
Provably Correct Physics-Informed Neural Networks

Francisco Eiras 1 Adel Bibi 1 Rudy Bunel 2 Krishnamurthy Dj Dvijotham 2 Philip H.S. Torr 1

M. Pawan Kumar 2

Abstract
Physics-informed neural networks (PINN) have
been proven efficient at solving partial differen-
tial equations (PDE). However, previous works
have failed to provide guarantees on the worst-
case residual error of a PINN across the spatio-
temporal domain – a measure akin to the tolerance
of numerical solvers – focusing instead on point-
wise comparisons between their solution and the
ones obtained by a solver at a set of inputs. In
real-world applications, one cannot consider tests
on a finite set of points to be sufficient grounds for
deployment. To alleviate this issue, we establish
tolerance-based correctness conditions for PINNs
over the entire input domain. To verify the extent
to which they hold, we introduce ∂-CROWN: a
general and efficient post-training framework to
bound PINN errors. We demonstrate its effective-
ness in obtaining tight certificates by applying it to
two classical PINNs – Burgers’ and Schrödinger’s
equations –, and two more challenging ones – the
Allan-Cahn and Diffusion-Sorption equations.

1. Introduction
While partial differential equations (PDE) are key to simu-
lating complex physical systems, obtaining accurate solu-
tions at an appropriate spatio-temporal resultion is challeng-
ing (Kochkov et al.). Inspired by the success of machine
learning in other domains, recent work has attempted to
overcome this challenge through physics-informed neural
networks (PINN) (Raissi et al., 2019a; Sun et al., 2020; Pang
et al., 2019). For example, the Diffusion-Sorption equation –
with real-world applications in the modeling of groundwater
contaminant transport – takes 59.83s to solve per inference
point using a classical PDE solver, while the PINN ver-

*Equal contribution 1Department of Engineering Science, Uni-
versity of Oxford 2Google DeepMind. Correspondence to: Fran-
cisco Eiras <eiras@robots.ox.ac.uk>.

Presented at the 2nd Workshop on Formal Verification of Machine
Learning, co-located with the 40 th International Conference on
Machine Learning, Honolulu, Hawaii, USA., 2023. Copyright
2023 by the author(s).

sion from Takamoto et al. (2022) takes only 2.7× 10−3s, a
speed-up of more than 104 times.

After training, PINN accuracy is usually empirically esti-
mated by measuring the solution outputs over a discrete set
of inputs and comparing them to standard numerical PDE
solvers. Crucially, most current work on PINNs provides no
formal correctness guarantees that are applicable for every
input within the feasible domain. While testing on a finite
set of points provides a good initial signal for accuracy, this
cannot be relied upon in practice as the performance could
be substantially worse on a different set of inputs. In order
to alleviate the deficiencies of previous evaluation criteria,
we introduce formal, tolerance-based correctness conditions
for PINNs, as well as a post-training framework to certify
the degree to which these hold.

Our contributions are threefold. (i) We formally define
global correctness conditions for general PINNs that ap-
proximate solutions of PDEs. (ii) We introduce a general,
efficient, and scalable correctness certification framework
(∂-CROWN) to theoretically verify PINNs over their entire
spatio-temporal domains. (iii) We demonstrate our frame-
work on two widely studied PDEs in the context of PINNs,
Burgers’ and Schrödinger’s equations (Raissi et al., 2019a),
and two more challenging ones with real-world applications,
the Allan-Cahn equation (Monaco & Apiletti, 2023) and the
Diffusion-Sorption equation (Takamoto et al., 2022).

2. Preliminaries and Related work
Given vector a ∈ Rd, ai refers to its i-th component, and
∂xj

i
f is the j-th partial derivative of a function f : Rn → R

with respect to the i-component of its input, xi. We use f(x)
and f interchangeably. We take L(i)

W,b(x) = W(i)x+ b(i)

to be a function of x parameterized by the weights W(i)

and the bias b(i). We define an L-layer fully connected
neural network g : Rd0 → RdL for an input x ∈ Rd0

as g(x) = y(L)(x) where y(k)(x) = L(k)
W,b(z

(k−1)(x)),
z(k−1)(x) = σ(y(k−1)(x)), z(0)(x) = x, in which W(k) ∈
Rdk×dk−1 and b(k) ∈ Rdk are the weight and bias of layer k,
σ is the nonlinear activation function, and k ∈ {1, . . . , L}.

Since our certification framework for PINNs is based on
the verification literature of image classifiers, we divide this

section in two: related work for PINNs, and previous work
on the robustness verification/bounding of neural networks.

2.1. Physics-informed neural networks (PINNs)

We consider general nonlinear PDEs of the form:

f(t, x̂) = ∂tu(t, x̂) +N [u](t, x̂) = 0, x̂ ∈ D, t ∈ [0, T],
(1)

where f is the residual of the PDE, t and x̂ are the temporal
and spatial components of the input respectively (for con-
ciseness, x = (t, x̂) ∈ C, with x0 = t), u : [0, T]×D → R
is the solution, N is a nonlinear differential operator on
u, T ∈ R+, and D ⊂ RD. Further, the PDE is defined
under (1) initial conditions, i.e., u(0, x̂) = u0(x̂), for
x̂ ∈ D, and (2) general Robin boundary conditions, i.e.,
au(t, x̂)+b∂nu(t, x̂) = ub(t, x̂), for a, b ∈ R, x̂ ∈ δD and
t ∈ [0, T], and ∂nu is the normal derivative at the border.
We assume f is the residual of an Rth order PDE, which
can be written as f = P(u, ∂x0

u, . . . , ∂xD
u, . . . , ∂xR

D
u),

where P is a nonlinear function of partial derivatives of u.

Since Raissi et al. (2019a) introduced PINNs, a variety of
different ones have since emerged in a wide range of ap-
plications (Raissi et al., 2019b; Liu & Wang, 2019; Sun
et al., 2020; Jin et al., 2021; Fang & Zhan, 2019; Pang et al.,
2019). We focus on continuous-time PINNs (Raissi et al.,
2019a) which result from approximating the solution, u(x),
using a neural network parameterized by θ, uθ(x). We refer
to this network as the approximate solution. In that con-
text, the physics-informed neural network (or residual) is
fθ(x) = ∂tuθ(x) +N [uθ](x). Note fθ has the same order
as f , and can be described similarly as a nonlinear func-
tion with the partial derivatives applied to uθ instead of u.
Some previous works have focused on providing guaran-
tees on either the training process (Shin et al., 2020; Wang
et al., 2022b) or generalization errors Mishra & Molinaro
(2022); Ryck & Mishra (2022), though typically under sev-
eral assumptions. Our verification framework is applicable
post-training to any PINN with the solution modeled by a
fully connected network.

2.2. Robustness Verification and Bounding neural
network outputs

The presence of adversarial examples, i.e., small local in-
put perturbations that lead to large output changes, was
established by Szegedy et al. (2013) in the context of image
classification. As robust classifiers emerged (Madry et al.,
2017), so did attempts to certify them formally (Katz et al.,
2017; Ehlers, 2017; Huang et al., 2017; Gowal et al., 2018;
Mirman et al., 2018). An efficient set of methods poses
the problem as a convex relaxation of the original nonlinear
network and obtains closed-form solution to the bounding
problem (Zhang et al., 2018; Wang et al., 2021; Xu et al.,
2020b). Xu et al. (2020a) extended the linear relaxation

framework from Zhang et al. (2018) to general computation
graphs, but the purely backward propagation nature makes
it potentially less efficient than custom bounds/hybrid ap-
proaches (Shi et al., 2020). For the sake of computational
efficiency, we consider the bounds obtained using CROWN
(Zhang et al., 2018)/α-CROWN (Xu et al., 2020b) as the
base for our framework.

Given a fully connected network g, the goal is to compute
max /minx∈C g(x), where C is the applicability domain.
Typically for image classifier verification, C = Bp

x,ϵ = {x′ :
∥x′−x∥p ≤ ϵ}, i.e., it is a local ℓp-ball of radius ϵ around an
input from the test set x. CROWN solves the optimization
problem by back-propagating linear bounds of g(x) through
each hidden layer of the network until the input is reached,
eventually obtaining:

min
x∈C

g(x) ≥ min
x∈C

ALx+aL, max
x∈C

g(x) ≤ max
x∈C

AUx+aU ,

where AL, aL, AU and aU are computed in polynomial
time from W(k),b(k), and the linear activation relaxation
parameters. The solution to the optimization problems
above given simple constraints C can be obtained in closed-
form. α-CROWN (Xu et al., 2020b) improves these bounds
by optimizing the linear relaxations for tightness.

3. ∂-CROWN: PINN Correctness Certification
Framework

By definition, uθ is a correct solution to the PINN fθ – and
therefore the PDE f(x) = 0 – if 3 conditions are met: 1
the norm of the solution error with respect to the initial con-
dition is upper bounded within an acceptable tolerance, 2
the norm of the error with respect to the boundary conditions
is bounded within an acceptable tolerance, and 3 the norm
of the residual is bounded within an acceptable convergence
tolerance. We define these as PINN correctness conditions,
and formalize them in Definition 1.

Definition 1 (Correctness Conditions for PINNs). uθ :
[0, T]×D → R is a δ0, δb, ε-globally correct approximation
of the exact solution u : [0, T]×D → R if:

1 max
x̂∈D

|uθ(0, x̂)− u0(x̂)|2 ≤ δ0,

2 max
t∈[0,T],x̂∈δD

|auθ(t, x̂) + b∂nuθ(t, x̂)− ub(t, x̂)|2 ≤ δb,

3 max
x∈C

|fθ(x)|2 ≤ ε.

In practice, δ0, δb, and ε correspond to tolerances similar
to the ones given by numerical solvers for f . Verifying
these conditions requires bounding a linear function of uθ
for 1 , bounding for a linear function of uθ and ∂nuθ for
2 , and the PINN residual fθ for 3 . To achieve 1 we can

directly use CROWN/α-CROWN (Zhang et al., 2018; Xu
et al., 2020b). However, bounding 2 and 3 with a linear

���

GLDJ� �

��� ������

���
GLDJ� �

&52:1�������&52:1

%DFN�SURSDJDWLRQ�SDWK

%DFN�SURSDJDWLRQ�SDWK
)RUZDUG�VXEVWLWXWLRQ

%DFN�SURSDJDWLRQ�SDWK
)RUZDUG�VXEVWLWXWLRQ

5HOD[HG�1RQOLQHDULW\

������&52:1

7KHRUHP��

7KHRUHP��

Figure 1: Bounding Derivatives with ∂-CROWN: our hy-
brid scheme for bounding ∂xi

uθ and ∂x2
i
uθ includes back-

propagation and forward substitution (inspired by Shi et al.
(2020)) to compute bounds in O(L) instead of the O(L2)
complexity of full back-propagation as in Xu et al. (2020a).

function in x efficiently requires a method to bound linear
and nonlinear functions of the partial derivatives of uθ.

We propose ∂-CROWN, an efficient framework to: (i) com-
pute closed-form bounds on the partial derivatives of an
arbitrary fully-connected network uθ, and (ii) bound a poly-
nomial function of those partial derivative terms, i.e., fθ.
Throughout this section, we assume uθ(x) = g(x) as per
Section 2, with d0 = 1 +D. Proofs for lemmas and theo-
rems presented are in Appendix D.

(i) Bounding Partial Derivatives of uθ. To bound the
partial derivatives of uθ for a PINN of order R ≤ 2, we start
by explicitly obtaining the expressions for ∂xi

uθ and ∂x2
i
uθ,

which we derive analytically in Appendix D and present as
a computation graph in Figure 1. While we only compute
the expression for the second derivative with respect to the
same input variable, it would be trivial to extend it to cross
derivatives (i.e., ∂xixj

uθ for i ̸= j).

The computation of the output and intermediate pre-
activation bounds for uθ can be done using CROWN/α-
CROWN (Zhang et al., 2018; Xu et al., 2020b). As such, for
what follows, we assume that for x ∈ C, both the bounds
on uθ and y(k), ∀k are given. Combining this with the ex-
plicit expressions of ∂xiuθ and ∂x2

i
uθ allows us to obtain

the following linear bounds.
Theorem 1 (∂-CROWN: Linear Bounding ∂xi

uθ). There
exist two linear functions ∂xi

uUθ and ∂xi
uLθ s.t. it holds

∀x ∈ C: ∂xi
uLθ ≤ ∂xi

uθ ≤ ∂xi
uUθ , with the linear coeffi-

cients computed recursively in closed-form in O(L) time.
Theorem 2 (∂-CROWN: Linear Bounding ∂x2

i
uθ). Assume

that through a previous bounding of ∂xi
uθ, we have lin-

ear lower and upper bounds on ∂xi
z(k−1) and ∂z(k−1)z(k).

There exist two linear functions ∂x2
i
uUθ and ∂x2

i
uLθ s.t. it

holds ∀x ∈ C: ∂x2
i
uLθ ≤ ∂x2

i
uθ ≤ ∂x2

i
uUθ , with the coeffi-

cients computed recursively in closed-form in O(L) time.

The formal statement of Theorem 1 and 2 and expressions

Algorithm 1 Greedy Input Branching
Input: function h, input domain C, # splits Nb, # empirical

samples Ns, # branches per split Nd

Result: lower bound hlb, upper bound hub
1 B,B∆ = ∅
2 ĥlb, ĥub = min \max h(SAMPLE(C, Ns))
3 hlb, hub = ∂-CROWN(h, C)
4 B[C] = (hlb, hub)

5 B∆[C] = max(ĥlb − hlb, hub − ĥub)
6 for i ∈ {1, . . . , Nb} do
7 Ci = B.POP(argmaxC′ B[C′])
8 foreach C′ ∈ DOMAINSPLIT(Ci, Nd) do
9 h′lb, h

′
ub = ∂-CROWN(h, C′)

10 B[C′] = (h′lb, h
′
ub)

11 B∆[C′] = max(ĥlb − h′lb, h
′
ub − ĥub)

12 hlb, hub = minC′ B0[C′],maxC′ B1[C′]
13 return hlb, hub

for ∂xi
uLθ , ∂xi

uUθ , ∂x2
i
uLθ and ∂x2

i
uUθ are provided in Ap-

pendix D.3 and D.4. Note that these bound are not computed
using fully backward propagation as in Xu et al. (2020a).
Instead we use a hybrid scheme in the spirit of Shi et al.
(2020) for the sake of efficiency. We perform backward
propagation to compute ∂z(k−1)z(k) as a function of y(k),
and forward-substitute the pre-computed CROWN bounds
L(k),L
A,a (x) ≤ y(k) ≤ L(k),U

A,a (x) at that point instead of fully
backward propagating which would have O(L2) complexity.
This induces a significant speed-up while achieving tight
enough bounds. Figure 1 showcases the back-propagation
and forward substitution paths for bounding ∂xi

uθ in blue,
and the ones for ∂x2

i
uθ in green. The computation of these

bounds requires relaxing σ′(y(k)) and σ′′(y(k)).

Following a similar argument to CROWN (Zhang et al.,
2018), assuming C = {x ∈ Rd0 : xL ≤ x ≤ xU}, we can
obtain closed-form expressions for constant global bounds
on the linear functions ∂xi

uUθ , ∂xi
uLθ , ∂x2

i
uUθ , ∂x2

i
uLθ , which

we formulate and prove in Appendix D.51.

(ii) Bounding fθ. With the partial derivative terms
bounded, to bound fθ, we use McCormick envelopes (Mc-
Cormick, 1976) to obtain linear lower and upper bound
functions fLθ ≤ fθ ≤ fUθ :

fU
θ = µU

0 + µU
1 uθ +

R∑
j=1

∑
∂
x
j
i

∈N (j)

µU
j,i∂x

j
i
uθ,

and similarly for fLθ , where µU
0 , µU

1 , and µU
i,j are functions

of the global lower and upper bounds of uθ and ∂xj
i
uθ. To

1Note that this is different from the CROWN case in which C
is assumed to be an ϵ-ball around an input x.

1.0

0.5

0.0

0.5

1.0
x

u

0.00 0.25 0.50 0.75 1.00
t

1.0

0.5

0.0

0.5

1.0

x

|f |

0.5

0.0

0.5

10 8

10 6

10 4

10 2

(a)

0 1
4

2

0

2

4

x

u

0 1
t

4

2

0

2

4

x

|f |

5

10

15

10 5

10 4

10 3

10 2

(b)

0.0 0.5 1.01.0

0.5

0.0

0.5

1.0

x

u

0.0 0.5 1.0
t

1.0

0.5

0.0

0.5

1.0

x

|f |

1.0

0.5

0.0

0.5

10 6

10 4

10 2

100

(c)

0 200 4000.0

0.2

0.4

0.6

0.8

1.0

x

u

0 200 400
t

0.0

0.2

0.4

0.6

0.8

1.0

x

|f |

0.00

0.25

0.50

0.75

1.00

10 8

10 5

10 2

(d)

Figure 2: Certifying with ∂-CROWN: time evolution of uθ, and the residual errors as a function of the spatial temporal
domain (log-scale), |fθ|, for (a) Burgers’ equation (Raissi et al., 2019b), (b) Schrödinger’s equation (Raissi et al., 2019b),
(c) Allan-Cahn’s equation (Monaco & Apiletti, 2023), and (d) the Diffusion-Sorption equation (Takamoto et al., 2022).

obtain fUθ and fLθ as linear functions of x, we replace uθ and
∂xj

i
uθ with the lower and upper bound linear expressions

from (i) depending on the sign of the coefficients µU and µL.
As with the partial derivatives, since C = {x ∈ Rd0 : xL ≤
x ≤ xU} we can then solve maxx∈C f

U
θ and minx∈C f

L
θ in

closed-form (Appendix D.5).

3.1. Tighter Bounds via Greedy Input Branching

Using ∂-CROWN we can compute a bound on a nonlinear
function of derivatives of uθ, which we will generally refer
to as h, for x ∈ C. However, given the approximations
used in the bounding process, it is likely that such bounds
will be too loose to be useful. To improve upon them, we
introduce greedy input branching in Algorithm 1. The idea
is to recursively divide the input domain (DOMAINSPLIT,
line 8) - exploring the areas where the current bounds are
farther from the empirical optima obtained via sampling
(SAMPLE, line 2) - and globally bound the output of h as
the worst-case of all the branches (line 12). As the number
of splits, Nb, increases, so does the tightness of the bounds.

4. Experiments and Discussion
The aim of this experimental section is to showcase that
the Definition 1 certificates obtained with ∂-CROWN are
tight compared to empirical errors computed with a large
number of samples. Additional experiments are found in
Appendix A, where we highlight the relationship of our
residual-based certificates and the commonly reported so-
lution errors, and in Appendix B, where we qualitatively
analyze the importance of greedy input branching in the
success of our method.

We apply ∂-CROWN to two widely studied PINNs from
Raissi et al. (2019a), Burgers’ and Schrödinger’s equations,

as well as to the more complex Allen-Cahn’s equation
from Monaco & Apiletti (2023), and the Diffusion-Sorption
equation from Takamoto et al. (2022). As required by ∂-
CROWN, we propose an algorithm in Appendix E to relax
σ′ and σ′′ given pre-activation bounds. All timing results
were obtained on a 10-core M1 Max MacBook Pro.

Burgers’ Equation This one-dimensional PDE is used
in several areas of mathematics, fluid dynamics, nonlinear
acoustics, gas dynamics and traffic flow, and is derived
from the Navier-Stokes equations for the velocity field by
dropping the pressure gradient (Raissi et al., 2019a). It is
defined for t ∈ [0, 1] and x ∈ [−1, 1] as:

∂tu(t, x) + u(t, x)∂xu(t, x)− (0.01/π)∂x2u(t, x) = 0,
(2)

for u(0, x) = − sin(πx), u(t,−1) = u(t, 1) = 0. The
solution uθ : R2 → R is modeled by an 8-hidden layer,
20 neurons per layer network (Raissi et al., 2019a). The
training process took ∼ 13.35 minutes, and resulted in a
mean ℓ2 error of 6.1 ·10−4, with a visualization in Figure 2a.

Schrödinger’s Equation Schrödinger’s equation is a clas-
sical field equation used to study quantum mechanical sys-
tems. In Raissi et al. (2019a), Schrödinger’s equation is
defined for t ∈ [0, π/2] and x ∈ [−5, 5] as:

i ∂tu(t, x) + 0.5 ∂xxu(t, x) + |u(t, x)|2u(t, x) = 0, (3)

where u : [0, π/2] × D → C is a complex-valued solu-
tion, for initial conditions u(0, x) = 2 sech(x), and periodic
boundary conditions u(t,−5) = u(t, 5) and ∂xu(t,−5) =
∂xu(t, 5). As in Raissi et al. (2019b), uθ : R2 → R2 is a
5-hidden layer, 100 neurons per layer network. The training
took ∼ 23.67 minutes, and resulted in a mean ℓ2 error of
1.74 · 10−3, with a visualization in Figure 2b.

Table 1: Certifying with ∂-CROWN: Monte Carlo (MC) sampled maximum values (104 and 106 samples) and upper
bounds computed using ∂-CROWN with Nb branchings for 1 initial conditions, 2 boundary conditions, and 3 residual
condition for (a) Burgers (Raissi et al., 2019b), (b) Schrödinger (Raissi et al., 2019b), (c) Allen-Cahn (Monaco & Apiletti,
2023), and (d) Diffusion-Sorption (Takamoto et al., 2022) equations.

MC max (104) MC max (106) ∂-CROWN ub (time [s])

(a) Burgers (Raissi et al., 2019b)
1 |uθ(0, x)− u0(x)|2 1.59× 10−6 1.59× 10−6 2.63× 10−6 (116.5)

2
|uθ(t,−1)|2 8.08× 10−8 8.08× 10−8 6.63× 10−7 (86.7)
|uθ(t, 1)|2 6.54× 10−8 6.54× 10−8 9.39× 10−7 (89.8)

3 |fθ(x, t)|2 1.23× 10−2 1.80× 10−2 1.03× 10−1 (2.8× 105)

(b) Schrödinger (Raissi et al., 2019b)
1 |uθ(0, x)− u0(x)|2 7.06× 10−5 7.06× 10−5 8.35× 10−5 (305.2)

2
|uθ(t, 5)− uθ(t,−5)|2 7.38× 10−7 7.38× 10−7 5.73× 10−6 (545.4)
|∂xuθ(t, 5)− ∂xuθ(t,−5)|2 1.14× 10−5 1.14× 10−5 5.31× 10−5 (2.4× 103)

3 |fθ(x, t)|2 7.28× 10−4 7.67× 10−4 5.55× 10−3 (1.2× 106)

(c) Allen-Cahn (Monaco & Apiletti, 2023)
1 |uθ(0, x)− u0(x)|2 1.60× 10−3 1.60× 10−3 1.61× 10−3 (52.7)
2 |uθ(t,−1)− uθ(t, 1)|2 5.66× 10−6 5.66× 10−6 5.66× 10−6 (95.4)
3 |fθ(x, t)|2 10.74 10.76 10.84 (6.7× 105)

(d) Diffusion-Sorption (Takamoto et al., 2022)
1 |uθ(0, x)|2 0.0 0.0 0.0 (0.2)

2
|uθ(t, 0)− 1|2 4.22× 10−4 4.39× 10−4 1.09× 10−3 (72.5)
|uθ(t, 1)−D∂xuθ(t, 1)|2 2.30× 10−5 2.34× 10−5 2.37× 10−5 (226.4)

3 |fθ(x, t)|2 1.10× 10−3 21.09 21.34 (2.4× 106)

Allan-Cahn Equation The Allan-Cahn equation is a form
of reaction-diffusion equation, describing the phase separa-
tion in multi-component alloy systems (Monaco & Apiletti,
2023). In 1D, it is defined for t ∈ [0, 1] and x ∈ [−1, 1] as:

∂tu(t, x)+ ρu(t, x)(u
2(t, x)− 1)− ν∂x2u(t, x) = 0, (4)

for ρ = 5, ν = 10−4, and u(0, x) = x2 cos(πx),
u(t,−1) = u(t, 1). The solution uθ : R2 → R is mod-
eled by an 6-hidden layer, 40 neurons per layer network,
and due to its complexity, it is trained using the Causal train-
ing scheme from Monaco & Apiletti (2023). The training
process took ∼ 18.56 minutes, and resulted in a mean ℓ2
error of 7.9 · 10−3, with a visualization in Figure 2c.

Diffusion-Sorption The diffusion-sorption equation mod-
els a diffusion system which is retarded by a sorption pro-
cess, with one of the most prominent applications being
groundwater contaminant transport (Takamoto et al., 2022).
In (Takamoto et al., 2022), the equation is defined for
t ∈ [0, 500] and x ∈ [0, 1] as:

∂tu(t, x)−D/R(u(t, x))∂x2u(t, x) = 0, (5)

where D = 5 × 10−4 is the effective diffusion coeffi-
cient, and R(u(t, x)) is the retardation factor representing
the sorption that hinders the diffusion process (Takamoto

et al., 2022). In particular, we consider R(u(t, x)) =
1 + (1−ϕ)/(ϕ)ρsknfu

nf−1(t, x), where ϕ = 0.29 is the
porosity of the porus medium, ρs = 2880 is the bulk den-
sity, k = 3.5 × 10−4 is the Freundlich’s parameter, and
nf = 0.874 is the Freundlich’s exponent. The initial and
boundary conditions are defined as u(0, x) = 0, u(t, 0) = 0
and u(t, 1) = D∂xu(t, 1). The solution uθ : R2 → R is
modeled by a 7-hidden layer, 40 neurons per layer network,
and we obtain the trained parameters from Takamoto et al.
(2022). The mean ℓ2 solution error is 9.9 · 10−2, with a
visualization in Figure 2d.

∂-CROWN certification We verify the global correctness
conditions of the PINNs by applying the framework from
Section 3. We report in Table 1 our verification of the initial
conditions 1 using Nb = 5k splits, boundary conditions
2 using Nb = 5k splits, and the certified bounds on the

residual condition 3 using Nb = 2M splits. We observe
that ∂-CROWN approaches the empirical bounds obtained
using Monte Carlo sampling while providing the guaran-
tee that no point within the domain breaks those bounds,
effectively establishing the tolerances from Definition 1.

5. Discussion and Conclusion
We show that ∂-CROWN is able to obtain tight upper
bounds on the correctness conditions established in Def-
inition 1. Of particular relevance is the case of the residual
condition 3 for the Diffusion-Sorption equation, for which
varying the number of MC samples leads to distinct results
- using 104 estimates puts the maximum at 1.10 × 10−3,
while 106 samples give an estimate of 21.09 - highlighting
the need for our framework to obtain guarantees across the
full domain. Note that the absolute values of the residual
errors can be seen as a function of the PDE itself, and thus
cannot be compared across different PINNs. As shown
in Section A, they are instead connected to PDE solution
errors, and can be compared within the same system. In
Appendix C we study the effect of the training method
from Shekarpaz et al. (2022) on empirical/certified errors.

One of the limitations of our method is the running time,
which for residual verification is in the order of 105–106 for
each of the PINNs studied. This is mainly due to the need
to perform a high number of branchings (2M) as a result
of the looseness of the bounds obtained by ∂-CROWN on
each individual one. These issues become more accentuated
as the input dimension grows, since the number of branches
is expected to grow exponentially. In future work we aim to
improve the tightness of the bounds to be able to apply our
framework to larger, higher dimensional PINNs.

References
Ehlers, R. Formal verification of piece-wise linear feed-

forward neural networks. In International Symposium on
Automated Technology for Verification and Analysis, pp.
269–286. Springer, 2017.

Fang, Z. and Zhan, J. Deep physical informed neural net-
works for metamaterial design. IEEE Access, 8:24506–
24513, 2019.

Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin,
C., Uesato, J., Arandjelovic, R., Mann, T., and Kohli,
P. On the effectiveness of interval bound propagation
for training verifiably robust models. arXiv preprint
arXiv:1810.12715, 2018.

Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. Safety
verification of deep neural networks. In International
conference on computer aided verification, pp. 3–29.
Springer, 2017.

Jin, X., Cai, S., Li, H., and Karniadakis, G. E. Nsfnets
(navier-stokes flow nets): Physics-informed neural net-
works for the incompressible navier-stokes equations.
Journal of Computational Physics, 426:109951, 2021.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient smt solver for verifying
deep neural networks. In International conference on
computer aided verification, pp. 97–117. Springer, 2017.

Kim, J., Lee, K., Lee, D., Jhin, S. Y., and Park, N. Dpm: a
novel training method for physics-informed neural net-
works in extrapolation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 8146–
8154, 2021.

Kochkov, D., Sanchez-Gonzalez, A., Smith, J., Pfaff, T.,
Battaglia, P., and Brenner, M. P. Learning latent field
dynamics of pdes.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and
Mahoney, M. W. Characterizing possible failure modes
in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34:26548–26560, 2021.

Liu, D. and Wang, Y. Multi-fidelity physics-constrained
neural network and its application in materials modeling.
Journal of Mechanical Design, 141(12), 2019.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

McCormick, G. P. Computability of global solutions to
factorable nonconvex programs: Part i—convex underes-
timating problems. Mathematical programming, 10(1):
147–175, 1976.

Mirman, M., Gehr, T., and Vechev, M. Differentiable ab-
stract interpretation for provably robust neural networks.
In International Conference on Machine Learning, pp.
3578–3586. PMLR, 2018.

Mishra, S. and Molinaro, R. Estimates on the generalization
error of physics-informed neural networks for approxi-
mating pdes. IMA Journal of Numerical Analysis, 2022.

Monaco, S. and Apiletti, D. Training physics-informed
neural networks: One learning to rule them all? Results
in Engineering, 18:101023, 2023.

Pang, G., Lu, L., and Karniadakis, G. E. fpinns: Fractional
physics-informed neural networks. SIAM Journal on
Scientific Computing, 41(4):A2603–A2626, 2019.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019a.

Raissi, M., Wang, Z., Triantafyllou, M. S., and Karniadakis,
G. E. Deep learning of vortex-induced vibrations. Journal
of Fluid Mechanics, 861:119–137, 2019b.

Ryck, T. D. and Mishra, S. Generic bounds on the approxi-
mation error for physics-informed (and) operator learn-
ing. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/
forum?id=bF4eYy3LTR9.

Shekarpaz, S., Azizmalayeri, M., and Rohban, M. H. Piat:
Physics informed adversarial training for solving partial
differential equations. arXiv preprint arXiv:2207.06647,
2022.

Shi, Z., Zhang, H., Chang, K.-W., Huang, M., and Hsieh,
C.-J. Robustness verification for transformers. In In-
ternational Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=BJxwPJHFwS.

Shin, Y., Darbon, J., and Karniadakis, G. E. On the con-
vergence of physics informed neural networks for lin-
ear second-order elliptic and parabolic type pdes. arXiv
preprint arXiv:2004.01806, 2020.

Sun, L., Gao, H., Pan, S., and Wang, J.-X. Surrogate mod-
eling for fluid flows based on physics-constrained deep
learning without simulation data. Computer Methods in
Applied Mechanics and Engineering, 361:112732, 2020.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D.,
Alesiani, F., Pflüger, D., and Niepert, M. Pdebench:
An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:
1596–1611, 2022.

Wang, C., Li, S., He, D., and Wang, L. Is l2

physics-informed loss always suitable for training
physics-informed neural network? arXiv preprint
arXiv:2206.02016, 2022a.

Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.-J.,
and Kolter, J. Z. Beta-crown: Efficient bound propaga-
tion with per-neuron split constraints for complete and
incomplete neural network verification. arXiv preprint
arXiv:2103.06624, 2021.

Wang, S., Yu, X., and Perdikaris, P. When and why pinns
fail to train: A neural tangent kernel perspective. Journal
of Computational Physics, 449:110768, 2022b.

Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K.-W., Huang,
M., Kailkhura, B., Lin, X., and Hsieh, C.-J. Automatic
perturbation analysis for scalable certified robustness and
beyond. Advances in Neural Information Processing
Systems, 33:1129–1141, 2020a.

Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., and
Hsieh, C.-J. Fast and complete: Enabling complete neural
network verification with rapid and massively parallel
incomplete verifiers. arXiv preprint arXiv:2011.13824,
2020b.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and
Daniel, L. Efficient neural network robustness certifica-
tion with general activation functions. Advances in neural
information processing systems, 31, 2018.

https://openreview.net/forum?id=bF4eYy3LTR9
https://openreview.net/forum?id=bF4eYy3LTR9
https://openreview.net/forum?id=BJxwPJHFwS
https://openreview.net/forum?id=BJxwPJHFwS

A. Empirical relation of |fθ| and |uθ − u|

0.00 0.25 0.50 0.75 1.00 1.25 1.50

maxD′ |fθ|

1.0

1.2

1.4

1.6

m
ax
D
′ |u

θ
−
ũ
|

Linear fit, R = 0.878

Figure 3: Residual and solution errors: connec-
tion of the maximum residual error (maxS′ |fθ|)
and the maximum solution error, maxS′ |uθ − ũ|,
for networks at different epochs of the training
process (in orange).

One question that might arise from our certification procedure is the
relationship between the PINN residual error, |fθ|, and the solution
error with respect to true solution u, |uθ − u|, across the domain. By
definition, achieving a low |fθ| implies uθ is a valid solution for the
PDE, but there is no formal guarantee related to |uθ − u| within our
framework.

Obtaining a bound on |uθ − u| is typically a non-trivial task given u
might not be unique, and does not necessarily exhibit an analytical
solution and can only be computed using a numerical solver. And
while some recent works perform this analysis for specific PDEs by
exploiting their structure and/or smoothness properties (Mishra &
Molinaro, 2022; Ryck & Mishra, 2022; Wang et al., 2022a), these
methods typically suffer from scalability and bound tightness issues.
As such, we perform an empirical analysis on Burgers’ equation using
a numerical, finite-difference solver to obtain ũ(x) for sampled points
x. We randomly sample 106 domain points (S ′), and compute the
maximum residual error, maxx∈S′ |fθ(x)|, and the empirical maximum solution error, maxx∈S′ |uθ(x) − ũ(x)|, for
networks obtained at different epochs of the training process.

We report the results in Figure 3, with each point corresponding to an instance of a network. As expected, there is a
correlation between these errors obtained using a numerical solver, suggesting a similar correlation holds for |uθ − u|.

B. On the importance of greedy input branching

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

4

2

0

2

4

x

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4: Branching densities: relative den-
sity of the input branching distribution obtained
via Algorithm 1 applied to Burgers’ (top) and
Schrödinger’s (bottom) equations.

A key factor in the success of ∂-CROWN in achieving tight bounds of
the residual is the greedy input branching procedure from Algorithm 1.
To illustrate the fact that a uniform sampling strategy would be sig-
nificantly more computationally expensive, we plot in Figure 4 the
relative density of branches (i.e., the percentage of branches per unit of
input domain) in the case of Burgers’ and Schrödinger’s equations. As
can be observed, there are clear imbalances at the level of the branch-
ing distribution – with areas away from relative optima of uθ being
relatively under sampled yet achieving tight bounds – showcasing the
efficiency of our strategy.

C. Reducing empirical and certified
errors through Physics-Informed Adversarial Training
The goal of reducing the solution errors obtained by PINNs has been
the research focus of several previous works (Kim et al., 2021; Krish-
napriyan et al., 2021; Shekarpaz et al., 2022). To observe the effects
of one of these different training schemes on the verified correctness
certification of PINNs, we consider Physics-informed Adversarial
Training (PIAT) (Shekarpaz et al., 2022). The procedure consists in
replacing the residual loss term from Raissi et al. (2019b) with an adversarial version inspired by Madry et al. (2017). While
this procedure leads to improvements in the example PINNs from Shekarpaz et al. (2022) and using our own implementation
in Burgers’ equation, we were unable to stably train Schrödinger’s equation using PIAT. Since Schrödinger’s equation is not
considered in Shekarpaz et al. (2022), we only show PIAT results for Burgers’ equation.

We solve the inner optimization problem using 5 PGD steps (Madry et al., 2017), and for ϵ = 0.05 and a step size of 1.25ϵ.
To improve convergence, we warm start PIAT training using a standard training solution after 6,000 L-BFGS iterations. The
results in Table 2 show that as expected PIAT improves both empirical and certified residual bounds.

Table 2: PIAT on Burgers’ equation: Monte Carlo sampled maximum values (106 samples in 0.21s) and upper bounds
computed using ∂-CROWN with Nb branchings for 1 initial conditions (t = 0, x ∈ D, Nb = 5k), 2 boundary conditions
(t ∈ [0, T], x = −1 ∨ x = 1, Nb = 5k), and 3 residual norm (t ∈ [0, T], x ∈ D, Nb = 125k), for a PINN trained using
PIAT from Shekarpaz et al. (2022).

MC - max ∂-CROWN - ub (time [s])

PIAT Burgers
(Shekarpaz et al., 2022)

1 |uθ(0, x)− u0(x)|2 7.40 · 10−6 8.18 · 10−6 (90.9)

2
|uθ(t,−1)|2 2.31 · 10−7 3.32 · 10−7 (49.4)
|uθ(t, 1)|2 8.41 · 10−8 1.39 · 10−7 (48.5)

3 |fθ(x, t)|2 3.60 · 10−3 2.39 · 10−2 (2.8× 105)

104 105

log(Nb)

100

101

102

lo
g
(|f

θ
|U

-
m

ax
D
′ |f

θ
|) Standard

PIAT

Figure 5: Certification Convergence: log-log plot
of the relative convergence of ∂-CROWN certifi-
cation for a standard trained PINN (in blue) and
PIAT (in orange).

Certification convergence in PIAT vs. standard training The
regularization provided by adversarial training often leads to verifica-
tion algorithms converging faster to tighter lower and upper bounds.
We investigate whether this is the case with ∂-CROWN’s greedy
branching strategy by comparing the relative convergence (i.e., the
deviation between the upper bound and the empirical maximum,
|fθ|U −maxD′ |fθ|) for the first 125k splits of PINNs trained in the
standard and PIAT cases. The results presented in Figure 5 show that
adversarial training leads to quicker convergence, requiring a lower
number of branches to reach the same error when compared to stan-
dard. This suggests that our method, while already efficient, would
benefit from smarter training strategies that lead to lower residual
errors.

D. Proofs of partial derivative computations

Within this section, we use ∂xj
i
f and ∂jf

(∂xi)j
interchangeably to refer to the j-th partial derivative of a function f : Rn → R

with respect to the i-component of its input, xi.

D.1. Lemma 1: computing ∂xi
uθ

Lemma 1 (Computing ∂xiuθ). For i ∈ {1, . . . , d0}, the partial derivative of uθ with respect to xi can be computed
recursively as ∂xiuθ = W(L)∂xiz

(L−1) for:

∂xi
z(k) = ∂z(k−1)z(k)∂xi

z(k−1), ∂xi
z(0) = ei,

for k ∈ {1, . . . , L− 1}, and where ∂z(k−1)z(k) = diag
[
σ′ (y(k))]W(k).

Proof. Let us now derive ∂xi
uθ(x) for a given i ∈ {1, ..., n0}. Starting backwards from the last layer and applying the

chain rule we obtain:

∂xi
uθ(x) =

∂y(L)

∂z(L−1)
· ∂z

(L−1)

∂z(L−2)
· ... · ∂z

(1)

∂x
· ∂x
∂xi

Given that ∂xi
x = ei and ∂y(L)

∂z(L−1) = W(L), all that’s left to compute to obtain the full expression is ∂z(k)

∂z(k−1) , k ∈
{L− 1, ..., 1}. Note that, for simplicity of the expressions, z(0) = x. For every element j ∈ {1, ..., dk} of z(k) denoted by
z
(k)
j , we have:

∂z
(k)
j

∂z(k−1)
= σ′

(
W

(k)
[j,:]z

(k−1) + b
(k)
j

)
W

(k)
[j,:]

where W
(k)
j,: denotes the j-th row of W(k), and b

(k)
j the j-th element of b. Thus, the final expression can be obtained by

stacking the columns of the previous expression to obtain the full Jacobian:

∂z(k)

∂z(k−1)
= diag

[
σ′

(
W(k)z(k−1) + b(k)

)]
·W(k)

This concludes the proof.

D.2. Lemma 2: computing ∂x2
i
uθ

Lemma 2 (Expression for ∂x2
i
uθ(x)). For i ∈ {1, . . . , d0}, the second partial derivative of uθ with respect to xi can be

computed recursively as ∂x2
i
uθ = W(L)∂x2

i
z(L−1) where:

∂x2
i
z(k) = ∂xiz(k−1)z(k)∂xiz

(k−1) + ∂z(k−1)z(k)∂x2
i
z(k−1),

and ∂x2
i
z(0) = 0, for k ∈ {1, . . . , L − 1}, with ∂xi

z(k−1) and ∂z(k−1)z(k) as per in Lemma 1, and ∂xiz(k−1)z(k) =

diag
[
σ′′ (y(k)) (W(k)∂xi

z(k−1)
)]

W(k).

Proof. Given the result obtained in Appendix D.1, let us now derive ∂x2
i
uθ(x) for a given i ∈ {1, ..., d0}. Starting backwards

from the last layer of ∂xi
uθ and applying the chain rule we obtain:

∂x2
i
uθ =

∂

∂xi

(
∂y(L)

∂z(L−1)
· ∂z

(L−1)

∂z(L−2)
· ... · ∂z

(1)

∂x
· ∂x
∂xi

)
= W(L)∂x2

i
z(L−1)

Now the same can be applied to ∂x2
i
z(L−1), and in general to ∂x2

i
z(k) to obtain:

∂x2
i
z(k) =

∂

∂xi

(
∂z(k)

∂z(k−1)
∂xi

z(k−1)

)
=

∂2z(k)

∂xi∂z(k−1)
∂xi

z(k−1) +
∂z(k)

∂z(k−1)
∂x2

i
z(k−1),

forming a recursion which can be taken until the first layer of ∂xiuθ, i.e.,:

∂x2
i
z(1) =

∂

∂xi

(
∂z(1)

∂x
· ei

)
=
∂2z(1)

∂xi∂x
· ei.

With the computation of ∂xi
uθ, both ∂xi

z(k−1) and ∂z(k)

∂z(k−1) are known. As such, the only missing pieces in the general recur-

sion is the computation of ∂2z(k)

∂xi∂z(k−1) . Recall from the previous section that ∂z(k)

∂z(k−1) = diag
[
σ′ (W(k)z(k−1) + b(k)

)]
W(k).

As such:

∂2z(k)

∂xi∂z(k−1)
=

∂

∂xi

(
diag

[
σ′

(
W(k)z(k−1) + b(k)

)]
W(k)

)
.

Following the element-wise reasoning from above, we have that:

∂2z
(k)
j

∂xi∂z(k−1)
= σ′′

(
W

(k)
j,: z

(k−1) + b
(k)
j

) ∂

∂xi

(
W

(k)
j,: z

(k−1) + b
(k)
j

)
W

(k)
j,:

= σ′′
(
W

(k)
j,: z

(k−1) + b
(k)
j

)(
W

(k)
j,:

∂z(k−1)

∂xi

)
W

(k)
j,:

Stacking as in the previous case, we obtain:

∂2z(k)

∂xi∂z(k−1)
= diag

[
σ′′

(
W(k)z(k−1) + b(k)

)(
W(k)∂xiz

(k−1)
)]

W(k),

completing the derivation of ∂x2
i
uθ(x).

D.3. Theorem 1: Formal Statement and Proof

Theorem 1 (∂-CROWN: linear lower and upper bounding ∂xi
uθ). For every j ∈ {1, . . . , dL} there exist two functions

∂xiu
U
θ,j and ∂xiu

L
θ,j such that, ∀x ∈ C it holds that ∂xiu

L
θ,j ≤ ∂xiuθ,j ≤ ∂xiu

U
θ,j , with:

∂xiu
U
θ,j = ϕ

(1),U
0,j,i +

d0∑
r=1

ϕ
(1),U
1,j,r x+ ϕ

(1),U
2,j,r

∂xi
uLθ,j = ϕ

(1),L
0,j,i +

d0∑
r=1

ϕ
(1),L
1,j,r x+ ϕ

(1),L
2,j,r

where for p ∈ {0, 1, 2}, ϕ(1),Up,j,r and ϕ(1),Lp,j,r are functions of W(k), y(k),L, y(k),U , A(k),L, A(k),U a(k),L, and a(k),U , and
can be computed using a recursive closed-form expression in O(L) time.

Proof: Assume that through the computation of the previous bounds on uθ, the pre-activation layer outputs of uθ, y(k), are
lower and upper bounded by linear functions defined as A(k),Lx+ a(k),L ≤ y(k) ≤ A(k),Ux+ a(k),U and y(k),L ≤ y(k) ≤
y(k),U for x ∈ C.

Take the upper and lower bound functions for ∂xi
uθ as ∂xi

uUθ and ∂xi
uLθ , respectively, and the upper and lower bound

functions for ∂xi
z(k) as ∂xi

z(k),U and ∂xi
z(k),L, respectively. For the sake of simplicity of notation, we define B(k),+ =

I
(
B(k) ≥ 0

)
⊙B(k) and B(k),− = I

(
B(k) < 0

)
⊙B(k).

Working backwards from ∂xi
uθ, we apply the same idea from CROWN (Zhang et al., 2018):

∂xi
uUθ = W(L),+∂xi

z(L−1),U +W(L),−∂xi
z(L−1),L

∂xiu
L
θ = W(L),+∂xiz

(L−1),L +W(L),−∂xiz
(L−1),U

(6)

We continue to apply this backwards propagation to ∂xiz
(L−1) to obtain ∂xiz

(L−1),U and ∂xiz
(L−1),L. Recall

that ∂xi
z(k) = ∂z(k−1)z(k)∂xi

z(k−1), that is, for j ∈ {1, . . . , dk} we have ∂xi
z
(k)
j = ∂z(k−1)z

(k)
j,: ∂xi

z(k−1) =∑dk−1

n=1 ∂z(k−1)z
(k)
j,n∂xiz

(k−1)
n .

We resolve the bilinear dependencies of each ∂xi
z
(k)
j by relaxing it using a convex combination of the upper and lower

bounds obtained by the McCormick envelopes of the product. Assuming that ∂z(k−1)z
(k),L
j,n ≤ ∂z(k−1)z

(k)
j,n ≤ ∂z(k−1)z

(k),U
j,n

and ∂xi
z
(k−1),L
n ≤ ∂xi

z
(k−1)
n ≤ ∂xi

z
(k−1),U
n , we have that:

∂xi
z
(k)
j ≤ ∂xi

z
(k),U
j =

dk−1∑
n=1

α
(k)
0,j,n∂xi

z(k−1)
n + α

(k)
1,j,n∂z(k−1)z

(k)
j,n + α

(k)
2,j,n

∂xi
z
(k)
j ≥ ∂xi

z
(k),L
j =

dk−1∑
n=1

β
(k)
0,j,n∂xi

z(k−1)
n + β

(k)
1,j,n∂z(k−1)z

(k)
j,n + β

(k)
2,j,n,

(7)

for:

α
(k)
0,j,n = η

(k)
j,n∂z(k−1)z

(k),U
j,n +

(
1− η

(k)
j,n

)
∂z(k−1)z

(k),L
j,n

α
(k)
1,j,n = η

(k)
j,n∂xi

z(k−1),L
n +

(
1− η

(k)
j,n

)
∂xi

z(k−1),U
n

α
(k)
2,j,n = −η(k)j,n∂z(k−1)z

(k),U
j,n ∂xi

z(k−1),L
n −

(
1− η

(k)
j,n

)
∂z(k−1)z

(k),L
j,n ∂xi

z(k−1),U
n

β
(k)
0,j,n = ζ

(k)
j,n∂z(k−1)z

(k),L
j,n +

(
1− ζ

(k)
j,n

)
∂z(k−1)z

(k),U
j,n

β
(k)
1,j,n = ζ

(k)
j,n∂xi

z(k−1),L
n +

(
1− ζ

(k)
j,n

)
∂xi

z(k−1),U
n

β
(k)
2,j,n = −ζ(k)j,n∂z(k−1)z

(k),L
j,n ∂xi

z(k−1),L
n −

(
1− ζ

(k)
j,n

)
∂z(k−1)z

(k),U
j,n ∂xi

z(k−1),U
n ,

where η(k)j,n and ζ(k)j,n are convex coefficients that can be set as hyperparameters, or optimized for as in α-CROWN (Xu et al.,
2020b).

To continue the backward propagation, we now need to bound the components of ∂z(k−1)z(k). Recall from Lemma 1 that
∂z(k−1)z(k) = diag

[
σ′ (y(k−1)

)]
W(k), and ∂z(k−1)z

(k)
j,: = σ′

(
y
(k−1)
j

)
W

(k)
j,: for j ∈ {1, . . . , dk}.

Since y(k),Lj ≤ y
(k)
j ≤ y

(k),U
j , we can obtain a linear upper and lower bound relaxation for σ′

(
y
(k)
j

)
, such that

γ
(k),L
j

(
y
(k)
j + δ

(k),L
j

)
≤ σ′

(
y
(k)
j

)
≤ γ

(k),U
j

(
y
(k)
j + δ

(k),U
j

)
. With this, we can proceed to bound ∂z(k−1)z

(k)
j,: as:

∂z(k−1)z
(k)
j,: ≤

(
γ
(k),U
j W

(k),+
j,: + γ

(k),L
j W

(k),−
j,:

)
︸ ︷︷ ︸

ι
(k)
0,j,:

y
(k)
j +

(
γ
(k),U
j δ

(k),U
j W

(k),+
j,: + γ

(k),L
j δ

(k),L
j W

(k),−
j,:

)
︸ ︷︷ ︸

ι
(k)
1,j,:

∂z(k−1)z
(k)
j,: ≥

(
γ
(k),L
j W

(k),+
j,: + γ

(k),U
j W

(k),−
j,:

)
︸ ︷︷ ︸

λ
(k)
0,j,:

y
(k)
j +

(
γ
(k),L
j δ

(k),L
j W

(k),+
j,: + γ

(k),U
j δ

(k),U
j W

(k),−
j,:

)
︸ ︷︷ ︸

λ
(k)
1,j,:

(8)

At this point, one could continue the back-substitution process using the bounds from CROWN (Zhang et al., 2018).
However, for the sake of efficiency, we use instead the pre-computed inequalities from propagating bounds through uθ:
A(k),Ux+ a(k),U ≤ y(k) ≤ A(k),Lx+ a(k),L. Substituting this in Equation 8, we obtain:

∂z(k−1)z
(k),U
j,: =

(
ι
(k),+
0,j,: A

(k),U
j,: + ι

(k),−
0,j,: A

(k),L
j,:

)
︸ ︷︷ ︸

ι
(k)
2,j,:

x+ ι
(k),+
0,j,: a

(k),U
j + ι

(k),−
0,j,: a

(k),L
j + ι

(k)
1,j,:︸ ︷︷ ︸

ι
(k)
3,j,:

∂z(k−1)z
(k),L
j,: =

(
λ
(k),+
0,j,: A

(k),L
j,: + λ

(k),−
0,j,: A

(k),U
j,:

)
︸ ︷︷ ︸

λ
(k)
2,j,:

x+ λ
(k),+
0,j,: a

(k),L
j + λ

(k),−
0,j,: a

(k),U
j + λ

(k)
1,j,:︸ ︷︷ ︸

λ
(k)
3,j,:

(9)

In practice, we can use Equation 9 to compute the required ∂z(k−1)z
(k),L
j,n and ∂z(k−1)z

(k),U
j,n for the McCormick relaxation

that leads to Equation 7. By back-substituting the result of Equation 9 in Equation 7, we obtain an expression for the upper
and lower bounds on ∂xi

z
(k)
j that only depends on ∂xi

z(k−1) and x:

∂xi
z
(k),U
j =

dk−1∑
n=1

α
(k)
0,j,n∂xi

z(k−1)
n + α

(k)
3,j,nx+ α

(k)
4,j,n

∂xi
z
(k),L
j =

dk−1∑
n=1

β
(k)
0,j,n∂xi

z(k−1)
n + β

(k)
3,j,nx+ β

(k)
4,j,n,

(10)

where:

α
(k)
3,j,n = α

(k),+
1,j,n ι

(k)
2,j,n + α

(k),−
1,j,n λ

(k)
2,j,n, α

(k)
4,j,n = α

(k),+
1,j,n ι

(k)
3,j,n + α

(k),−
1,j,n λ

(k)
3,j,n + α

(k)
2,j,n

β
(k)
3,j,n = β

(k),+
1,j,n λ

(k)
2,j,n + β

(k),−
1,j,n ι

(k)
2,j,n, β

(k)
4,j,n = β

(k),+
1,j,n λ

(k)
3,j,n + β

(k),−
1,j,n ι

(k)
3,j,n + α

(k)
2,j,n

Given Equation 10, we now have a recursive expression for each of the blocks that compose the computation of ∂xiuθ,
which allows us to obtain a closed form expression for ∂xiu

U
θ and ∂xiu

L
θ by applying recursive back-substitution starting

with Equation 6. Let us begin by performing back-substitution to the result in Equation 10 for layer L− 1:

∂xiz
(L−1),U
j =

dL−2∑
n=1

α
(L−1)
0,j,n ∂xiz

(L−2)
n + α

(L−1)
3,j,n x+ α

(L−1)
4,j,n (11)

=

dL−2∑
n=1

α
(L−1)
0,j,n

dL−3∑
r=1

µ
(L−2)
0,n,r ∂xi

z(L−3)
r + µ

(L−2)
3,n,r x+ µ

(L−2)
4,n,r

+ α
(L−1)
3,j,n x+ α

(L−1)
4,j,n (12)

=

dL−2∑
n=1

α
(L−1)
0,j,n

dL−3∑
r=1

µ
(L−2)
0,n,r ∂xi

z(L−3)
r

+ α
(L−1)
0,j,n

dL−3∑
r=1

µ
(L−2)
3,n,r x+ µ

(L−2)
4,n,r

+ α
(L−1)
3,j,n x+ α

(L−1)
4,j,n

(13)

=

dL−3∑
r=1

dL−2∑
n=1

α
(L−1)
0,j,n µ

(L−2)
0,n,r

 ∂xi
z(L−3)
r + (14)

+

dL−2∑
n=1

α
(L−1)
0,j,n

(
µ
(L−2)
3,n,r x+ µ

(L−2)
4,n,r

)
+

1

dL−3

(
α
(L−1)
3,j,n x+ α

(L−1)
4,j,n

) (15)

=

dL−3∑
r=1

ρ
(L−2)
0,j,r ∂xi

z(L−3)
r +

dL−2∑
n=1

α
(L−1)
0,j,n µ

(L−2)
3,n,r +

1

dL−3
α
(L−1)
3,j,n

x+ (16)

+

dL−1∑
n=1

α
(L−1)
0,j,n µ

(L−2)
4,n,r +

1

dL−3
α
(L−1)
4,j,n

 (17)

=

dL−3∑
r=1

ρ
(L−2)
0,j,r ∂xi

z(L−3)
r + ρ

(L−2)
1,j,r x+ ρ

(L−2)
2,j,r , (18)

where:

ρ
(L−2)
0,j,r =

dL−2∑
n=1

α
(L−1)
0,j,n µ

(L−2)
0,n,r

ρ
(L−2)
1,j,r =

dL−2∑
n=1

α
(L−1)
0,j,n µ

(L−2)
3,n,r +

1

dL−2
α
(L−1)
3,j,n

ρ
(L−2)
2,j,r =

dL−2∑
n=1

α
(L−1)
0,j,n µ

(L−2)
4,n,r +

1

dL−2
α
(L−1)
4,j,n ,

and:

µ(L−2)
p,n,: =

{
α
(L−2)
p,n,: if α(L−1)

0,j,n ≥ 0

β
(L−2)
p,n,: if α(L−1)

0,j,n < 0
, p ∈ {0, 3, 4}

As in CROWN (Zhang et al., 2018), given we have put Equation 18 in the same form as Equation 11, we can now apply this
argument recursively using the ρ(k) and µ(k) coefficients to obtain:

∂xiz
(L−1),U
j = ρ

(1)
0,j,i +

d0∑
r=1

ρ
(1)
1,j,rx+ ρ

(1)
2,j,r,

where:

ρ
(k−1)
0,j,r =

{
α
(k)
0,j,r if k = L∑dk−1

n=1 ρ
(k)
0,j,nµ

(k−1)
0,n,r if k ∈ {2, . . . , L− 1}

ρ
(k−1)
1,j,r =

{
α
(k)
3,j,r if k = L∑dk−1

n=1 ρ
(k)
0,j,nµ

(k−1)
3,n,r + 1

dk−2
ρ
(k)
1,j,n if k ∈ {2, . . . , L− 1}

ρ
(k−1)
2,j,r =

{
α
(k)
4,j,r if k = L∑dk−1

n=1 ρ
(k)
0,j,nµ

(k−1)
4,n,r + 1

dk−2
ρ
(k)
2,j,n if k ∈ {2, . . . , L− 1} ,

and:

µ(k−1)
p,n,: =

{
α
(k−1)
p,n,: if ρ(k)0,j,n ≥ 0

β
(k−1)
p,n,: if ρ(k)0,j,n < 0

, p ∈ {0, 3, 4}

And following the same recursive argument:

∂xi
z
(L−1),L
j = τ

(1)
0,j,i +

d0∑
r=1

τ
(1)
1,j,rx+ τ

(1)
2,j,r,

where:

τ
(k−1)
0,j,r =

{
β
(k)
0,j,r if k = L∑dk−1

n=1 τ
(k)
0,j,nω

(k−1)
0,n,r if k ∈ {2, . . . , L− 1}

τ
(k−1)
1,j,r =

{
β
(k)
3,j,r if k = L∑dk−1

n=1 τ
(k)
0,j,nω

(k−1)
3,n,r + 1

dk−2
τ
(k)
1,j,n if k ∈ {2, . . . , L− 1}

τ
(k−1)
2,j,r =

{
β
(k)
4,j,r if k = L∑dk−1

n=1 τ
(k)
0,j,nω

(k−1)
4,n,r + 1

dk−2
τ
(k)
2,j,n if k ∈ {2, . . . , L− 1} ,

and:

ω(k−1)
p,n,: =

{
β
(k−1)
p,n,: if τ (k)0,j,n ≥ 0

α
(k−1)
p,n,: if τ (k)0,j,n < 0

, p ∈ {0, 3, 4}

With these expressions, we can compute the required ∂xi
z
(k−1),L
n and ∂xi

z
(k−1),U
n which we assumed to be known to derive

Equation 7.

Finally, by back-propagating the bounds starting from Equation 6, we get:

∂xi
uUθ,j =

dL−1∑
n=1

W
(L),+
j,n

dL−2∑
r=1

α
(L−1)
0,n,r ∂xi

z
(L−2)
[r] + α

(L−1)
3,n,r x+ α

(L−1)
4,n,r

+

+W
(L),−
j,n

dL−2∑
r=1

β
(L−1)
0,n,r ∂xi

z
(L−2)
[r] + β

(L−1)
3,n,r x+ β

(L−1)
4,n,r


=

dL−2∑
r=1

dL−1∑
n=1

W
(L),+
j,n α

(L−1)
0,n,r +W

(L),−
j,n β

(L−1)
0,n,r

 ∂xi
z
(L−2)
[r] +

+

dL−1∑
n=1

W
(L),+
j,n α

(L−1)
3,n,r +W

(L),−
j,n β

(L−1)
3,n,r

x+

dL−1∑
n=1

W
(L),+
j,n α

(L−1)
4,n,r +W

(L),−
j,n β

(L−1)
4,n,r


=

dL−2∑
r=1

ϕ
(L−1),U
0,j,r ∂xi

z(L−2),U
n + ϕ

(L−1),U
1,j,r x+ ϕ

(L−1),U
2,j,r ,

where:

ϕ
(L−1),U
0,j,r =

dL−1∑
n=1

W
(L),+
j,n α

(L−1)
0,n,r +W

(L),−
j,n β

(L−1)
0,n,r

ϕ
(L−1),U
1,j,r =

dL−1∑
n=1

W
(L),+
j,n α

(L−1)
3,n,r +W

(L),−
j,n β

(L−1)
3,n,r

ϕ
(L−1),U
2,j,r =

dL−1∑
n=1

W
(L),+
j,n α

(L−1)
4,n,r +W

(L),−
j,n β

(L−1)
4,n,r .

From this, using the same back-propagation logic as in the derivations of ∂xi
z
(k−1),L
n and ∂xi

z
(k−1),U
n , we can obtain:

∂xiu
U
θ,j = ϕ

(1),U
0,j,i +

d0∑
r=1

ϕ
(1),U
1,j,r x+ ϕ

(1),U
2,j,r , (19)

where:

ϕ
(k−1),U
0,j,r =


∑dk−1

n=1 W
(k),+
j,n α

(k−1)
0,n,r +W

(k),−
j,n β

(k−1)
0,n,r if k = L∑dk−1

n=1 ϕ
(k),U
0,j,n υ

(k−1)
0,n,r if k ∈ {2, . . . , L− 1}

ϕ
(k−1),U
1,j,r =


∑dk−1

n=1 W
(k),+
j,n α

(k−1)
3,n,r +W

(k),−
j,n β

(k−1)
3,n,r if k = L∑dk−1

n=1 ϕ
(k),U
0,j,n υ

(k−1)
3,n,r + 1

dk−2
ϕ
(k),U
1,j,n if k ∈ {2, . . . , L− 1}

ϕ
(k−1),U
2,j,r =


∑dk−1

n=1 W
(k),+
j,n α

(k−1)
4,n,r +W

(k),−
j,n β

(k−1)
4,n,r if k = L∑dk−1

n=1 ϕ
(k),U
0,j,n υ

(k−1)
4,n,r + 1

dk−2
ϕ
(k),U
2,j,n if k ∈ {2, . . . , L− 1}

,

and:

υ(k−1)
p,n,: =

{
α
(k−1)
p,n,: if ϕ(k),U0,j,n ≥ 0

β
(k−1)
p,n,: if ϕ(k),U0,j,n < 0

, p ∈ {0, 3, 4}

And similarly for the lower bound:

∂xi
uLθ,j = ϕ

(1),L
0,j,i +

d0∑
r=1

ϕ
(1),L
1,j,r x+ ϕ

(1),L
2,j,r , (20)

where:

ϕ
(k−1),L
0,j,r =


∑dk−1

n=1 W
(k),+
j,n β

(k−1)
0,n,r +W

(k),−
j,n α

(k−1)
0,n,r if k = L∑dk−1

n=1 ϕ
(k),L
0,j,n χ

(k−1)
0,n,r if k ∈ {2, . . . , L− 1}

ϕ
(k−1),L
1,j,r =


∑dk−1

n=1 W
(k),+
j,n β

(k−1)
3,n,r +W

(k),−
j,n α

(k−1)
3,n,r if k = L∑dk−1

n=1 ϕ
(k),L
0,j,n χ

(k−1)
3,n,r + 1

dk−2
ϕ
(k),L
1,j,n if k ∈ {2, . . . , L− 1}

ϕ
(k−1),L
2,j,r =


∑dk−1

n=1 W
(k),+
j,n β

(k−1)
4,n,r +W

(k),−
j,n α

(k−1)
4,n,r if k = L∑dk−1

n=1 ϕ
(k),L
0,j,n χ

(k−1)
4,n,r + 1

dk−2
ϕ
(k),L
2,j,n if k ∈ {2, . . . , L− 1}

,

and:

χ(k−1)
p,n,: =

{
β
(k−1)
p,n,: if ϕ(k),L0,j,n ≥ 0

α
(k−1)
p,n,: if ϕ(k),L0,j,n < 0

, p ∈ {0, 3, 4}.

D.4. Theorem 2 Formal Statement and Proof

Theorem 2 (∂-CROWN: linear lower and upper bounding ∂x2
i
uθ). Assume that through a previous computation of bounds on

∂xi
uθ, the components of that network required for ∂x2

i
uθ, i.e., ∂xi

z(k−1) and ∂z(k−1)z(k), are lower and upper bounded by
linear functions. In particular, C(k),Lx+ c(k),L ≤ ∂xi

z(k−1) ≤ C(k),Ux+ c(k),U and D(k),Lx+ d(k),L ≤ ∂z(k−1)z(k) ≤
D(k),Ux+ d(k),U .

For every j ∈ {1, . . . , dL} there exist two functions ∂x2
i
uUθ,j and ∂x2

i
uLθ,j such that, ∀x ∈ C it holds that ∂x2

i
uLθ,j ≤

∂x2
i
uθ,j ≤ ∂x2

i
uUθ,j . These functions can be written as:

∂x2
i
uUθ,j = ψ

(1),U
0,j,i +

d0∑
r=1

ψ
(1),U
1,j,r x+ ψ

(1),U
2,j,r

∂x2
i
uLθ,j = ψ

(1),L
0,j,i +

d0∑
r=1

ψ
(1),L
1,j,r x+ ψ

(1),L
2,j,r

where for p ∈ {0, 1, 2}, ψ(1),U
p,j,r and ψ(1),L

p,j,r are functions of W(k), y(k),L, y(k),U , A(k),L, A(k),U a(k),L, a(k),U , C(k),L,
C(k),U c(k),L, c(k),U , D(k),L, D(k),U d(k),L, and d(k),U , and can be computed using a recursive closed-form expression in
O(L) time.

Proof: Assume that through the computation of the previous bounds on uθ, the pre-activation layer outputs of uθ, y(k), are
lower and upper bounded by linear functions defined as A(k),Lx+ a(k),L ≤ y(k) ≤ A(k),Ux+ a(k),U and y(k),L ≤ y(k) ≤
y(k),U for x ∈ C. Additionally, we consider also that through a previous computation of bounds on ∂xi

uθ, the components
of that network required for ∂x2

i
uθ, i.e., ∂xi

z(k−1) and ∂z(k−1)z(k) are lower and upper bounded by linear functions. In
particular, C(k),Lx+ c(k),L ≤ ∂xiz

(k−1) ≤ C(k),Ux+ c(k),U and D(k),Lx+ d(k),L ≤ ∂z(k−1)z(k) ≤ D(k),Ux+ d(k),U .

Take the upper and lower bound functions for ∂x2
i
uθ as ∂x2

i
uUθ and ∂x2

i
uLθ , respectively, and the upper and lower bound

functions for ∂x2
i
z(k) as ∂x2

i
z(k),U and ∂x2

i
z(k),L, respectively. For the sake of simplicity of notation, we define B(k),+ =

I
(
B(k) ≥ 0

)
⊙B(k) and B(k),− = I

(
B(k) < 0

)
⊙B(k).

Note that, unless explicitly mentioned otherwise, the non-network variables (denoted by Greek letters, as well as
bold, capital and lowercase letters) used here have no relation to the ones from Appendix D.3.

Starting backwards from ∂x2
i
z(k), we have that:

∂x2
i
z
(k)
j =

dk−1∑
n=1

∂xiz(k−1)z
(k)
j,n∂xiz

(k−1)
n + ∂z(k−1)z

(k)
j,n∂x2

i
z(k−1)
n .

Given the transitive property of the sum operator, we can bound ∂x2
i
z
(k)
j by using a McCormick envelope around each

of the multiplications. Assuming that for all j ∈ {1 . . . , dk}, n ∈ {1 . . . , dk−1}: ∂xiz(k−1)z
(k),L
j,n ≤ ∂xiz(k−1)z

(k)
j,n ≤

∂xiz(k−1)z
(k),U
j,n , ∂xi

z
(k−1),L
n ≤ ∂xi

z
(k−1)
n ≤ ∂xi

z
(k−1),U
n , ∂z(k−1)z

(k)
j,n ≤ ∂z(k−1)z

(k)
j,n ≤ ∂z(k−1)z

(k)
j,n , and ∂x2

i
z
(k−1),L
n ≤

∂x2
i
z
(k−1)
n ≤ ∂x2

i
z
(k−1),U
n , we obtain:

∂x2
i
z
(k)
j ≤ ∂x2

i
z
(k),U
j =

dk−1∑
n=1

α
(k)
0,j,n∂xiz

(k−1)
n + α

(k)
1,j,n∂xiz

(k−1)z
(k)
j,n + α

(k)
2,j,n∂x2

i
z(k−1)
n + α

(k)
3,j,n∂z(k−1)z

(k)
j,n + α

(k)
4,j,n

∂x2
i
z
(k)
j ≥ ∂x2

i
z
(k),L
j =

dk−1∑
n=1

β
(k)
0,j,n∂xiz

(k−1)
n + β

(k)
1,j,n∂xiz

(k−1)z
(k)
j,n + β

(k)
2,j,n∂x2

i
z(k−1)
n + β

(k)
3,j,n∂z(k−1)z

(k)
j,n + β

(k)
4,j,n

(21)

for:

α
(k)
0,j,n =η

(k)
j,n∂xiz

(k−1)z
(k),U
j,n +

(
1− η

(k)
j,n

)
∂xiz

(k−1)z
(k),L
j,n α

(k)
1,j,n = η

(k)
j,n∂xiz

(k−1),L
n +

(
1− η

(k)
j,n

)
∂xiz

(k−1),U
n

α
(k)
2,j,n =γ

(k)
j,n∂z(k−1)z

(k),U
j,n +

(
1− γ

(k)
j,n

)
∂z(k−1)z

(k),L
j,n α

(k)
3,j,n = γ

(k)
j,n∂x2

i
z(k−1),L
n +

(
1− γ

(k)
j,n

)
∂x2

i
z(k−1),U
n

α
(k)
4,j,n =− η

(k)
j,n∂xiz

(k−1)z
(k),U
j,n ∂xiz

(k−1),L
n −

(
1− η

(k)
j,n

)
∂xiz

(k−1)z
(k),L
j,n ∂xiz

(k−1),U
n +

− γ
(k)
j,n∂z(k−1)z

(k),U
j,n ∂xixiz

(k−1),L
n −

(
1− γ

(k)
j,n

)
∂z(k−1)z

(k),L
j,n ∂xixiz

(k−1),U
n

β
(k)
0,j,n =ζ

(k)
j,n∂xiz

(k−1)z
(k),L
j,n +

(
1− ζ

(k)
j,n

)
∂xiz

(k−1)z
(k),U
j,n β

(k)
1,j,n = ζ

(k)
j,n∂xiz

(k−1),L
n +

(
1− ζ

(k)
j,n

)
∂xiz

(k−1),U
n

β
(k)
2,j,n =δ

(k)
j,n∂z(k−1)z

(k),L
j,n +

(
1− δ

(k)
j,n

)
∂z(k−1)z

(k),U
j,n β

(k)
3,j,n = δ

(k)
j,n∂x2

i
z(k−1),L
n +

(
1− δ

(k)
j,n

)
∂x2

i
z(k−1),U
n

β
(k)
4,j,n =− ζ

(k)
j,n∂xiz

(k−1)z
(k),L
j,n ∂xiz

(k−1),L
n −

(
1− ζ

(k)
j,n

)
∂xiz

(k−1)z
(k),U
j,n ∂xiz

(k−1),U
n +

− δ
(k)
j,n∂z(k−1)z

(k),L
j,n ∂x2

i
z(k−1),L
n −

(
1− δ

(k)
j,n

)
∂z(k−1)z

(k),U
j,n ∂x2

i
z(k−1),U
n ,

where η(k)j,n , γ(k)j,n , ζ(k)j,n and δ(k)j,n are convex coefficients that can be set as hyperparameters, or optimized for as in α-CROWN
(Xu et al., 2020b).

For the next step of the back-propagation process, we now need to bound ∂xi
z
(k−1)
n , ∂xiz(k−1)z

(k)
j,n , and ∂z(k−1)z

(k)
j,n , so as to

eventually be able to write ∂x2
i
z
(k)
j as a function of simply ∂x2

i
z
(k−1)
n and x. As per our assumptions at the beginning of this

section, for the sake of computational efficiency we take ∂xiz
(k−1)
n and ∂z(k−1)z

(k)
j,n from the computation of the bounds of

∂xi
uθ,j , and thus assume we have a linear upper and lower bound function of x. This leaves us with ∂xiz(k−1)z

(k)
j,n to bound

as a linear function of x.

Note that, as per Lemma 2, ∂xiz(k−1)z
(k)
j,n = σ′′

(
y
(k)
j

)(
W

(k)
j,: ∂xi

z(k−1)
)
W

(k)
j,n. Since

(
W

(k)
j,: ∂xi

z(k−1)
)

=∑dk−1

n=1 W
(k)
j,n∂xiz

(k−1)
n , and C

(k),U
n,: x + c

(k),U
n ≤ ∂xiz

(k−1)
n ≤ C

(k),L
n,: x + c

(k),L
n (from the assumptions above), we

can write:

W
(k)
j,: ∂xi

z(k−1) ≤

dk−1∑
n=1

W
(k),+
j,n C(k),U

n,: +W
(k),−
j,n C(k),L

n,:


︸ ︷︷ ︸

E
(k),U
j

x+

dk−1∑
n=1

W
(k),+
j,n c(k),U +W

(k),−
j,n c(k),L


︸ ︷︷ ︸

e
(k),U
j

W
(k)
j,n∂xi

z(k−1) ≥

dk−1∑
n=1

W
(k),+
j,n C(k),L

n,: +W
(k),−
j,n C(k),U

n,:


︸ ︷︷ ︸

E
(k),L
j

x+

dk−1∑
n=1

W
(k),+
j,n c(k),Ln +W

(k),−
j,n c(k),Un


︸ ︷︷ ︸

e
(k),L
j

.

We define θ(k),Uj = maxx∈C E
(k),U
j x + e

(k),U
j and θ

(k),L
j = minx∈C E

(k),L
j x + e

(k),L
j . As with the first derivative

case, since y(k),Lj ≤ y
(k)
j ≤ y

(k),U
j , we can obtain a linear upper and lower bound relaxation for σ′′

(
y
(k)
j

)
, such that

λ
(k),L
j

(
y
(k)
j + µ

(k),L
j

)
≤ σ′′

(
y
(k)
j

)
≤ λ

(k),U
j

(
y
(k)
j + µ

(k),U
j

)
, as well as the values ι(k),Lj ≤ σ′′

(
y
(k)
j

)
≤ ι

(k),U
j . By

considering the assumption that A(k),U
j,: x+ a

(k),U
j ≤ y(k) ≤ A

(k),L
j,: x+ a

(k),L
j , we can obtain:

σ′′
(
y
(k)
j

)
≤

(
λ
(k),U,+
j A

(k),U
j,: + λ

(k),U,−
j A

(k),L
j,:

)
︸ ︷︷ ︸

H
(k),U
j

x+
(
λ
(k),U,+
j a

(k),U
j + λ

(k),U,−
j a

(k),L
j + λ

(k),U
j µ

(k),U
j

)
︸ ︷︷ ︸

h
(k),U
j

σ′′
(
y
(k)
j

)
≥

(
λ
(k),L,+
j A

(k),L
j,: + λ

(k),L,−
j A

(k),U
j,:

)
︸ ︷︷ ︸

H
(k),L
j

x+
(
λ
(k),L,+
j a

(k),L
j + λ

(k),L,−
j a

(k),U
j + λ

(k),L
j µ

(k),L
j

)
︸ ︷︷ ︸

h
(k),L
j

.

This allows us to relax σ′′
(
y
(k)
j

)(
W

(k)
j,: ∂xiz

(k−1)
)

using McCormick envelopes:

σ′′
(
y
(k)
j

)(
W

(k)
j,: ∂xi

z(k−1)
)
≤ ν

(k),U
0,j

(
W

(k)
j,: ∂xi

z(k−1)
)
+ ν

(k),U
1,j σ′′

(
y
(k)
j

)
+ ν

(k),U
2,j

σ′′
(
y
(k)
j

)(
W

(k)
j,: ∂xi

z(k−1)
)
≥ ν

(k),L
0,j

(
W

(k)
j,: ∂xi

z(k−1)
)
+ ν

(k),L
1,j σ′′

(
y
(k)
j

)
+ ν

(k),L
2,j ,

for:

ν
(k),U
0,j = ρ

(k)
j ι

(k),U
j +

(
1− ρ

(k)
j

)
ι
(k),L
j ν

(k),U
1,j,n = ρ

(k)
j θ

(k),L
j +

(
1− ρ

(k)
j

)
ι
(k),U
j

ν
(k),U
2,j = −ρ(k)j ι

(k),U
j θ

(k),L
j −

(
1− ρ

(k)
j

)
ι
(k),L
j θ

(k),U
j

ν
(k),L
0,j = τ

(k)
j ι

(k),L
j +

(
1− τ

(k)
j

)
ι
(k),U
j ν

(k),L
1,j = τ

(k)
j θ

(k),L
j +

(
1− τ

(k)
j

)
θ
(k),U
j

ν
(k),L
2,j = −τ (k)j ι

(k),L
j θ

(k),L
j −

(
1− τ

(k)
j

)
ι
(k),U
j θ

(k),U
j ,

where ρ(k)j and τ (k)j are convex coefficients that can be set as hyperparameters, or optimized for as in α-CROWN (Xu et al.,

2020b). By replacing this multiplication in the expression from Lemma 2, we bound ∂xiz(k−1)z
(k)
j,n as:

∂xiz(k−1)z
(k)
j,n ≤ υ

(k),U
0,j,n

(
W

(k)
j,: ∂xi

z(k−1)
)
+ υ

(k),U
1,j,n σ

′′
(
y
(k)
j

)
+ υ

(k),U
2,j

∂xiz(k−1)z
(k)
j,n ≥ υ

(k),L
0,j,n

(
W

(k)
j,: ∂xi

z(k−1)
)
+ υ

(k),L
1,j,n σ

′′
(
y
(k)
j

)
+ υ

(k),L
2,j ,

for:

υ
(k),U
i,j,n = ν

(k),U
i,j W

(k),+
j,n + ν

(k),L
i,j W

(k),−
j,n , υ

(k),L
i,j,n = ν

(k),L
i,j W

(k),+
j,n + ν

(k),U
i,j W

(k),−
j,n i ∈ {0, 1, 2}.

By replacing the lower and upper bounds for σ′′(y
(k)
j) and

(
W

(k)
j,: ∂xi

z(k−1)
)

in the previous inequality, we obtain the
expression:

∂xiz(k−1)z
(k)
j,n ≤ M

(k),U
j,n x+m

(k),U
j,n

∂xiz(k−1)z
(k)
j,n ≥ M

(k),L
j,n x+m

(k),L
j,n ,

for:

M
(k),U
j,n =υ

(k),U,+
0,j,n E

(k),U
j + υ

(k),U,−
0,j,n E

(k),L
j + υ

(k),U,+
1,j,n H

(k),U
j + υ

(k),U,−
1,j,n H

(k),L
j

m
(k),U
j,n =υ

(k),U,+
0,j,n e

(k),U
j + υ

(k),U,−
0,j,n e

(k),L
j + υ

(k),U,+
1,j,n h

(k),U
j + υ

(k),U,−
1,j,n h

(k),L
j + υ

(k),U
2,j,n

M
(k),L
j,n =υ

(k),L,+
0,j,n E

(k),L
j + υ

(k),L,−
0,j,n E

(k),U
j + υ

(k),L,+
1,j,n H

(k),L
j + υ

(k),L,−
1,j,n H

(k),U
j

m
(k),L
j,n =υ

(k),L,+
0,j,n e

(k),L
j + υ

(k),L,−
0,j,n e

(k),U
j + υ

(k),L,+
1,j,n h

(k),L
j + υ

(k),L,−
1,j,n h

(k),U
j + υ

(k),L
2,j,n .

Finally in the derivation of ∂x2
i
z
(k)
j as a function of x and ∂x2

i
z(k−1), we just have to replace all the quantities in Equation

21 (recalling from the assumptions that C(k),Ux + c(k),U ≤ ∂xi
z(k−1) ≤ C(k),Lx + c(k),L and D(k),Ux + d(k),U ≤

∂z(k−1)z(k) ≤ D(k),Lx+ d(k),L) to obtain:

∂x2
i
z
(k)
j ≤ ∂x2

i
z
(k),U
j =

dk−1∑
n=1

α
(k)
2,j,n∂x2

i
z(k−1)
n + α

(k)
5,j,nx+ α

(k)
6,j,n

∂x2
i
z
(k)
j ≥ ∂x2

i
z
(k),L
j =

dk−1∑
n=1

β
(k)
2,j,n∂x2

i
z(k−1)
n + β

(k)
5,j,nx+ β

(k)
6,j,n,

(22)

where:

α
(k)
5,j,n = α

(k),+
0,j,n C(k),U

n + α
(k),−
0,j,n C(k),L

n + α
(k),+
1,j,n M

(k),U
j,n + α

(k),−
1,j,n M

(k),L
j,n + α

(k),+
3,j,n D

(k),U
j,n + α

(k),−
3,j,n D

(k),L
j,n

α
(k)
6,j,n = α

(k),+
0,j,n c(k),Un + α

(k),−
0,j,n c(k),Ln + α

(k),+
1,j,n m

(k),U
j,n + α

(k),−
1,j,n m

(k),L
j,n + α

(k),+
3,j,n d

(k),U
j,n + α

(k),−
3,j,n d

(k),L
j,n + α

(k)
4,j,n

β
(k)
5,j,n = β

(k),+
0,j,n C(k),L

n + β
(k),−
0,j,n C(k),U

n + β
(k),+
1,j,n M

(k),L
j,n + β

(k),−
1,j,n M

(k),U
j,n + β

(k),+
3,j,n D

(k),L
j,n + β

(k),−
3,j,n D

(k),U
j,n

β
(k)
6,j,n = β

(k),+
0,j,n c(k),Ln + β

(k),−
0,j,n c(k),Un + β

(k),+
1,j,n m

(k),L
j,n + β

(k),−
1,j,n m

(k),U
j,n + β

(k),+
3,j,n d

(k),L
j,n + β

(k),−
3,j,n d

(k),U
j,n + β

(k)
4,j,n

This forms a recursion of exactly the same form as Equation 10 from Appendix D.3, where only the coefficients of ∂x2
i
z
(k−1)
n

and x are different (α(k)
0,j,n in this case is referred by α(k)

2,j,n, α(k)
3,j,n by α(k)

5,j,n, and α(k)
4,j,n by α(k)

6,j,n, and similarly for the β
values). This yields:

∂xixi
z
(L−1),U
j = ρ

(1),U
0,j,i +

d0∑
r=1

ρ
(1),U
1,j,r x+ ρ

(1),U
2,j,r ,

where:

ρ
(k−1),U
0,j,r =

{
α
(k)
2,n,r if k = L∑dk−1

n=1 ρ
(k),U
0,j,n µ

(k−1),U
2,n,r if k ∈ {2, . . . , L− 1}

ρ
(k−1),U
1,j,r =

{
α
(k)
5,n,r if k = L∑dk−1

n=1 ρ
(k),U
0,j,n µ

(k−1),U
5,n,r + 1

dk−2
ρ
(k),U
1,j,n if k ∈ {2, . . . , L− 1}

ρ
(k−1),U
2,j,r =

{
α
(k)
6,n,r if k = L∑dk−1

n=1 ρ
(k),U
0,j,n µ

(k−1),U
6,n,r + 1

dk−2
ρ
(k),U
2,j,n if k ∈ {2, . . . , L− 1} ,

and:

µ(k−1),U
p,n,: =

{
α
(k−1)
p,n,: if ρ(k),U0,j,n ≥ 0

β
(k−1)
p,n,: if ρ(k),U0,j,n < 0

, p ∈ {2, 5, 6}.

And following the same argument:

∂xi
z
(L−1),L
j = ρ

(1),L
0,j,i +

d0∑
r=1

ρ
(1),L
1,j,r x+ ρ

(1),L
2,j,r ,

where:

ρ
(k−1),L
0,j,r =

{
β
(k)
2,n,r if k = L∑dk−1

n=1 ρ
(k),L
0,j,n µ

(k−1),L
2,n,r if k ∈ {2, . . . , L− 1}

ρ
(k−1),L
1,j,r =

{
β
(k)
5,n,r if k = L∑dk−1

n=1 ρ
(k),L
0,j,n µ

(k−1),L
5,n,r + 1

dk−2
ρ
(k),L
1,j,n if k ∈ {2, . . . , L− 1}

ρ
(k−1),L
2,j,r =

{
β
(k)
6,n,r if k = L∑dk−1

n=1 ρ
(k),L
0,j,n µ

(k−1),L
6,n,r + 1

dk−2
ρ
(k),L
2,j,n if k ∈ {2, . . . , L− 1} ,

and:

µ(k−1),L
p,n,: =

{
β
(k−1)
p,n,: if ρ(k),L0,j,n ≥ 0

α
(k−1)
p,n,: if ρ(k),L0,j,n < 0

, p ∈ {2, 5, 6}

With these expressions, we can compute the required ∂x2
i
z
(k−1),L
n and ∂x2

i
z
(k−1),U
n which we assumed to be known to

derive Equation 21.

Finally, with the exact same argument as in Appendix D.3, we obtain:

∂xi
uUθ,j = ψ

(1),U
0,j,i +

d0∑
r=1

ψ
(1),U
1,j,r x+ ψ

(1),U
2,j,r ,

where:

ψ
(k−1),U
0,j,r =


∑dk−1

n=1 W
(k),+
j,n α

(k−1)
2,n,r +W

(k),−
j,n β

(k−1)
2,n,r if k = L∑dk−1

n=1 ψ
(k),U
0,j,n ψ

(k−1),U
2,n,r if k ∈ {2, . . . , L− 1}

ψ
(k−1),U
1,j,r =


∑dk−1

n=1 W
(k),+
j,n α

(k−1)
5,n,r +W

(k),−
j,n β

(k−1)
5,n,r if k = L∑dk−1

n=1 ψ
(k),U
0,j,n ψ

(k−1),U
5,n,r + 1

dk−2
ψ
(k),U
1,j,n if k ∈ {2, . . . , L− 1}

ψ
(k−1),U
2,j,r =


∑dk−1

n=1 W
(k),+
j,n α

(k−1)
6,n,r +W

(k),−
j,n β

(k−1)
6,n,r if k = L∑dk−1

n=1 ψ
(k),U
0,j,n ψ

(k−1),U
6,n,r + 1

dk−2
ψ
(k),U
2,j,n if k ∈ {2, . . . , L− 1}

,

and:

ψ(k−1)
p,n,: =

{
α
(k−1)
p,n,: if ψ(k),U

0,j,n ≥ 0

β
(k−1)
p,n,: if ψ(k),U

0,j,n < 0
, p ∈ {2, 5, 6}.

And similarly for the lower bound:

∂xi
uLθ,j = ψ

(1),L
0,j,i +

d0∑
r=1

ψ
(1),L
1,j,r x+ ψ

(1),L
2,j,r ,

where:

ψ
(k−1),L
0,j,r =


∑dk−1

n=1 W
(k),+
j,n β

(k−1)
2,n,r +W

(k),−
j,n α

(k−1)
2,n,r if k = L∑dk−1

n=1 ψ
(k),L
0,j,n ψ

(k−1),L
2,n,r if k ∈ {2, . . . , L− 1}

ψ
(k−1),L
1,j,r =


∑dk−1

n=1 W
(k),+
j,n β

(k−1)
5,n,r +W

(k),−
j,n α

(k−1)
5,n,r if k = L∑dk−1

n=1 ψ
(k),L
0,j,n ψ

(k−1),L
5,n,r + 1

dk−2
ψ
(k),L
1,j,n if k ∈ {2, . . . , L− 1}

ψ
(k−1),L
2,j,r =


∑dk−1

n=1 W
(k),+
j,n β

(k−1)
6,n,r +W

(k),−
j,n α

(k−1)
6,n,r if k = L∑dk−1

n=1 ψ
(k),L
0,j,n ψ

(k−1),L
6,n,r + 1

dk−2
ψ
(k),L
2,j,n if k ∈ {2, . . . , L− 1}

,

and:

ψ(k−1),L
p,n,: =

{
β
(k−1)
p,n,: if ψ(k),L

0,j,n ≥ 0

α
(k−1)
p,n,: if ψ(k),L

0,j,n < 0
, p ∈ {2, 5, 6}.

D.5. Formulation and proof of closed-form global bounds on ∂xiuθ

Lemma 3 (Closed-form global bounds on ∂xi
uθ). For every j ∈ {1, . . . , dL} there exist two values κUj ∈ R and κLj ∈ R,

such that ∀x ∈ C = {x ∈ Rd0 : xL ≤ x ≤ xU} it holds that κLj ≤ ∂xiuθ,j ≤ κUj , with:

κUj = BU,+xU +BU,−xL + ϕ
(1)
0,j,i +

d0∑
r=1

ϕ
(1)
2,j,r

κLj = BL,+xL +BL,−xU + ψ
(1)
0,j,i +

d0∑
r=1

ψ
(1)
2,j,r,

where BU =
∑d0

r=1 ϕ
(1)
1,j,r, BL =

∑d0

r=1 ψ
(1)
1,j,r, and B·,+ = I (B· ≥ 0)⊙B· and B·,− = I (B· < 0)⊙B·.

Table 3: Relaxing σ′(y) = 1− tanh2(y): linear upper and lower bounds for a given lb and ub.

lb ub αU βU αL βL

R1 R1 (σ(ub)−σ(lb))/(ub−lb)
σ(lb)/αU − lb σ′(d), d ∈ [lb, ub] σ(d)/αL − d

R3 R3

R2 R2 σ′(d), d ∈ [lb, ub] σ(d)/αU − d (σ(ub)−σ(lb))/(ub−lb)
σ(lb)/αL − lb

R1 R2
σ′(d1),

τy1,ub(σ
′, lb, d1) = 0

σ(lb)/αU − lb
σ′(d2),

τlb,y1(σ
′, ub, d2) = 0

σ(ub)/αL − ub

R2 R3
σ′(d1),

τlb,y2(σ
′, ub, d1) = 0

σ(ub)/αU − ub
σ′(d2),

τy2,ub(σ
′, lb, d2) = 0

σ(lb)/αL − lb

R1 R3

ασ′(d1) + (1− α)σ′(d2),
τlb,0(σ

′, lb, d1) = 0,
τ0,ub(σ

′, ub, d2) = 0

αβU
1 + (1− α)βU

2 ,
βU
1 = σ(lb)/σ′(d1) − lb,
βU
2 = σ(ub)/σ′(d2) − ub

{
σ′(d3), − lb ≥ ub

σ′(d4), − lb < ub
,

τlb,y1(σ
′, ub, d3) = 0,

τy2,ub(σ
′, lb, d4) = 0

{
σ′(ub)
σ′(d3)

− ub, − lb ≥ ub

σ′(lb)
σ′(d4)

− lb, − lb < ub

Proof. Take a function f : Rd0 → R defined as f(x) = v⊤x + c for v ∈ Rd0 and c ∈ R, as well as a domain
C = {x ∈ Rd0 : xL ≤ x ≤ xU}. Given the perpendicularity of the constraints in C, by separating each component of f we
obtain:

max
x∈C

f(x) = (v+)⊤xU + (v−)⊤xL + c, min
x∈C

f(x) = (v+)⊤xL + (v−)⊤xU + c,

where v+ = I (v ≥ 0)⊙ v and v− = I (v < 0)⊙ v.

E. Correctness Certification for PINNs with tanh activations
∂-CROWN allows one to compute lower and upper bounds on the outputs of ∂xi

uθ, ∂x2
i
uθ and fθ as long as we can obtain

linear bounds for uθ’s activations, σ, ∂xiuθ’s activations, σ′, and ∂x2
i
uθ’s activations, σ′′, assuming previously computed

bounds on the input of those activations. In this section we explore how to compute those bounds when uθ has tanh
activations.

Throughout, we assume the activation’s input (y) is lower bounded by lb and upper bounded by ub (i.e., lb ≤ y ≤ ub), and
define the upper bound line as hU (y) = αU (y + βU), and the lower bound line as hL(y) = αL(y + βL). For the sake of
brevity, we define for a function h : R → R, and points p, d ∈ R the function τ(h, p, d) = (h(p)−h(d))/(p−d)−h′(d). This is
useful as for a given h and p, if there exists a d ∈ [dl, du], such that τdl,du

(h, p, d) = 0, then h′(d) is the slope of a tangent
line to h that passes through p and d.

Bounding σ(y) = tanh(y) We follow the bounds provided in CROWN (Zhang et al., 2018), by observing that tanh is a
convex function for y < 0 and concave for y > 0. For lb ≤ ub ≤ 0 we let hU be the line that connects lb and ub, and for an
arbitrary d ∈ [lb, ub] we let hL be the tangent line at that point. Similarly, for 0 ≤ lb ≤ ub we let hL be the line that connects
lb and ub, and for an arbitrary d ∈ [lb, ub] we let hU be the tangent line at that point. For the last case where lb ≤ 0 ≤ ub,
we let hU be the tangent line at d1 ≥ 0 that passes through (lb, σ(lb)), and hL be the tangent line at d2 ≤ 0 that passes
through (ub, σ(ub)). Given these bounds were given in Zhang et al. (2018), we omit visual representations of them.

Bounding σ′(y) = 1− tanh2(y) The derivative of tanh(y), 1− tanh2(y), is a more complicated function. By inspecting
it’s derivative, σ′′(y) = −2 tanh(y)(1 − tanh2(y)), we conclude that there are two inflection points at y1 = maxσ′′(y)
and y2 = minσ′′(y), leading to three different regions: y ∈]−∞, y1] (R1, the first convex region), y ∈]y1, y2] (R2, the
concave region), and y ∈]y2,+∞[(R3, the second convex region). As a result, there are 6 combinations for the location of
lb and ub which must be resolved.

The first two cases are the straightforward: if lb ∈ R1 and ub ∈ R1 or lb ∈ R3 and ub ∈ R3, i.e., if both ends are in the
same convex region, then we use the same relaxation as in the bounding of tanh in the convex region - hU is the line that
connects lb and ub, while hL is a tangent line at a point d ∈ [lb, ub]. Similarly for the case where lb ∈ R2 and ub ∈ R2, we
take the solution from the tanh concave side and use hL to be the line that connects lb and ub, and hU to be the tangent line
at a point d ∈ [lb, ub]. The next case is lb ∈ R1 and ub ∈ R2, i.e., lb in the first convex region and ub in the concave one. In

−4 −2 0 2 4
y

0.0

0.5

1.0

R1 R2 R3

σ′

hL

hU

(a) lb ∈ R1 and ub ∈ R2

−4 −2 0 2 4
y

0.0

0.5

1.0

R1 R2 R3

σ′

hL

hU

(b) lb ∈ R2 and ub ∈ R3

−4 −2 0 2 4
y

0.0

0.5

1.0

R1 R2 R3

σ′

hL

hU

hU,α

(c) lb ∈ R1 and ub ∈ R3

Figure 6: Relaxing σ′(y) = 1− tanh2(y): examples of the linear relaxations of σ′ for different sets of lb and ub.

Table 4: Relaxing σ′′(y) = −2 tanh(y)
(
1− tanh2(y)

)
: linear upper and lower bounds for a given lb and ub.

lb ub αU βU αL βL

R1 R1 (σ′′(ub)−σ′′(lb))/(ub−lb)
σ′′(lb)/αU − lb σ′′′(d), d ∈ [lb, ub] σ′′(d)/αL − d

R3 R3

R2 R2
σ′′′(d), d ∈ [lb, ub] σ′′(d)/αU − d (σ′′(ub)−σ′′(lb))/(ub−lb)

σ′′(lb)/αL − lbR4 R4

R1 R2
σ′′′(d1),

τy1,ub(σ
′′, lb, d1) = 0

σ(lb)/αU − lb
σ′′′(d2),

τlb,y1(σ
′′, ub, d2) = 0

σ′′(ub)/αL − ub

R3 R4
σ′′′(d1),

τy3,ub(σ
′′, lb, d1) = 0

σ′′(lb)/αU − lb
σ′′′(d2),

τlb,y3(σ
′′, ub, d2) = 0

σ′′(ub)/αL − ub

R2 R3
σ′′′(d1),

τlb,y2(σ
′′, ub, d1) = 0

σ′′(ub)/αU − ub
σ′′′(d2),

τy2,ub(σ
′′, lb, d2) = 0

σ′′(lb)/αL − lb

R1 R3

ασ′′′(d1)+(1−α)σ′′′(d2),
τlb,ymax(σ

′′, lb, d1) = 0,
τymax,ub(σ

′′, ub, d2) = 0

αβU
1 + (1− α)βU

2 ,
βU
1 = σ′′(lb)/σ′′′(d1) − lb,

βU
2 = σ′′(ub)/σ′′′(d2) − ub

σ′′′(d3),
τy1,ub(σ

′, lb, d3) = 0
σ′′(lb)/αL − lb

R2 R4
σ′′′(d1),

τlb,y2(σ
′, ub, d1) = 0

σ′′(ub)/αU − ub

ασ′′′(d2)+(1−α)σ′′′(d3),
τlb,ymin(σ

′′, lb, d2) = 0,
τymin,ub(σ

′′, ub, d3) = 0

αβL
1 + (1− α)βL

2 ,
βL
1 = σ′′(lb)/σ′′′(d2) − lb,

βL
2 = σ′′(ub)/σ′′′(d3) − ub

R1 R4

ασ′′′(d1)+(1−α)σ′′′(d2),
τlb,ymax(σ

′′, lb, d1) = 0,
τymax,ub(σ

′′, ub, d2) = 0

αβU
1 + (1− α)βU

2 ,
βU
1 = σ′′(lb)/σ′′′(d1) − lb,

βU
2 = σ′′(ub)/σ′′′(d2) − ub

ασ′′′(d3)+(1−α)σ′′′(d4),
τlb,ymin(σ

′′, lb, d3) = 0,
τymin,ub(σ

′′, ub, d4) = 0

αβL
1 + (1− α)βL

2 ,
βL
1 = σ′′(lb)/σ′′′(d3) − lb,

βL
2 = σ′′(ub)/σ′′′(d4) − ub

this case we use the same bounding as in the tanh case when lb ≤ 0 ≤ ub: hU is the tangent line at d1 ≥ y1 that passes
through (lb, σ

′(lb)), and hL is the tangent line at d2 ≤ y1 that passes through (ub, σ
′(ub)). In a similar fashion, for the case

in which lb ∈ R2 and ub ∈ R3, i.e., lb in the concave region and ub in the second convex region, we take the opposite
approach: hU is the tangent line at d1 ≤ y2 that passes through (ub, σ

′(ub)), and hL is the tangent line at d2 ≥ y2 that
passes through (lb, σ

′(lb)). These two cases are plotted in Figures 6a and 6b.

Finally, we tackle the case where lb ∈ R1 and ub ∈ R3, i.e., where lb is in the first convex region and ub is in the second
convex region. Given there is a concave region in between them, two valid upper bounds would be the ones considered
previously for lb ∈ R1 and ub ∈ R2, and lb ∈ R2 and ub ∈ R3. To obtain these bounds, we shift the upper bound in the
first case to 0, and the lower bound in the second case to 0 (see hU in Figure 6c). As our bounding requires a single hU ,
we take a convex combination of the two bounds obtained, hU,α. For the lower bound, we use a line that passes by either
(ub, σ

′(ub)), if −lb ≥ ub, or by (lb, σ
′(lb)), otherwise, as well as by a tangent point d3 ∈ R1, if −lb ≥ ub, or by d4 ∈ R3,

otherwise. See the line hU,α in Figure 6c for a visual representation.

Bounding σ′′(y) = −2 tanh(y)
(
1− tanh(y)2

)
By inspecting the derivative of σ′′, σ′′(y) = −2 + 8 tanh2(y) −

6 tanh4(y), we conclude there are three inflection points for this function, one at y1 = argmaxy≤0 σ
′′′(y), another at y2 = 0,

and finally at y3 = −y1. Take also, for the sake of bounding, ymax = argmaxy≤0 σ
′′(y) and ymin = argminy≤0 σ

′′(y).

−4 −2 0 2 4
y

−1.0

−0.5

0.0

0.5

1.0

R1 R2 R3 R4

σ′′

hL

hU

hU,α

(a) lb ∈ R1 and ub ∈ R3

−4 −2 0 2 4
y

−1.0

−0.5

0.0

0.5

1.0

R1 R2 R3 R4

σ′′

hL

hU

hL,α

(b) lb ∈ R2 and ub ∈ R4

−4 −2 0 2 4
y

−1.0

−0.5

0.0

0.5

1.0

R1 R2 R3 R4

σ′′

hL

hU

hU,α

hL,α

(c) lb ∈ R1 and ub ∈ R4

Figure 7: Relaxing σ′′(y) = −2 tanh(y)
(
1− tanh2(y)

)
: examples of the linear relaxations of σ′′ for different sets of lb

and ub.

This leads to four different regions of σ′′: y ∈]−∞, y1] (R1, the first convex region), y ∈]y1, y2] (R2, the first concave
region), y ∈]y2, y3] (R3, the second convex region), and y ∈]y3,+∞[(R4, the second concave region). This leads to 10
combinations for the location of lb and ub.

The first four are straightforward: if lb ∈ Ri and ub ∈ Ri for i ∈ {1, . . . , 4}, then we use exactly the same approximations
as for σ and σ′′, varying only based on the convexity of Ri. Similarly, if lb ∈ Ri and ub ∈ Ri+1 for i ∈ {1, 2, 3}, then we
are also in the same situation as the adjacent regions of different convexity from σ′, so we use exactly the same relaxation.

We are left with three cases where lb and ub are in non-adjacent regions. For lb ∈ R1 and ub ∈ R3, we are in the same
scenario as in the bounding of σ′, since R1 and R3 are convex regions separated by a concave one. In that case we follow
the bounding procedure outlined before for σ′ - see Figure 7a for an example of it applied in this setting. For the case where
lb ∈ R2 and ub ∈ R4, we are in an analogous case where R2 and R4 are concave regions separated by a convex one. As
such, we consider the two valid lower bounds computed previously for lb ∈ R2 and ub ∈ R3, and lb ∈ R3 and ub ∈ R4.
To obtain these bounds, we shift the upper bound in the first case to argminσ′′(y), and the lower bound in the same case
to the same value (see hL in Figure 7b). As our bounding requires a single hL, we take a convex combination of the two
bounds, hL,α. For the upper bound, we simply assume lb is in a concave region while ub is in a convex region, and take
the tangent at d for argmaxσ′′(y) ≥ d ≤ 0 (see hU in Figure 7b). Finally, we are left with the case where lb ∈ R1 and
ub ∈ R4. In that case, we take the upper bound lines from the case where lb ∈ R1 and ub ∈ R3, and the lower bound ones
from where lb ∈ R2 and ub ∈ R4. As before, given the requirement of one lower and upper bound functions, we take a
convex combination of both in hL,α and hU,α, respectively. See Figure 7c for a visual representation.

F. Linear lower and upper bounding nonlinear functions
Throughout, we assume the function’s input (x) is lower bounded by lb and upper bounded by ub (i.e., lb ≤ x ≤ ub), and
define the upper bound line as hU (x) = αU (x+ βU), and the lower bound line as hL(x) = αL(x+ βL). For the sake of
brevity, we define for a function h : R → R, and points p, d ∈ R the function τ(h, p, d) = (h(p)−h(d))/(p−d)−h′(d). This is
useful as for a given h and p, if there exists a d ∈ [dl, du], such that τdl,du

(h, p, d) = 0, then h′(d) is the slope of a tangent
line to h that passes through p and d.

F.1. Case study: −sin(πx) for x ∈ [−1, 1]

As in Appendix E, we observe the convexity of the function − sin(πx) for x ∈ [−1, 1], noticing that the function is convex
for x ≤ 0 and concave for x ≥ 0. For lb ≤ ub ≤ 0 we let hU be the line that connects lb and ub, and for an arbitrary
d ∈ [lb, ub] we let hL be the tangent line at that point. Similarly, for 0 ≤ lb ≤ ub we let hL be the line that connects lb and
ub, and for an arbitrary d ∈ [lb, ub] we let hU be the tangent line at that point. For the last case where lb ≤ 0 ≤ ub, we let
hU be the tangent line at d1 ≥ 0 that passes through (lb, σ(lb)), and hL be the tangent line at d2 ≤ 0 that passes through
(ub, σ(ub)). Given the similarity of to the tanh bounds from Zhang et al. (2018), we omit a summary table, but present 3
examples of the possible cases in Figure 8.

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0 − sin(πx)

hL

hU

(a) lb ≤ 0 and ub ≤ 0

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0 − sin(πx)

hL

hU

(b) lb ≥ 0 and ub ≥ 0

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0 − sin(πx)

hL

hU

(c) lb ≤ 0 and ub ≥ 0

Figure 8: Relaxing − sin(πx): examples of the linear relaxations for different sets of lb and ub.

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0

R1 R2 R3

2sech(x)

hL

hU

(a) lb ≤ 0 and ub ≤ 0

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0

R1 R2 R3

2sech(x)

hL

hU

(b) lb ≥ 0 and ub ≥ 0

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0

R1 R2 R3

2sech(x)

hL

hU

hU,α

(c) lb ≤ 0 and ub ≥ 0

Figure 9: Relaxing 2sech(x): examples of the linear relaxations for different sets of lb and ub.

F.2. Case study: 2sech(x) for x ∈ [−5, 5]

We start by observing that the function 2sech(x) is similar to the derivative of tanh, whose relaxation we presented in
Appendix E. By inspecting it’s derivative, f ′(x) = 2sech(x) tanh(x), we conclude that there are two inflection points
at x1 = max f ′(x) and x2 = min f ′(x), leading to three different regions: x ∈] −∞, x1] (R1, the first convex region),
x ∈]x1, x2] (R2, the concave region), and x ∈]x2,+∞[(R3, the second convex region). As a result, there are 6 combinations
for the location of lb and ub which must be resolved. This is exactly the same case as the first derivative of tanh, simply
with x1 and x2 instead of y1 and y2. Due to the similarities, we can use exactly the same relaxations as presented in Table 3.
We present visual examples of 3 cases of this relaxation in Figure 9.

