the

same center f(x).

Proof. First, assume W (1) ∈ Rd1×d0 , W (2) ∈ Rd2×d1
and Bi = [−1, 1]di for i = 0, 1, 2, where di ∈ Z+ are
some positive integers. The input box can be represented as
diag(ε0)B0 + b for ε0 = ε.

For a single linear layer, the box propagation yields

Box(W (1)(diag(ε0)B0 + b))

= Box(W (1) diag(ε0)B0) +W (1)b

= diag

 d0∑
j=1

|W (1)
i,j |ε0[j]

B1 +W (1)b

:= diag(ε1)B1 +W (1)b. (2)

Applying Equation (2) iteratively, we get the explicit for-
mula of layer-wise propagation for two-layer linear network:

Box(W (2) Box(W (1)(diag(ε0)B0 + b)))

= Box
(
W (2)(diag(ε1)B1 +W (1)b)

)
= diag

(
d1∑
k=1

|W (2)
i,k |ε1[k]

)
B2 +W (2)W (1)b

= diag

 d0∑
j=1

ε0[j]

(
d1∑
k=1

|W (2)
i,kW

(1)
k,j |
)B2

+W (2)W (1)b. (3)

Applying Equation (2) on W := W (2)W (1), we get the
explicit formula of the tightest box:

Box(W (2)W (1)(diag(ε0)B0 + b))

= diag

 d0∑
j=1

|(W (2)W (1))i,j |ε0[j]

B2 +W (2)W (1)b

= diag

 d0∑
j=1

ε0[j]

∣∣∣∣∣
d1∑
k=1

W
(2)
i,kW

(1)
k,j

∣∣∣∣∣
B2

+W (2)W (1)b. (4)

Now, we use induction and Lemma B.1 to prove Theo-
rem 3.1, restated below for convenience. The key insight

is that a multi-layer DLN is equivalent to a single-layer lin-
ear network. Thus, we can group layers together and view
general DLNs as two-layer DLNs.

Theorem 3.1. For an L-layer DLN f = ΠL
k=1W

(k), we
obtain the box centres ż∗ = ż† = f(x) and the radii
z∗−z∗

2 =
∣∣ΠL

k=1W
(k)
∣∣ ε, and z†−z†

2 =
(
ΠL
k=1

∣∣W (k)
∣∣) ε.

Proof. For L = 2, by Lemma B.1, the result holds.
Assume for L ≤ m, the result holds. Therefore, for
L = m + 1, we group the first m layers as a single
layer, resulting in a “two” layer equivalent network. Thus,
(z∗ − z∗)/2 =

∣∣W (m+1)Πm
k=1W

(k)
∣∣ ε =

∣∣ΠL
k=1W

(k)
∣∣ ε.

Similarly, by Equation (2), we can prove (z∗ − z∗)/2 =(∣∣W (m+1)
∣∣Πm

k=1

∣∣W (k)
∣∣) ε =

(
ΠL
k=1

∣∣W (k)
∣∣) ε. The

claim about center follows by induction similarly.

Proof of Lemma 3.2 Here, we prove Lemma 3.2, restated
below for convenience.

Lemma 3.2. A two-layer DLN f = W (2)W (1) is prop-
agation invariant if and only if for every fixed (i, j), we

have
∣∣∣∑kW

(2)
i,k ·W

(1)
k,j

∣∣∣ =
∑
k |W

(2)
i,k ·W

(1)
k,j |, i.e., either

W
(2)
i,k ·W

(1)
k,j ≥ 0 for all k or W (2)

i,k ·W
(1)
k,j ≤ 0 for all k.

Proof. We prove the statement via comparing the box
bounds. By Lemma B.1, we need

∣∣∣∑d1
k=1W

(2)
i,kW

(1)
k,j

∣∣∣ =∑d1
k=1 |W

(2)
i,kW

(1)
k,j |. The triangle inequality of absolute

function says this holds if and only if W (2)
i,kW

(1)
k,j ≥ 0 for all

k or W (2)
i,kW

(1)
k,j ≤ 0 for all k.

Proof of Theorem 3.3 Here, we prove Theorem 3.3, re-
stated below for convenience.

Theorem 3.3. Assume ∃i, i′, j, j′, such that W (1)
·,j , W (1)

·,j′ ,

W
(2)
i,· and W

(2)
i′,· are all non-zero. If (W (2)W (1))i,j ·

(W (2)W (1))i,j′ · (W (2)W (1))i′,j · (W (2)W (1))i′,j′ < 0,
then f = W (2)W (1) is not propagation invariant.

Proof. The assumption (W (2)W (1))i,j · (W (2)W (1))i,j′ ·
(W (2)W (1))i′,j · (W (2)W (1))i′,j′ < 0 implies three el-
ements are of the same sign while the other element
has a different sign. Without loss of generality, assume
(W (2)W (1))i′,j′ < 0 and the rest three are all positive.

AssumeW (2)W (1) is propagation invariant. By Lemma 3.2,
this means W

(2)
i,· .sign = W

(1)
·,j .sign, W

(2)
i,· .sign =

W
(1)
·,j′ .sign, W (2)

i′,· .sign = W
(1)
·,j .sign and W

(2)
i′,· .sign =

−W (1)
·,j′ .sign. Therefore, we have −W (1)

·,j′ .sign =

W
(1)
·,j′ .sign, which implies all elements of W (1)

·,j′ must be
zero. However, this results in (W (2)W (1))i,j′ = 0, a con-
tradiction.



Understanding Certified Training with Interval Bound Propagation

Proof of Lemma A.3 Here, we prove Lemma A.3, re-
stated below for convenience.

Lemma A.3 (Initialization Tightness w.r.t. Width). Given
a 2-layer DLN with weight matrices W (1) ∈ Rd1×d0 ,
W (2) ∈ Rd2×d1 with i.i.d. entries from N (0, σ2

1) and
N (0, σ2

2) (together denoted as θ), we obtain the expected
tightness τ(d1) = Eθ(z∗−z∗)

Eθ(z†−z†) =
√
π Γ( 1

2 (d1+1))

d1Γ( 1
2d1)

∈ Θ( 1√
d1

).

Proof. We first compute the size of the layer-wisely prop-
agated box. From Equation (3), we get that for the i-th
dimension,

E(ui − li) = E

 d0∑
j=1

ε0[j]

(
d1∑
k=1

|W (2)
i,kW

(1)
k,j |
)

=

d0∑
j=1

ε0[j]

(
d1∑
k=1

E(|W (2)
i,k |) · E(|W (1)

k,j |)
)

= σ1σ2

d0∑
j=1

ε0[j]

(
d1∑
k=1

E(|N (0, 1)|)2)

)
.

Since E(|N (0, 1)|) =
√

2
π

1, we have

E(ui − li) =
2

π
σ1σ2d1‖ε0‖1. (5)

Now we compute the size of the tightest box. From Equa-
tion (4), we get that for the i-th dimension,

E(u∗i − l∗i ) = E

 d0∑
j=1

ε0[j]

∣∣∣∣∣
d1∑
k=1

W
(2)
i,kW

(1)
k,j

∣∣∣∣∣


= σ1σ2

d0∑
j=1

ε0[j]E

(∣∣∣∣∣
d1∑
k=1

XkYk

∣∣∣∣∣
)
,

where Xk and Yk are i.i.d. standard Gaussian random vari-
ables. Using the law of total expectation, we have

E

(∣∣∣∣∣
d1∑
k=1

XkYk

∣∣∣∣∣
)

= E

(
E

(∣∣∣∣∣
d1∑
k=1

XkYk

∣∣∣∣∣
∣∣∣∣∣ Yk

))

= E

(
E

(∣∣∣∣∣N (0,

d1∑
k=1

Y 2
k )

∣∣∣∣∣
∣∣∣∣∣ Yk

))

=

√
2

π
E


√√√√ d1∑
k=1

Y 2
k


=

√
2

π
E(
√
χ2(d1)).

1https://en.wikipedia.org/wiki/Half-normal_distribution

Since E(
√
χ2(d1)) =

√
2Γ( 1

2 (d1 + 1))/Γ( 1
2d1), 2 we have

E(u∗i − l∗i ) =
2√
π
σ1σ2‖ε0‖1Γ(

1

2
(d1 + 1))/Γ(

1

2
d1). (6)

Combining Equation (5) and Equation (6), we have:

E(ui − li)
E(u∗i − l∗i )

=
d1Γ( 1

2d1)√
πΓ( 1

2 (d1 + 1))
. (7)

To see the asymptotic behavior, use Γ(x+ α)/Γ(x) ∼ xα,3

we have
E(ui − li)
E(u∗i − l∗i )

∼ 1√
π
d

1
2
1 . (8)

To establish the bounds on the minimum expected slackness,
we use Lemma B.2.

Lemma B.2. Let g(n) :=
nΓ( 1

2n)√
πΓ( 1

2 (n+1))
. g(n) is monotoni-

cally increasing for n ≥ 1. Thus, for n ≥ 2, g(n) ≥ g(2) >
1.27.

Proof. Using polygamma function ψ(0)(z) = Γ′(z)/Γ(z),4

we have

g′(n) ∝ 1 +
1

2
n

(
ψ(0)

(
1

2
n

)
− ψ(0)

(
1

2
(n+ 1)

))
.

Using the fact that ψ(0)(z) is monotonically increasing for
z > 0 and ψ(0)(z + 1) = ψ(0)(z) + 1

z , we have

1 +
1

2
n

(
ψ(0)

(
1

2
n

)
− ψ(0)

(
1

2
(n+ 1)

))
> 1 +

1

2
n

(
ψ(0)

(
1

2
n

)
− ψ(0)

(
1

2
n+ 1

))
= 1 +

1

2
n

(
− 2

n

)
= 0.

Therefore, g′(n) is strictly positive for n ≥ 1, and thus g(n)
is monotonically increasing for n ≥ 1.

As a final comment, we visualize g(n) in Figure 6. As
expected, g(n) is monotonically increasing in the order of
O(
√
n).

Proof of Corollary A.4 Here, we prove Corollary A.4,
restated below for convenience.

Corollary A.4 (Initialization Tightness w.r.t. Depth). The
expected tightness of an L-layer DLN f with minimum
internal dimension dmin is at most τ ≤ τ(dmin)b

L
2 c at initial-

ization.
2https://en.wikipedia.org/wiki/Chi_distribution
3https://en.wikipedia.org/wiki/Gamma_function#Stirling’s_formula
4https://en.wikipedia.org/wiki/Polygamma_function
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Figure 6: g(n) and g2(n) visualized.

Proof. This is pretty straightforward and only requires a
coarse application of Lemma A.3. Without loss of generality,
we assume L is even. If L is odd, then we simply discard
the slackness introduced by the last layer, i.e., assume the
last layer does not introduce additional slackness.

We group the 2i− 1-th and 2i-th layer as a new layer. By
Lemma A.3, these L/2 subnetworks all introduce an addi-
tional slackness factor of τ . Note that Equation (5) implies
that the size of the output box is proportional to the size
of the input box. Therefore, the layer-wisely propagated
box of ΠL

i=1Wi is τL/2 looser than the layer-wisely propa-
gated box of Π

L/2
j=1(W2j−1W2j). In addition, the size of the

tightest box for ΠL
i=1Wi is upper bounded by layer-wisely

propagating Π
L/2
j=1(W2j−1W2j). Therefore, the minimum

expected slackness is lower bounded by τL/2.

Proof of Theorem A.5 Here, we prove Theorem A.5,
restated below for convenience.

Theorem A.5 (IBP Training Increases Tightness). Assume
homogenous tightness, i.e.,W ∗ = τW †, and

‖∇θW ∗ij‖2
W ∗ij

≤
1
2

‖∇θW †ij‖2
W †ij

for all i, j, then, the gradient difference between

the IBP and standard loss is aligned with an increase in
tightness, i.e., 〈∇θ(R(ε)−R(0)),∇θτ〉 ≤ 0 for all ε > 0.

Proof. We prove a stronger claim: 〈∇θ(R(ε + ∆ε) −
R(ε)),∇θτ〉 ≤ 0 for all ε ≥ 0 and ∆ε > 0. Let ε = 0
yields the theorem.

We prove the claim for ∆ε → 0. For large ∆ε, we can
break it into R(ε + ∆ε) − R(ε) =

∑n
i=1R(ε + i

n∆ε) −
R(ε+ i−1

n ∆ε), thus proving the claim since each summand
satisfies the theorem.

Let L1 = R(ε) and L2 = R(ε+∆ε). By Taylor expansion,
we have L2 = L1 +∆ε>W †∇ug = L1 + 1

τ∆ε>W ∗∇ug,
where ∇ug = ∇ug(u) evaluated at u = W †ε. Note that
the increase of ε would increase the risk, thus∇ug ≥ 0.

For the ith parameter θi, ∇θi(L2 − L1)∇θiτ =
1
τ2 ∆ε>(τ∇θiW ∗ − W ∗∇θiτ)∇ug∇θiτ . Thus,
〈∇θ(L2 − L1),∇θτ〉 = 1

τ2 ∆ε>(τ
∑
i∇θiτ · ∇θiW ∗ −

W ∗‖∇θτ‖22)∇ug. Since ∆ε > 0 and ∇ug ≥ 0, it
sufficies to prove that τ

∑
i∇θiτ · ∇θiW ∗ −W ∗‖∇θτ‖22

is nonpositive, i.e., τ〈∇θτ,∇θW ∗
ij〉 − W ∗

ij‖∇θτ‖22 is
nonpositive for every i, j.

Since ‖u‖2‖v‖2 ≥ 〈u,v〉, we have

‖∇θW ∗
ij‖2

W ∗
ij

≤ 1

2

‖∇θW †
ij‖2

W †
ij

⇒ ‖∇θ logW †‖2 ≥ 2‖∇θ logW ∗‖2
⇒ ‖∇θ logW †‖22 ≥ 2〈∇θ logW †,∇θ logW ∗〉

Therfore, ‖∇θ log τ‖22 = ‖∇θ(logW ∗
ij − logW †

ij)‖22 =

‖∇θ logW ∗
ij‖22 − 2〈∇θ logW †,∇θ logW ∗〉 +

‖∇θ logW †‖22 ≥ ‖∇θ logW ∗
ij‖22. This means

‖∇θW ∗ij‖2
W ∗ij

≤ ‖∇θτ‖2
τ , thus W ∗

ij‖∇θτ‖22 ≥
τ‖∇θτ‖2‖∇θW ∗

ij‖2 ≥ τ〈∇θτ,∇θW ∗
ij〉, which ful-

fills our goal.

Proof of Theorem 3.6 Here, we prove Theorem 3.6, re-
stated below for convenience.

Theorem 3.6. Consider the linear embedding and recon-
struction x̂ = UkU

>
k x of a d dimensional data distribution

x ∼ X into a k dimensional space with d� k and eigen-
matrices U drawn uniformly at random from the orthogonal
group. Propagating the input box Bε(x) layer-wise and op-
timally, thus, yields Bδ†(x̂), and Bδ∗(x̂), respectively. Then,
we have, (i) E(δi/ε) = ck ∈ Θ(k) for a positive constant c
depending solely on d and c→ 2

π ≈ 0.64 for large d; and

(ii) E(δ∗i /ε)→ 2√
π

Γ( 1
2 (k+1))

Γ( 1
2k)

∈ Θ(
√
k).

Proof. Since box propagation for linear functions maps the
center of the input box to the center of the output box, the
center of the output box is exactly X̂ . By Lemma B.1,
we have δ = |Uk||Uk|>ε1. For notational simplicity, let
V = |Uk|, thus

δi =

k∑
j=1

Vij(

d∑
p=1

V >jpε)

= ε

d∑
p=1

k∑
j=1

VijVpj

= ε

k∑
j=1

Vij‖V:j‖1.

Therefore, Eδi/ε =
∑k
j=1 E(Vij‖V:j‖1) = ck, where c =

E(Vij‖V:j‖1). Since V:j is the absolute value of a column
of the orthogonal matrix uniformly drawn, V:j itself is the
absolute value of a vector drawn uniformly from the unit
hyper-ball. By Cook (1957) and Marsaglia (1972), V:j is
equivalent in distribution to i.i.d. draw samples from the
standard Gaussian for each dimension and then normalize
it by its L2 norm. For notational simplicity, let V:j

d
= v =

|u|, where u = û/‖û‖2 and all dimensions of û are i.i.d.
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drawn from the standard Gaussian distribution, thus c =
E(v1‖v‖1).

Expanding ‖v‖1, we have c = E(v2
1) +

∑d
i=2 E(v1vi) =

1
dE(‖v‖22) + (d− 1)E(v1v2) = 1

d + (d− 1)E(v1v2). From
page 20 of Pinelis & Molzon (2016), we know each en-
try in u converges to N (0, 1/d) at O(1/d) speed in Kol-
mogorov distance. In addition, E(v1v2) = E(E(v2 |
v1) · v1) = E(v1

√
1− v2

1)E(v′2), where v′ is the ab-
solute value of a random vector uniformly drawn from
the d − 1 dimensional sphere. Therefore, for large d,
c = (d− 1)E(v1

√
1− v2

1)E(v′2) = (d− 1)E(v1)E(v′2) =
(d− 1)E(|N (0, 1/d)|)E(|N (0, 1/(d− 1))|) = 2

π .

To show how good the asymptotic result is, we run Monte-
Carlo to get the estimation of c. As shown in the left of
Figure 7, the Monte-Carlo result is consistent to this theorem.
In addition, it converges very quickly, e.g., stablizing at 0.64
when d ≥ 100.

Now we start proving (2). By Lemma B.1, we have δ∗ =
|UkU>k |ε1. Thus,

E(δ∗i /ε) =

d∑
j=1

E

∣∣∣∣∣
k∑
p=1

UipUjp

∣∣∣∣∣
=
∑
j 6=i

E

∣∣∣∣∣
k∑
p=1

UipUjp

∣∣∣∣∣+ E(

k∑
p=1

U2
ip)

= (d− 1)E

∣∣∣∣∣
k∑
p=1

UipUjp

∣∣∣∣∣+
k

d
.

In addition, we have

(d− 1)E

∣∣∣∣∣
k∑
p=1

UipUjp

∣∣∣∣∣
= (d− 1)EUi

(
EUj

(∣∣∣∣∣
k∑
p=1

UipUjp

∣∣∣∣∣
∣∣∣∣Ui
))

→ (d− 1)EUi

(
E

∣∣∣∣∣N
(

0,

∑k
p=1 U

2
ip

d− 1

)∣∣∣∣∣
)

= (d− 1)

√
2

π(d− 1)
E

√√√√ k∑
p=1

U2
ip

=

√
2(d− 1)

π
E
√

1

d
χ2(k)

→ 2√
π

Γ( 1
2 (k + 1))

Γ( 1
2k)

,

where we use again that for large d, the entries of a column
tends to Gaussian. This proves (2). The expected tightness
follows by definition, i.e., dividing the result of (1) and
(2).
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Figure 7: Monte-Carlo estimations of Theorem 3.6. Result
bases on 10000 samples for each d. Left: c plotted against
d in log scale. Right: E(δ∗i ) plotted against k for d = 2000
(blue), together with the theoretical predictions (orange).

The right of Figure 7 plots the Monte-Carlo estimations
against our theoretical results. Clearly, this confirms our
result.

C. Experimental Details
C.1. Dataset

We use the MNIST (LeCun et al., 2010) and CIFAR-10
(Krizhevsky et al., 2009) datasets for our experiments. Both
are open-source and freely available. For MNIST, we do
not apply any preprocessing or data augmentation. For
CIFAR-10, we normalize images with their mean and stan-
dard deviation and, during training, first apply 2-pixel zero
padding and then random cropping to 32× 32.

C.2. Model Architecture

We follow previous works (Shi et al., 2021a; Müller et al.,
2022b; Mao et al., 2023) and use a 7-layer convolutional
network CNN7 in most experiments. For the experiments
investigating the effect of epsilon on tightness and certi-
fiability depending on the training method, visualized in
Figure 4, we use a smaller 3-layer convolutional network
CNN3. Details about them can be found in the released code.

C.3. Training

Following previous works (Müller et al., 2022b; Mao et al.,
2023), we use the initialization, warm-up regularization,
and learning schedules introduced by Shi et al. (2021a).
Specifically, for MNIST, the first 20 epochs are used for
ε-scheduling, increasing ε smoothly from 0 to the target
value. Then, we train an additional 50 epochs with two
learning rate decays of 0.2 at epochs 50 and 60, respectively.
For CIFAR-10, we use 80 epochs for ε-annealing, after
training models with standard training for 1 epoch. We
continue training for 80 further epochs with two learning
rate decays of 0.2 at epochs 120 and 140, respectively. The
initial learning rate is 5×10−3 and the gradients are clipped
to an L2 norm of at most 10.0 before every step.
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C.4. Certification

We apply MN-BAB (Ferrari et al., 2022) to certify all mod-
els. MN-BAB is a state-of-the-art complete certification
method built on multi-neuron relaxations. When certifying
SABR-trained CNN7 to obtain state-of-the-art results, we
use the same hyperparameters for MN-BAB as Müller et al.
(2022b) and set the timeout to 1000 seconds. For other
experiments, we use the same hyperparameters but reduce
timeout to 200 seconds for efficiency reasons.

D. Extended Empirical Evaluation
D.1. STAPS-Training and Regularization Level

To confirm our observations on the interaction of regular-
ization level, accuracies, and propagation tightness from
Section 4, we extend our experiments to STAPS (Mao
et al., 2023), an additional state-of-the-art certified train-
ing method beyond SABR (Müller et al., 2022b). Recall
that STAPS combines SABR with adversarial training as
follows. The model is first (conceptually) split into a fea-
ture extractor and classifier. Then, during training IBP is
used to propagate the input region through the feature ex-
tractor yielding box bounds in the model’s latent space.
Then, adversarial training with PGD is conducted over
the classifier using these box bounds as input region. As
IBP leads to an over-approximation while PGD leads to an
under-approximation, STAPS induces more regularization
as fewer (ReLU) layers are included in the classifier.
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Figure 8: Accuracies and tightness
of a CNN7 for CIFAR-10 ε = 2

255
depending on regularization strength
with STAPS

We visualize the
result of thus vary-
ing regularization
levels by chang-
ing the number of
ReLU layers in the
classifier in Fig-
ure 8. We observe
very similar trends
as for SABR in
Figure 5, although
to a lesser extent, as 0 ReLU layers in the classifier still
recovers SABR and not standard IBP. Again, decreasing
regularization (increasing the number of ReLU layers in
the classifier) leads to reducing tightness and increasing
standard and certified accuracies.

E. Related Work
Certified Training Sound certified training methods com-
pute and optimize an over-approximation of the worst-case
loss obtained via bound propagation methods (Wong &
Kolter, 2018; Wong et al., 2018; Zhang et al., 2020). A par-
ticularly efficient and scalable method is IBP (Gowal et al.,

2018; Mirman et al., 2018), for which Shi et al. (2021b) pro-
pose a custom initialization scheme, significantly shortening
training schedules, and Lin et al. (2022) propose a non-
negativity regularization, marginally improving certified
accuracies. More recent methods use unsound but more pre-
cise approximations. COLT (Balunovic & Vechev, 2020a)
combines precise ZONOTOPE (Singh et al., 2018) bounds
with adversarial training but is severely limited in scalability.
IBP-R (Palma et al., 2022) combines an IBP-based reg-
ularization with adversarial training at larger perturbation
magnitudes. SABR (Müller et al., 2022b) applies IBP to
small but carefully selected regions in the adversary specifi-
cation to reduce regularization. TAPS (Mao et al., 2023),
similar to COLT, combines IBP with adversarial training.
This recent dominance of IBP-based methods motivates our
work to develop a deeper understanding of how IBP training
affects network robustness.

Theoretical Analysis of IBP The capability of IBP has
been studied theoretically in the past. Baader et al. (2020)
first show that continuous functions can be approximated
by IBP-certifiable ReLU networks up to arbitrary preci-
sion. Wang et al. (2022b) extend this result to more activa-
tion functions and prove that constructing such networks is
strictly harder than NP-complete problems assuming coNP
/∈ NP. Wang et al. (2022a) study the convergence of IBP-
training and find that it converges to a global optimum with
high probability for infinite width. Mirman et al. (2022) de-
rive a negative result, showing that even optimal box bounds
can fail on simple datasets. However, none of these works
study the tightness of IBP bounds, i.e., their relationship
to optimal interval approximations. Motivated by recent
certified training methods identifying this approximation
precision as crucial (Müller et al., 2022a; Mao et al., 2022),
we bridge this gap by deriving sufficient and necessary con-
ditions for propagation invariance, introducing the relaxed
measure of propagation tightness and studying how it in-
teracts with network architecture and IBP training, both
theoretically and empirically.

F. Reproducibility
We publish our code, all trained models, and detailed instruc-
tions on how to reproduce our results at ANONYMIZED.
Further, we provide detailed descriptions of all hyper-
parameter choices, data sets, and preprocessing steps in
App. C.


