Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

Luca Marzari*! Davide Corsi“! Ferdinando Cicalese! Alessandro Farinelli'

Abstract

Traditionally, Formal Verification (FV) of Deep
Neural Networks (DNN) can be employed to
check whether a DNN is unsafe w.r.t. some given
property (i.e., whether there is at least one un-
safe input configuration). However, the binary
answer typically returned could be not informa-
tive enough for other purposes, such as shielding,
model selection, or training improvements.

In this paper, we summarize the contribution
of our work (Marzari et al., 2023) focused on
the #DNN-Verification problem, which involves
counting the number of input configurations of
a DNN that result in a violation of a particular
safety property. We analyze the complexity of
this problem and show a novel approach that re-
turns the exact count of violations. Due to the
#P-completeness of the problem, we also pro-
pose a randomized, approximate method that pro-
vides a provable probabilistic bound of the cor-
rect count while significantly reducing compu-
tational requirements tested on a set of safety-
critical benchmarks.

1. Introduction

In recent years, the success of Deep Neural Networks
(DNNs) in a wide variety of fields (e.g., games playing,
speech recognition, and image recognition) has led to the
adoption of these systems also in safety-critical contexts,
such as autonomous driving and robotics, where humans
safety and expensive hardware can be involved. A crucial as-
pect of these DNNs lies in the concept of generalization. A
neural network is trained on a finite subset of the input space,
and at the end of this process, we expect it to find a pattern
that allows making decisions in contexts never seen before.

“Equal contribution 'Department of Computer Science,
University of Verona, Verona, Italy. Correspondence to:
Luca Marzari <luca.marzari@univr.it>, Davide Corsi <da-
vide.corsi@univr.it>.

Presented at the 2™ Workshop on Formal Verification of Machine
Learning, co-located with the 40" International Conference on
Machine Learning, Honolulu, Hawaii, USA., 2023. Copyright
2023 by the author(s).

However, even networks that empirically perform well on a
large test set can react incorrectly to slight perturbations in
their inputs (Szegedy et al., 2013). Consequently, in recent
years, part of the scientific communities devoted to machine
learning and formal methods have joined efforts to develop
DNN-Verification techniques that provide formal guaran-
tees on the behavior of these systems (Liu et al., 2021; Katz
etal., 2021; Wang et al., 2021; Zhang et al., 2022). A DNN
verification tool should ideally either ensure that a safety
property is satisfied for all the possible input configurations
or identify a specific example (e.g., adversarial configura-
tion) that violates the requirements. However, given the
non-linear and non-convex nature of DNN, verifying even
simple properties is proved to be an NP-complete problem
(Katz et al., 2017). In literature, several works try to solve
the problem efficiently either by satisfiability modulo theo-
ries (SMT) solvers (Liu et al., 2021)(Katz et al., 2019) or
by interval propagation methods (Wang et al., 2021).

Although these methods show promising results, the current
formulation, widely adopted for almost all the approaches,
considers only the decision version of the formal verification
problem, with the solution being a binary answer whose pos-
sible values are typically denoted SAT or UNSAT. The first
one indicates that the verification framework found a spe-
cific input configuration, as a counterexample, that caused a
violation of the requirements. UNSAT, in contrast, indicates
that no such point exists, and then the safety property is for-
mally verified in the whole input space. While an UNSAT
answer does not require further investigations, a SAT result
hides additional information and questions. For example,
how many of such adversarial configurations exist in the
input space? How likely are these misbehaviors to happen
during a standard execution? Can we estimate the proba-
bility of running into one of these points? These questions
can be better dealt with in terms of the problem of counting
the number of violations to a safety property, a problem
that might be important also in other contexts for example:
(i) model selection: a counting result allows ranking a set
of models to select the safest one. This model selection is
impossible with a SAT or UNSAT type verifier, which does
not provide any information to discriminate between two
models which have both been found to violate the safety
condition for at least one input configuration. (ii) estimating
the probability of error: the ratio of the total number of vio-

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

lations over the size of the input space provides an estimate
of the probability of committing an unsafe action given a
specific safety property. Motivated by the above questions
and applications, previous works (Baluta et al., 2019)(Zhang
et al., 2021)(Ghosh et al., 2021) propose a quantitative anal-
ysis of neural networks, focusing on a specific subcategory
of these functions, i.e., Binarized Neural Networks (BNN).
However, violation points are generally not preserved in
the binarization of a DNN to a BNN nor conversely in the
relaxation of a BNN to a DNN (Zhang et al., 2021).

In this paper, we introduce the #DNN-Verification problem,
the extension of the decision DNN-Verification problem to
its counting version. The goal is to determine the exact
number of input configurations that violate a given safety
property for a DNN with continuous values. We present an
analysis of the problem’s complexity and propose two solu-
tion approaches. Firstly, we introduce a formal algorithm
to provide the exact count of unsafe input configurations.
The algorithm utilizes a recursive technique to narrow down
the property’s domain by leveraging the SAT or UNSAT
answers from a formal verifier to drive the expansion of
a tree that tracks the generated subdomains. Remarkably,
our method can exploit any formal verifier for the decision
problem, taking advantage of any improvements in state-of-
the-art techniques and potentially novel frameworks.

However, as the analysis shows, our algorithm requires
multiple invocations of the verification tool, resulting in
significant overhead and becoming quickly unfeasible for
real-world problems. For this reason, inspired by the work
of (Gomes et al., 2007) on #SAT, we propose an approxima-
tion algorithm for #DNN-Verification, providing provable
(probabilistic) bounds on the correctness of the estimation.
To the best of our knowledge, this is the first study to present
#DNN-verification, the counting version of the decision
problem of the formal verification for general neural net-
works without converting the DNN into a CNF.

2. Preliminaries
2.1. The DNN-Verification Problem

An instance of the DNN-Verification problem (in its standard
decision form) is given by a trained DNN N together with
a safety property, typically expressed as an input-output
relationship for N (Liu et al., 2021). In more detail, a
property is a tuple that consists of a precondition, expressed
by a predicate P on the input, and a postcondition, expressed
by a predicate Q on the output of A. In particular, P
defines the possible input values we are interested in—aka
the input configurations—(i.e., the domain of the property),
while Q represents the output results we aim to guarantee
formally for at least one of the inputs that satisfy P. Then,
the problem consists of verifying whether there exists an

input configuration in P that, when fed to the DNN N/,
produces an output satisfying Q'.

Definition 2.1 (DNN-Verification Problem).

Input: A tuple R = (N, P, Q), where N is a trained DNN,
‘P is precondition on the input, and Q a postcondition on
the output.

Output: SAT if 3z | P(z) A Q(N(z)) and UNSAT other-
wise, indicating that no such z exists.

3. #DNN-Verification and Exact Count
3.1. Problem Formulation

Given a tuple R = (N, P, Q), as in Definition 2.1, we let
I'(R) denote the set of all the input configurations for A/
satisfying the property defined by P and Q, i.e. ['(R) =
{z | P(z) A QN (x))} Then, the #DNN-Verification con-
sists of computing the cardinality of I'(R).

Definition 3.1 (#DNN-Verification Problem).
Input: A tuple R = (N, P, Q), as in Definition 2.1.
Output: [T'(R)|

For the purposes discussed in the introduction, rather than
the cardinality of I'(R), it is more useful to define the prob-
lem in terms of the ratio between the cardinality of I" and
the cardinality of the set of inputs satisfying P. We refer to
this ratio as the violation rate (VR), and study the result of
the #DNN- Verification problem in terms of this equivalent
measure.

Definition 3.2 (Violation Rate (VR)). Given an instance of
the DNN-Verification problem R = (N, P, Q) we define

the violation rate as VR = %

Although, in general, DNNs can handle continuous spaces,
in the following sections (and for the analysis of the algo-
rithms), without loss of generality, we assume the input
space to be discrete. We remark that for all practical pur-
poses, this is not a limitation since we can assume that the
discretization is made to the maximum resolution achievable
with the number of decimal digits a machine can represent.
It is crucial to point out that discretization is not a require-
ment of the approaches proposed in this work. In fact,
supposing to have a backend that can deal with continuous
values, our solutions would not require such discretization.

3.2. Exact Count Algorithm for #DNN-Verification

We now present an algorithm to solve the exact count of
#DNN-Verification. A possible approach recursively splits
the input space into two parts of equal size as long as it con-

"More details about the problem and state-of-the-art methods
for solving it can be found in the supplementary material.

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

tains both a point that violates the property (i.e., (N, P, Q)
is a SAT-instance for DNN-Verification problem) and a point
that satisfies it (i.e., (N, P, ~Q) is a SAT-instance for DNN-
Verification problem).> The leaves of the recursion tree of
this procedure correspond to a partition of the input space
into parts where the violation rate is either O or 1. Therefore,
the overall violation rate is easily computable by summing
up the sizes of the subinput spaces in the leaves of violation
rate 1. We refer to Sec. C in the supplementary material for
an explanation and example of the proposed approach. It is
known that finding even just one input configuration (also
referred to as violation point) that violates a given safety
property is computationally hard since the DNN-Verification
problem is NP-Complete (Katz et al., 2017). Hence, count-
ing and enumerating all the violation points is expected to
be an even harder problem. Formally:

Theorem 3.3. #DNN-Verification is #P-Complete.

In Sec D in the supplementary material, we show this sig-
nificantly stronger (under standard complexity assumptions)
hardness result for the #DNN-Verification problem.

4. CountingProVe for Approximate Count

In view of the #P-completeness of the #DNN-Verification
problem, it is not surprising that the time complexity of the
algorithm for the exact count worsens very fast when the
size of the instance increases. In fact also moderately large
networks are intractable with this approach. To overcome
these limitations while still providing guarantees on the qual-
ity of the results, we propose a randomized-approximation
algorithm, Count ingProVe (presented in Algorithm 1).

The intuition behind our approach is that if we could assume
that each split distributed the violation points evenly in the
two subinstances it produces, for computing the number of
violation points in the whole input space it would be enough
to compute the number of violation points in the subspace
of a single leaf and multiplying it by 2° (which represents
the number of leaves). Since we cannot guarantee a per-
fectly balanced distribution of the violation points among
the leaves, we propose to use a heuristic strategy to split the
input domain, balancing the number of violation points in
expectation. This strategy allows us to estimate the count
and a provable confidence interval on the actual violation
rate. In more detail, our algorithm receives as input the tuple
for a DNN-Verification problem (i.e., R = (N, P, Q)) and
to obtain a precise estimate of the VR, performs ¢ iterations
of the following procedure.

Initially, we assume that, in the whole input domain, the

?Any state-of-the-art sound and complete verifier for the de-
cision problem can be used to solve these instances. In fact, our
method works with any state-of-the-art verifiers, although, using a
verifier that is not complete can lead to over-approximation in the
final count.

Algorithm 1 CountingProVe

1: Input: R = (N, P, Q), t (# of repetitions), m (# of vio-
lation points sampled per iteration), 5 > 0 (error tolerance
factor).

2: Output: lower bound of the violation rate.

3: for t=1to ¢t do

4: VR« 100%,s <+ 0

5: while Timeout(EzactCount(R)) do

6: S < SampleViolationPoints(R, m)

7: median < ComputeMedian(S, node;)

8: node; 0, node; 1 <+ SplitInterval(node;, median)
9: side < arandom value chosen uniformly from {0,1}
10: P < UpdateP(P,node; side)
11: s+ s+1

12: end while

13: VR « 2°7. EzactCount(R) - [[_, a
14: VR <+ min(VR:,VR)

15: end for

16: return VR

safety property does not hold, i.e., we have a 100% of Viola-
tion Rate. The idea is to repeatedly simplify the input space
by performing a sequence of multiple splits, where each
i-th split implied a reduction of the input space of a factor
«;. At the end of s simplifications, the goal is to obtain an
exact count of unsafe input configurations that can be used
to estimate the VR of the entire input space. Specifically,
Algorithm 1 presents the pseudo-code for the heuristic ap-
proach. Before splitting, the algorithm attempts to use the
exact count but stops if not completed within a fixed timeout
which we set to just a fraction of a second (line 5). Inside
the loop, the procedure SampleViolationPoints(R,m)
samples m violation points from the subset of the input
space described in P (using a uniform sampling strategy)
and saves them in S.

After line 6, the algorithm has an estimation of how many
violation points there are in the portion of the input space un-
der consideration®. The idea is to simplify one dimension of
the hyperrectangle cyclically while keeping the number of
violation points balanced in the two portions of the domain
we aim to split (i.e., as close to |S|/2 as possible). Specif-
ically, Compute M edian(S, node;) (line 7) computes the
median of the values along the dimension of the node cho-
sen for the split. SplitInterval(node;, median) splits the
node into two parts node; o and node; ; according to the me-
dian computed. For instance, suppose we have an interval of
[0, 1] and the median value is 0.33. The two parts obtained
by calling SplitInterval(node;, median) are [0,0.33] and
(0.33,1]. The algorithm proceeds randomly, selecting the
side to consider from that moment on and discarding the
other part. Hence, it updates the input space intervals to be

3if the m solutions are not found, the algorithm proceeds by
considering only the violation points discovered or splitting at
random.

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

considered for the safety property P (lines 9-10). Finally,
the variable s that represents the number of splits made
during the iteration is incremented. At the end of the while
loop (line 12), the VR is computed by multiplying the result
of the exact count by 2°~#, and for []}_; c;. The first term
(25— considers the fact that we balanced the VR in our
tree, hence selecting one path and multiplying by 2°, we get
a representative estimate of the whole starting input area.
[is a tolerance error factor, and finally, Hle «; describes
how we simplified the input space during the s splits made
(line 13). Finally, the algorithm refines the lower bound
(line 14).

The crucial aspect of Count ingProVe is that even when
the splitting method is arbitrarily poor, the bound returned
is provably correct (from a probabilistic point of view), see
next section for more details. Moreover, the correctness
of our algorithm is independent on the number of samples
used to compute the median value. However, using a poor
heuristic (i.e., too few samples or a suboptimal splitting
technique), the bound’s quality can change, as the lower
bound may get farther away from the actual Violation Rate.
We report in the supplementary material an ablation study
that focuses on the impact of the heuristic on the results
obtained.

4.1. A Provable Lower Bound

In this section, we show that the randomized-approximation
algorithm Count ingProVe returns a correct lower bound
for the Violation Rate with a probability greater (or equal)
than (1 — 27). In more detail, we demonstrate that the
error of our approximation decreases exponentially to zero
and that it does not depend on the number of violation
points sampled during the simplification process nor on the
heuristic for the node splitting.

Theorem 4.1. Given the tuple R = (N, P, Q), the Viola-
tion Rate returned by the randomized-approximation algo-
rithm CountingProVe is a correct lower bound with a
probability > (1 — 275%),

Proof. Let VR* > 0 be the actual violation rate. Then,
CountingProVe returns an incorrect lower bound, if for
each iteration, VR > V R*. The key of this proof is to show
that for any iteration, Pr(VR > VR*) < 275,

Fix an iteration ¢. The input space described by P and under
consideration within the while loop is repeatedly simplified.
Assume we have gone through a sequence of s splits, where,
as reported in Sec.4, the i-th split implied a reduction of the
solution space of a factor «;. For a violation point o, we let
Y, be arandom variable that is 1 if o is also a violation point
in the restriction of the input space that has been (randomly)
obtained after s splits (and that we refer to as the solution
space of the leaf /).

Hence, the VR obtained using an exact count method for a

particular £ is VR, = %, i.e., the ratio between the
number of violation points and the number of points in ¢
(Ay). Then our algorithm returns as an estimate of the total
VR computed by:

, - s ver Yo T
VR=2""".VR - [[as =277 =L "2 . T]a; 1
eg v E M
Let s denote the sequence of s random splits followed to
reach the leaf ¢. We are interested in E[V R] = E[E[V R]s]].
The inner conditional expectation can be written as:

E[VR|s] = {26 8. ZC’EF Hal ys})
_ s—p . ZUGF g
—E[2 G | s | 3)
25—
= T 2 ENe=1ls])
25—h
= I Zz—s 5)
_gsdeerl _opyp (6)
ATot

where the equality in (2) follows from rewriting VR using
(1). Equality (3) follows from (2) using the relation Ay, =
T A1 o . Then we have (4) that follows from (3) by using
thé linearity of the expectation. (5) follows from (4) since,
in each split, we choose the side to take independently and
with probability 1/2. Finally, (6) follows by recalling that
> ser 1 is the total number of violations in the whole input
ZO‘EF
To

space, hence VR* = . Therefore, we have

E[VR] = E[E[VR|s]] = E27°VR*| = 27V R*.

Finally, by using Markov’s inequality, we obtain that

E[VR] _ 27V R* e

Pr(VR>VR") < VI Vi

Repeating the process ¢ times, we have a probability of over-
estimation equal to 2~7%. This proves that the Violation Rate
returned by Count ingProVe is correct with a probability
> (1—27°%). O

4.2. A Provable Confidence Interval of the VR

CountingProVe can return a provable confidence inter-
val of the VR. Recalling the definition of Violation Rate
(Def. 3.2), it is possible to define a complementary metric,

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

Instance Exact Count CountingProVe (confidence > 99%)
BaB
Violation Rate Time Interval confidence VR Size Time
Model 2_68 68.05% 210 min [66.21%, 69.1%)] 2.89% 45 min
Model 550 - 24 hrs [48.59%, 52.22%] 3.63% 124 min
¢2 ACAS Xu 2.7 - 24 hrs [2.35%, 5.22%] 2.87% 240 min

Table 1: Comparison of CountingProVe and exact counter on different benchmark setups. The first results are on our
benchmark properties, where every instance is in the form Model_p_1), where p is the size of the input space and ¥ is the id
of the specific DNN. The last row reports the result of one DNN on the Acas Xu ¢ benchmark. Full results are available in

the Appendix G.

the safe rate (SR), counting all the input configurations that
do not violate the safety property (i.e., provably safe). In
Sec. E of the supplementary material, we show the proof of
the following theorem:

Theorem 4.2. Given a Deep Neural Network N and a
safety property (P, Q), complementing the lower bound of
the Safe Rate obtained using Count ingProVe, which is
correct with a probability > (1 —27Pt), we obtain an upper
bound for the Violation Rate with the same probability.

Hence, from Theorems 4.1 and 4.2 we have:

Lemma 4.3. CountingProVe can compute both a cor-
rect lower and upper bound, i.e., a correct confidence inter-
val for the VR, with a probability > (1 — 275%),

To conclude, if each split of the input area encoded by P
is guaranteed to reduce the size of the instance by at least
some fraction v € (0, 1), then after s = O(log N) splits
the instance in the leaf ¢ has size O(2%) = O(1). Hence,
we can exploit an exponential time formal verifier to solve
the instance in the leaf /, and the total time required to run
CountingProVe will be polynomial in N.

5. Experimental Results

In this section, we guide the reader to understand the impor-
tance and impact of this novel encoding for the verification
problem of deep neural networks. In particular, in the first
part of our experiments, we show how the problem’s com-
putational complexity impacts the run time of exact solvers,
motivating the use of an approximation method to solve
the problem efficiently. In the second part, we analyze a
concrete case study, ACAS Xu (Katz et al., 2017), to explain
why finding all possible unsafe configurations is crucial in a
realistic safety-critical domain. All the data are collected on
a commercial PC running Ubuntu 22.04 LTS equipped with
Nvidia RTX 2070 Super and an Intel i7-9700k. In particu-
lar, for the exact counter, we rely as backend on the formal
verification tool BaB (Bunel et al., 2018) available on “Neu-
ralVerification.jI” and developed as part of the work of (Liu
et al., 2021). While, as exact count for Count ingProVe,

we rely on ProVe (Corsi et al., 2021) given its key feature of
exploiting parallel computation on GPU. In our experiments
with CountingProVe, we set 5 = 0.02 and ¢t = 350
in order to obtain a correctness confidence level greater or
equal to 99% (refer to Theorem 4.1). Table 1 summarizes
the results of our experiments, evaluating the proposed al-
gorithms (i.e., the exact counter and CountingProVe)
on different benchmarks. Our results show the advantage
of using an approximation algorithm to obtain a provable
estimate of the portion of the input space that violates a
safety property. We discuss the results in detail below.

Scalability Experiments In the first two rows of Tab. 1,
we report the partial results related to the scalability
of the exact counters against our approximation method
CountingProVe, showing how the #DNN-Verification
problem becomes immediately infeasible, even for small
DNNG. In more detail, we collect random models (i.e., using
random seeds) with different levels of violation rates for the
same safety property, which consists of all the intervals of
P in the range [0, 1], and a postcondition Q that encodes
a strictly positive output. All the models have two hidden
layers of 32 nodes activated with ReLU and two, five, and
ten-dimensional input space, respectively. Our results show
that for the models with two input neurons, the exact counter
returns the violation rate in about 3.3 hours, while our ap-
proximation in less than an hour returns a provable tight
(~ 3%) confidence interval of the input area that presents
violations. Crucially, as the input space grows, the exact
counters reach the timeout (fixed after 24 hours), failing to
return an exact answer. CountingProVe, on the other
hand, in about two hours, returns an accurate confidence
interval for the violation rate, highlighting the substantial
improvement in the scalability of this approach. In the sup-
plementary material, we report additional experiments and
discussions on the impact of different hyperparameters for
the estimate of CountingProVe.

ACAS Xu Experiments The ACAS Xu system is an air-
borne collision avoidance system for aircraft considered a
well-known benchmark and a standard for formal verifica-

https://github.com/sisl/NeuralVerification.jl
https://github.com/sisl/NeuralVerification.jl

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

tion of DNNs (Liu et al., 2021)(Katz et al., 2017)(Wang
et al., 2018). To show that the count of all the violation
points can be extremely relevant in a safety-critical context,
we focused on the property ¢2, on which, for 34 over 45
models, the property does not hold. As reported in the last
line of Tab. 1, Count ingProVe returns a provable lower
bound for the violation rate of at least a 2.35%. This means
that assuming a 3-decimal-digit discretization, our approxi-
mation counts at least 23547 violation points compared to a
formal verifier that returns a single counterexample (i.e., a
single violation point). Note that a state-of-the-art verifier
that returns only SAT or UNSAT does not provide any infor-
mation about the amount of possible unsafe configurations
considered by the property.

6. Discussion and Future Directions

In this paper, we introduce the #DNN-Verification problem,
which aims to count the number of input configurations that
lead to a violation of a given safety property. We demon-
strate its #P-completeness, emphasizing its relevance to the
community. Additionally, we propose an exact counting ap-
proach that relies on a formal verification tool as a backend,
but faces challenges when applied to real-world problems
due to scalability issues. To address this, we present an
alternative approach called Count ingProVe, which pro-
vides an approximate solution with formal guarantees on
the confidence interval. To evaluate our algorithms, we con-
duct empirical analyses on a set of benchmarks, including a
well-known real-world problem known as ACAS Xu, which
is widely used in the formal verification community. Mov-
ing forward, we plan to investigate possible optimizations
to improve the performance of Count ingProVe, for ex-
ample, by improving the node selection and the bisection
strategies for the interval; or by exploiting the result of
#DNN-Verification to optimize the system’s safety during
the training loop. Furthermore, although our solution offers
information about the number of potentially unsafe con-
figurations in the property’s domain, two main limitations
hinder more direct safety interventions: (i) we only know the
number of violation points but not their location in the input
area, and (ii) even if obtaining this information, the number
of violation points can potentially be enormous making it
impractical to apply shielding or direct safety masks to these
points. To this end, our future goals encompass expanding
the counting methodology to the enumeration in continuous
space using interval analysis. In particular, by exploiting an
approximate enumeration with probabilistic guarantees, we
aim to find patterns among these unsafe zones or to perform
local patches in order to foster the safety aspect of these
systems in realistic contexts.

References

Amir, G., Corsi, D., Yerushalmi, R., Marzari, L., Harel,
D., Farinelli, A., and Katz, G. Verifying learning-based
robotic navigation systems. In 29th International Confer-
ence, TACAS 2023, pp. 607-627. Springer, 2023.

Baluta, T., Shen, S., Shinde, S., Meel, K. S., and Saxena,
P. Quantitative verification of neural networks and its
security applications. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 1249-1264, 2019.

Bunel, R. R., Turkaslan, I., Torr, P.,, Kohli, P, and
Mudigonda, P. K. A unified view of piecewise linear
neural network verification. Advances in Neural Informa-
tion Processing Systems, 31, 2018.

Corsi, D., Marchesini, E., and Farinelli, A. Formal ver-
ification of neural networks for safety-critical tasks in
deep reinforcement learning. In Uncertainty in Artificial
Intelligence, pp. 333-343. PMLR, 2021.

Ghosh, B., Basu, D., and Meel, K. S. Justicia: A stochastic
sat approach to formally verify fairness. In Proceedings
of the AAAI Conference on Artificial Intelligence, pp.
7554-7563, 2021.

Gomes, C. P, Hoffmann, J., Sabharwal, A., and Selman,
B. From sampling to model counting. In IJCAI, volume
2007, pp. 2293-2299, 2007.

Gomes, C. P, Sabharwal, A., and Selman, B. Model count-
ing. In Handbook of satisfiability, pp. 993—-1014. 10S
press, 2021.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient smt solver for verifying
deep neural networks. In International conference on
computer aided verification, pp. 97-117. Springer, 2017.

Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus, C.,
Lim, R., Shah, P., Thakoor, S., Wu, H., Zel;ji¢, A., et al.
The marabou framework for verification and analysis
of deep neural networks. In International Conference
on Computer Aided Verification, pp. 443-452. Springer,
2019.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: a calculus for reasoning about deep
neural networks. Formal Methods in System Design, pp.
1-30, 2021.

Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C.,
Kochenderfer, M. J., et al. Algorithms for verifying deep
neural networks. Foundations and Trends® in Optimiza-
tion, 4(3-4):244-404, 2021.

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

Lomuscio, A. and Maganti, L. An approach to reachability
analysis for feed-forward relu neural networks. arXiv
preprint arXiv:1706.07351, 2017.

Marchesini, E., Corsi, D., and Farinelli, A. Benchmarking
safe deep reinforcement learning in aquatic navigation. In
2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 5590-5595, 2021. doi:
10.1109/IROS51168.2021.9635925.

Marchesini, E., Corsi, D., and Farinelli, A. Exploring safer
behaviors for deep reinforcement learning. In Association
for the Advancement of Artificial Intelligence (AAAI),
2022.

Marzari, L., Corsi, D., Cicalese, F., and Farinelli, A. The
#dnn-verification problem: Counting unsafe inputs for
deep neural networks. In International Joint Conference
on Artificial Intelligence (IJCAI), 2023.

Moore, R. E., Kearfott, R. B., and Cloud, M. J. Introduction
to interval analysis. SIAM, 2009.

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Tjeng, V., Xiao, K. Y., and Tedrake, R. Evaluating robust-
ness of neural networks with mixed integer programming.
In International Conference on Learning Representations,
2018.

Valiant, L. G. The complexity of enumeration and reliability
problems. SIAM Journal on Computing, 8(3):410-421,
1979.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S. Effi-
cient formal safety analysis of neural networks. Advances
in Neural Information Processing Systems, 31, 2018.

Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.-J.,
and Kolter, J. Z. Beta-crown: Efficient bound propaga-
tion with per-neuron split constraints for neural network

robustness verification. Advances in Neural Information
Processing Systems, 34:29909-29921, 2021.

Zhang, H., Wang, S., Xu, K., Li, L., Li, B., Jana, S., Hsieh,
C.-J., and Kolter, J. Z. General cutting planes for bound-
propagation-based neural network verification. Advances
in Neural Information Processing Systems, 2022.

Zhang, Y., Zhao, Z., Chen, G., Song, F., and Chen, T.
Bdd4bnn: a bdd-based quantitative analysis framework
for binarized neural networks. In Computer Aided Verifi-
cation: 33rd International Conference, CAV 2021, Virtual
Event, July 20-23, 2021, Proceedings, Part I 33, pp. 175—
200. Springer, 2021.

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

Appendix: Supplementary Material

Deep Neural Networks (DNNs) are processing systems that include a collection of connected units called neurons, which
are organized into one or more layers of parameterized non-linear transformations. Given an input vector, the value of
each next hidden node in the network is determined by computing a linear combination of node values from the previous
layer and applying a non-linear function node-wise (i.e., the activation function). Hence, by propagating the initial input
values through the subsequent layers of a DNN, we obtain either a label prediction (e.g., for image classification tasks) or
a value representing the index of an action (e.g., for a decision-making task). Fig. 1 shows a concrete example of how a

Weighted Activated

Input sum Layer Output
5 RelLU

1] (g vl v3 1
1@ —— @ D

><[+5} [+5) ®
[0] (v - v3 03 /‘57

! 3 ¥ ReLU @

[—1] [0]

Figure 1: A simple example of a DNN A that will be used as a running example throughout the paper.

DNN computes the output. Given an input vector V; = [1,0]7, the weighted sum layer computes the value Vo = [+5, —1]7.
This latter is the input for the so-called activation function Rectified Linear Unit (ReLU), which computes the following
transformation, y = ReLU (x) = max(0, z). Hence, the result of this activated layer is the vector V3 = [+5,0]7. Finally,
the network’s single output is again computed as a weighted sum, giving us the value —5.

A. The DNN-Verification Problem

As an example of how this problem can be employed for checking the existence of unsafe input configurations for a DNN,
suppose we aim to verify that the DNN N of Fig. 1, for any input in the interval [0, 1], outputs a value greater than or equal
0. Hence, we define P as the predicate on the input vector v = (vi,vl) which is true iff v € [0, 1] x [0, 1], and Q as the
predicate on the output v} which is true iff v} = N (vi,v3) < 0, that is we set Q to be the negation of our desired property.
Then, solving the DNN-Verification Problem on the instance (N, P, Q) we get SAT iff there is counterexample that violates
our property.

Since for the input vector v = (1, 0) (also reported in Fig. 1), the output of A is < 0, in the example, the result of the
DNN-Verification Problem (with the postcondition being the negated of the desired property) is SAT, meaning that there
exists at least a single input configuration (vi, v3) that satisfies P and for which NV'(v1,v3) < 0. As a result, we can say that
the network is not safe for the desired property.

B. DNN-Verification and Tools

Due to the increasing adoption of DNN systems in safety-critical tasks, the formal method community has developed many
verification methods and tools. In literature, these approaches are commonly subdivided into two categories: (i) search-based
and (ii) SMT-based methods (Liu et al., 2021). The algorithm from the first class typically relies on the interval analysis
(Moore et al., 2009) to propagate the input bound through the network and perform a reachability analysis in the output
layer (Zhang et al., 2022)(Wang et al., 2021)(Corsi et al., 2021)(Wang et al., 2018). The second class, in contrast, tries to
encode the linear combinations and the non-linear activation functions of a DNN as constrained for an optimization problem
(Katz et al., 2017)(Tjeng et al., 2018)(Katz et al., 2019). Crucially, our work is built upon the promising results and the
constant improvement in the scalability of these methodologies. In particular, our exact count algorithm is agnostic to the
verification tool exploited as the backend and can thus take advantage of any improvement in the field.

In recent years, some effort has also been made to exploit the results of the formal verification analysis in practical application.
The work of (Amir et al., 2023), for example, proposes a methodology to provide guarantees about the behavior of robotic
systems controlled via DNNGs; here, the authors exploited a formal verification pipeline to filter the models that respect
some hard constraints. Other approaches attempt to improve adherence to some properties as part of the training process,

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

exploiting the results of the formal analysis as a signal to optimize(Marchesini et al., 2022)(Marchesini et al., 2021). We
believe our work can be used to drastically reduce computational time and provide more informative results, encouraging
the development of similar approaches to improve the safety of DNN-based systems.

C. The #DNN-Verification Problem

Fig. 2 shows an example of the execution of our algorithm presented in Sec. 3 for the DNN and the safety property described
above in A.

0,1], [0,1 . .

(13, 10411 We want to enumerate the total number of input configurations

v = (v}, v?) where both v{ and v7 satisfy P (i.e., they lie in the

Plo) A QiN(xo)) isSAT [{)0 1(;]49] (o>, 11 interval [0, 1]) and such that the output v; = N(v) is a value

Pxy) A =Q(N(xo)) isUNSAT [0,1]] A - -
strictly less than 0, i.e., v violates the safety property.

P(xp) A Q(N(x0)) S UNSAT 1105, 1] [[05, 1],
‘ [0,0.49]] [05, 1]] The algorithm starts with the whole input space and checks if
:;((’;”; , ?g,(j("z))')s oo / at least one point exists that outputs a value strictly less than
o 0 [[0.5, 0.74], [[0.75, 1], .
[0 0.497] [0,0.491] zero. The exact count method checks the predicate 3z | P(x) A

Q(N (z)) with a verification tool for the decision problem. If
the result is UNSAT, then the property holds in the whole input
Figure 2: Example execution of exact count for a partic- space, ar'ld the algorithm returns a VR of O%' Oth'erw1.se, if t_he
. . s verification tool returns SAT, at least one single violation point

ular A/ and safety property (assuming a discretization) - 3
factor of 0.01) exists, but we cannot assert how many similar configurations
' exist in the input space. To this end, the algorithm checks
another property equivalent to the original one, thus negating

the postcondition (i.e., ~Q = v‘f > 0). Here, we have two possible outcomes:

* P(xg) A =Q(N(x0)) is UNSAT implies that all possible 2o = (v{,v?) that satisfy P, output a value strictly less than
0, violating the safety property. Hence, the algorithm returns a 100% of VR in the input area represented by P. This
situation is depicted with the red circle in Fig. 2.

e P(xg) A=Q(N (1)) is SAT implies that there is at least one input configuration v = (v}, v?) satisfying PP and such

that A/(v) > 0. Therefore, the algorithm cannot assert anything about the violated portion of the area since there are
some input points on which N generates outputs greater or equal to zero and some others that generate a result strictly
less than zero. Hence, the procedure splits the input space into two parts, as depicted in Fig. 2.

This process is repeated until the algorithm reaches one of the base cases, such as a situation in which either P (z) A Q(N (z))
is not satisfiable (i.e., all the current portion of the input space is safe), represented by a green circle in Fig.2), or
P(x) A =Q(N(x)) is not satisfiable (i.e., the whole current portion of the input space is unsafe), represented by a red circle.
Note that the option of obtaining UNSAT on both properties is not possible.

Finally, the algorithm of exact count returns the VR as the ratio between the unsafe areas (i.e., the red circles) and the original
input area. In the example of Fig. 2, assuming a 2-decimal-digit discretization, we obtain a total number of violation points
equal to 8951. Normalizing this value by the initial total number of points (10201), and considering the percentage value,
we obtain a final VR of 87.7%. Moreover, the Violation Rate can also be interpreted as the probability of violating a safety
property using a particular DNN A. In more detail, uniformly sampling 10 random input vectors for our DNN A/ in the
intervals described by P, 8 over 10 with high probability violates the safety property. Clearly, by using this method, it is
possible to count but also enumerate all the violation points (using discretization at the desired level of detail). Moreover,
this approach makes it possible to obtain the set of violation areas (i.e., the circles shown in red in Fig. 2), thus allowing
for a result in the continuous domain. However, as shown by the authors, due to the #P-completeness of the problem, this
approach becomes soon unfeasible and struggles to scale on real-world problems; hence an approximate solution is required.

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

D. #DNN-Verification is #P-Complete
Theorem D.1. The #DNN-Verification problem is #P-Complete.

Proof. The proof of #P-completeness is similar and follows the one of NP-Completeness; the main difference is in
the concept of polynomial time counting reduction. As stated in (Valiant, 1979) and (Gomes et al., 2021), many NP-
complete problems are parsimonious, meaning that for almost all pairs of NP-complete problems, there exist polynomial
transformations between them that preserve the number of solutions. Hence, the reduction between two NP-Complete
problems can be directly taken as part of a counting reduction, thus providing an easy path to proving #P-completeness.

For our purpose, we follow the reduction between 3-SAT and DNN-Verification provided in the work of (Katz et al., 2017).
In more detail, we assume that the input nodes take the discrete values in {0, 1} for simplicity. Note that this limitation can
be relaxed using an e discretization to consider a range between [a, b] for the input space.

Recalling the hardness proof, we know that any 3-SAT formula ® can be transformed into a DNN A (with ReLUs activation
functions) and a property ¢, such that ¢ is satisfiable on NV if and only if @ is satisfiable. Specifically, (Katz et al., 2017)
provided three useful gadgets to perform the reduction:

1. disjunction gadget that maps a disjunction of three literals in a 3-CNF formula to the same result for a group of three
nodes in a DNN. Formally this gadget performs the following transformation: y; = 1 — max(0,1 — Z§=1 q}). Where

7
1, is the node that collects the result of the linear combination and subsequent Re LU activation of up to 3 nodes (qf)
from the previous layer. Hence, y; will be 1 if at least one input variable is set to 1 (or true), and y; will be 0 if all input
variables are set to 0. In words, this gadget maps a disjunction of literals in a 3-CNF to a combination of nodes in a
DNN, such that there is a one-one correspondence between the output of the nodes on a 0-1 input and the truth value
computed by the disjunction over the equivalent truth values.

2. negation gadget that on input z; € {0, 1} produces the output value y; = 1 — x;, hence modelling the exact behaviour
of a logical negation.

3. conjuction gadget which maps the satisfiability of a 3-CNF & into a ¢ satisfiability for a DNN. In particular, ® is
satisfied only if all clauses C1, . .., C,, are simultaneously satisfied. Hence, if all the nodes are in the domain {0, 1},
for satisfiability, we want the resulting output of a forward propagation equal to n, i.e., the number of clauses. This
gadget maps the conjunction of n clauses in a 3-CNF, i.e., the satisfiability, into the linear combination of n nodes to
produce an output value. Therefore, C; A Cy A - - - A C,, = true if and only if the output of the gadget is n.

From the combination of these three gadgets, we obtain a reduction transforming a 3-CNF formula ¢ into a DNN N Let us
consider the instance to the DNN-Verification problem asking to check whether there exists an input configuration on which
N outputs a value different from n. Then, we have that the formula ¢ is satisfiable, i.e., there is a truth assignment to the
input variables if and only if for the DNN A there exists an input configuration (in fact necessarily only using values in
{0,1}) that induces the output y = n, i.e., if and only if, there exists a violation.

As observed, this reduction also shows that each distinct satisfying assignment for ¢ is mapped to a distinct input configuration
producing output n and vice versa, each input configuration on which A outputs n must be {0, 1}-valued and corresponds
to a truth assignment that satisfies ¢.

Therefore counting the number of satisfying assignments for ¢ is equivalent to counting the number of violations for .
Hence, from the #P-Completness of #3SAT (Valiant, 1979) it follows (via the above reduction) that also #DNN-Verification
is #P-Complete.

O

E. A Provable Confidence Interval of the VR using CountingProVe

This section shows how a provable confidence interval can be defined for the VR using CountingProVe. Recalling the
definition of Violation Rate (Def. 3.2), it is possible to define a complementary metric, the safe rate (SR), counting all the
input configurations that do not violate the safety property (i.e., provably safe). In particular, we define:

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

Definition E.1. (Safe Rate (SR)) Given an instance of the DNN-Verification problem R = (N, P, Q) we define the Safe
Rate as the ratio between the number of safe points and the total number of points satisfying P. Formally:
{z [P@)}\T(R)] _ [TV, P, -9

(= [P (o | P@)Y)

SR =

where the numerator indicates the sum of non-violation points in the input space. From the second expression, it is easy to
see that Count ingProVe can be used to compute a lower bound of the SR, by running Alg. 1 on the instance (N, P, = Q).

Theorem E.2. Given a Deep Neural Network N and a safety property (P, Q), complementing the lower bound of the Safe
Rate obtained using Count i ngProVe, which is correct with a probability > (1 — 275%), we obtain an upper bound for
the Violation Rate with the same probability.

Proof. Suppose we compute the Safe Rate with Count ingProVe. From Theorem 4.1, we know that the probability of
overestimating the real SR tends exponentially to zero as the iterations ¢ grow. Hence, Pr(SR > SR*) < 275, We now
consider the Violation Rate as the complementary metric of the Safe Rate, and we write VR = 1 — SR (as the SR is a
value in the interval [0, 1]). We want to show that the probability that the VR, computed as VR = 1 — SR, underestimates
the real Violation Rate (V R*) is the same as theorem 4.1.

Suppose that at the end of ¢ iterations, we have a V R < V R*. This would imply by definition that 1 — SR < 1 — SR*, i.e.,
that SR > SR*. However, from Theorem 4.1, we know that the probability that Count ingProVe returns an incorrect
lower bound at each iteration is 277, Hence, we obtained that the VR computed as VR = 1 — SR is a correct upper bound
with the probability (1 - 275%) as desired. O

F. Hyperparameters and Ablation Study

We report in this section the hyperparameters used to collect the results shown in the main paper. Regarding the heuristic
presented in the Alg. 1, we want to point out to the reader that a possible optimization is to perform a fixed number of s
simplifications before calling the exact count method. In fact, as shown in the main paper, given the complexity of the
problem, calling the exact count too frequently when input space is still considerably large typically results in a timeout,
thus causing a waste of computation and time. For this reason, we decided to perform a fixed number of preliminary
simplifications before calling the exact count. In more detail, we set s = 17 for the first row of Tab. 1, and s = 45 for the
remaining part. The value s for the preliminary simplifications can be obtained assuming any discretization of the initial
input space IV, described by P. Hence, relying on the considerations discussed in the Sec. 4 for the polynomiality of
the approximation, we set s = |log N | — 1 to ensure the termination of an exponential time exact counter. Moreover, to
collect the data of Tab. 1 and 8, as stated in the main paper, we set 5 = 0.02, ¢ = 350 obtaining a confidence level of 99%
(see theorem 4.1). Finally, regarding the number of samples to compute the median, we set m = 1.5M for the scalability
experiment of Sec. 5 and m = 3M for the ACAS Xu experiments.

We performed additional experiments to highlight the impact of different hyperparameters on the quality of the estimate
returned by Count ingProVe. Crucially, as specified in section 4 in the main paper, the correctness of the algorithm is
independent of the heuristic used by the algorithm. We now analyze the impact on the estimate of different parameters such
as 3, t, and m.

Experiments on Different 5 and ¢

Tab. 2 shows the comparison results between different hyperparameters for Count ingProVe. In detail, all the experiments
are performed on the same model “Model_2_56, using s = 17 preliminary simplifications before calling the exact count.
Moreover, we use the same number of m = 1.5M samples to compute the median value in the heuristic. We test three
confidence levels at 85%, 90%, and 99%, respectively, setting three possible value pairs for 5 and ¢.

Regarding the impact of the error tolerance factor (3, as expected, as this value increases, the confidence interval deterio-
rates.We justify this as the tolerance factor appears in the formula for calculating the violation at the end of each while loop
(2°=# - ExactCount). Hence, a larger 3 strongly impacts the value of the estimate, thus also potentially deteriorating the
lower and upper bounds. However, we want to emphasize once again as for any value tested at a high confidence level, the
estimate returned by Count ingProVe is correct, i.e., the lower bound does not overestimate, and the upper bound never
underestimates the value returned by the true count (equals to 55.22%).

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

Confidence || Hyperparameters CountingProVe

15} t Interval confidence VR Size Time
0.02 350 [54.13%, 57.5%] 337% 34 min

99% 0.1 70 [51.36%, 59.17%] 7.81% 8 min
1.5 5 [19.39%, 84.35%] 64.96% 32 sec
0.02 170 [52.99%, 56.68%] 3.69% 17 min

90% 0.1 34 [51.37%, 58.93%] 7.55% 4 min
1.5 3 [19.53%, 84.32%] 64.79% 18 sec
0.02 137 [53.52%, 57.01%] 348% 14 min

85% 0.1 27 [51.47%, 58.67%] 7.2% 3 min
1.5 2 [19.56%, 84.24%] 64.67% 12 sec

Table 2: Comparison of different hyperparameters for Count ingProVe on Model 2_56. The true VR is equal to 55.22%.

Interestingly, we note that by setting the same value for the error tolerance factor (8 = 0.02), the estimate for the three
confidence levels is quite similar. Our approximation thus allows choosing the desired confidence level while obtaining a
good estimate and potentially saving time. In fact, by choosing a confidence of 85%, we obtain an estimate very close to the
best estimate obtained with 99% confidence, halving the computation time.

Impact of the m Samples in CountingProVe

Although the correctness of the approximation does not depend on the number of violation samples to compute the median
value (as shown in Theorem 4.1), we performed an additional experiment to understand its impact on the quality of the
estimation. The experiment was performed on the “Model_2_56" model with parameters 5 = 0.02,¢ = 350, s = 17. We
report in Tab 3 the comparison of four different sample values, 500k, 1M, 1.5M,3M, and finally 5M . As we can notice,
increasing the sampling size m to find the violation points to compute the median leads to a more accurate estimate of the
true violation rate. Intuitively, we obtain a (theoretically) higher probability of finding violation points in the input space by
increasing the number of samples. Hence, the more violation points we randomly sample, the more information we obtain to
compute an accurate median. However, using more samples results in more time to compute the median and, consequently,
the confidence interval of the violation rate.

m samples CountingProVe (confidence > 99%)
Interval confidence VR Size Time
500k [52.59%, 66.36%] 13.8% 13 min
1M [51.45%, 57.2%] 5.74% 24 min
1.5M [54.13%, 57.5%] 3.37% 34 min
3M [53.41%, 56.63%] 321% 40 min
S5M [54.17%, 56.42%] 2.24% 60 min

Table 3: Comparison of different m for CountingProVe

Alternative Backends for CountingProVe

To show that the correctness of our approximation is independent of the backend chosen, we conducted additional experiments
using BaB (Bunel et al., 2018) and NSVerify (Lomuscio & Maganti, 2017) as the exact counters instead of ProVe (Corsi
et al., 2021) for the final count on the leaf in Count ingProVe. To perform a fair analysis, given the stochastic nature of
our approximation, we set the same seed for all methods tested, only changing some hyperparameters and network sizes. We
report in Tab. 4 the results of our experiments. As expected, the resulting interval of confidence for the VR is the equivalent

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

Instance Hyperparameters CountingProVe

B t s m Backend Interval VR Size Time
Model 2_56 0.1 70 15 1.5M BaB [51.36%, 59.17%] 7.81% 10 min
Model 256 0.1 70 15 1.5M ProVe [51.36%, 59.17%] 7.81% 8 min
Model 2_56 0.02 350 22 1.5M BaB [53.77%, 57.03%] 3.26% 60 min
Model 256 0.02 350 22 1.5M ProVe [53.77%, 57.03%] 3.26% 50 min
Model 595 0.02 350 79 1.5M BaB [92.42%, 96.22%] 3.8% 185 min
Model_5_95 0.02 350 79 1.5M NSVerify [92.42%, 96.22%] 3.8% 180 min
Model_5_95 0.02 350 79 1.5M ProVe [92.42%, 96.22%] 3.8% 150 min

Table 4: Comparison of different backends for CountingProVe

using any exact counters or hyperparameters in all the tests performed. In more detail, in the first two rows of Tab. 4, we
use the same model (Model_2_56), only varying the hyperparameters for the confidence (i.e., 8 and t), and the number of
preliminary splits s. We can notice as long as the network size is still small, the use of the GPU (used in ProVe) does not
bring much benefit. In fact, there is a slight difference in the time to compute the interval of confidence of the VR in both tests
with the model with only two input nodes. Moreover, while performing multiple preliminary splits (s) can take more time, it
also slightly improves the confidence interval. Crucially, notice that in the last two rows of Tab. 4 a little improvement of the
interval confidence of VR w.r.t the results presented in Tab. 1 and 2. Regarding the last row of Tab. 4, we used a different
model (Model_5_95) to test the scalability of other exact counters in combination with Count ingProVe. The interesting
thing to point out in this experiment is that BaB (or any different DNN-verification tool) used as a backend for the exact
count on the same model results in timeout (i.e., after 24 hours, it does not return a result) as reported in Tab 1. However,
using it as a backend in our approximation, in about 3 hours, can return a very tight confidence interval of the amount of the
input space that presents violations. This shows that the intuition behind our approximation brings significant scalability
improvements. Finally, in this last experiment, we confirm what we mentioned above. As the network grows, having GPU
support brings significant improvements in timing, as ProVe, in this experiment, saves 30 minutes of computation. Hence,
this result motivates us to use it as the “default” backend for our approximation. Moreover, ProVe can verify any DNNs,
i.e., with any activation function, which is not typically possible with any state-of-the-art DNN-verification tool. However,
this experiment clearly shows that any verifier (perhaps that exploits GPUs) can be employed in Count ingProVe, so
potentially future improvements or new methods can be easily integrated into our approximation.

Discretization

It is crucial to point out that discretization is not a requirement of our counting approach. In fact, supposing to have a
backend that can deal with continuous values, Count ingProve would not require such discretization. Nevertheless, the
discretization factor might be a parameter of the algorithm. To this end, we performed an analysis of the impact of this
parameter, reporting the results in Tab. 5. Our experiments demonstrate that using a less fine-grained discretization produces
less accurate outcomes, but it enhances the efficiency of the process in terms of time. In the main paper, we opted for a
discretization value of 3 (i.e., 0.001) that provides a good balance between time and accuracy.

Rounding CountingProVe (confidence > 99%)
(decimal digit) Interval Size Time
1 64.8 +2.2% ~213 min
3 2.83 £0.19% ~242 min
5 2.21+0.38% ~315 min

Table 5: Different discretization test on property ¢o of ACAS Xu.
Single Check Verification

In Tab. 6, we provide the results of our additional experiments on the single check verification using a-5-C ROW N (Wang
etal., 2021; Zhang et al., 2022). We point out that this does not provide the same information as our proposed approach.
Specifically, running a decision verifier multiple times does not provide information about the actual number of violations.
Nevertheless, as reported in the main paper, the UNSAT case can be interpreted as a counting result, where the answer is
zero violations.

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

Models
2.5 2.6 2.7 3.3 4.2
Result SAT || SAT || SAT || UNSAT || UNSAT
Time (s) | 8.2 8.1 8.12 74.23 85.1

Table 6: Single Check Verification on property ¢o of ACAS Xu.

G. Full Experimental Results

We report in Tab8 the full results of comparing
CountingProVe and the exact counter on scalability
experiment in the first block, and on ¢s of the ACAS Xu
benchmark discussed in Sec.5. As stated in the main paper,
we consider only the model for which the property ¢o does
not hold (i.e., the models that present at least one single input
configuration that violate the safety property). From the results
of Tab 8, we can see that our approximation returns a tight
interval confidence (mean of 2.83%) of the VR for each model
tested in about 4 hours. We want to underline that these
obtained results do not exploit any particular optimization of
our approximation, and therefore the times to compute these
intervals can be greatly improved. For example, a simple
optimization would compute the various ¢ iterations in parallel,
significantly reducing computation times. Finally, Fig. 3 shows
a 3d representation of the second property of the ACAS Xu
benchmark (i.e., ¢3), comparing the possible outcome of a
standard formal verifier, namely DNN-Verification, and the
problem presented in this paper #DNN-Verification.

Experiments on a Different Property

T

DNN — Verificm Tntruder

Figure 3: Explanatory image of the possible impact of
#DNN-Verification in safety-critical contexts. A stan-
dard verifier returns only a violation point (highlighted
in the image with a green circle), limiting the inter-
pretability of the results. In contrast, our approach paves
the way to estimate the entire dangerous area (depicted
in red in the figure).

To validate the correctness of our approximation, we also performed a final experiment on property ¢s of the Acas Xu
benchmark. In particular, this property encodes a scenario in which if the intruder is directly ahead and is moving towards
the ownship, the score for COC will not be minimal (we refer to (Katz et al., 2017) for further details). This property
is particularly interesting as it holds for all 45 models, i.e., we expect a 0% of violation rate for each model tested. For
simplicity, in Tab. 7 we report only the first 5 models since the results were very similar for all the DNNs tested. As
expected, we empirically confirmed that also for this particular situation, the lower and upper bounds computed with
CountingProVe never overestimate and underestimate respectively the true value of the violation rate, in this case, 0%.

Instance CountingProVe (confidence > 99%)
Interval confidence VR Size Time
¢3 ACAS Xu_1.1 [0%, 2.26%] 2.26% 215 min
¢3 ACAS Xu_1.2 [0%, 2.88%] 2.88% 216 min
¢3 ACAS Xu_1.3 [0%, 2.30%] 2.30% 215 min
¢3 ACAS Xu_1.4 [0%, 2.47%] 2.47% 218 min
¢3 ACAS Xu_1.5 [0%, 2.48%] 2.48% 214 min

Table 7: CountingProVe on ACAS Xu ¢3 property

Formal Verification for Counting Unsafe Inputs in Deep Neural Networks

Instance Exact Count CountingProVe (confidence > 99%)
BaB
Violation Rate Time Interval confidence VR Size Time

Model 220 20.78% 234 min [19.7%, 22.6%] 2.9% 42 min
Model 2_56 55.22% 196 min [54.13%, 57.5%] 3.37% 34 min
Model 2_68 68.05% 210 min [66.21%, 69.1%] 2.89% 45 min
Model _5.09 - 24 hrs [8.42%, 13.2%] 4.78% 122 min
Model 550 - 24 hrs [48.59%, 52.22%] 3.63% 124 min
Model 595 - 24 hrs [91.73%, 96.23%] 4.49% 121 min
Model_10_76 - 24 hrs [74.25%, 77.23%)] 3.98% 300 min
¢o ACAS Xu 2.1 - 24 hrs [0.45%, 5.01%] 4.56% 246 min
@2 ACAS Xu2.2 - 24 hrs [1.06%, 4.81%] 3.75% 246 min
@2 ACAS Xu.2.3 - 24 hrs [1.23%, 4.21%] 2.98% 241 min
¢o ACAS Xu 2.4 - 24 hrs [0.74%, 3.43%] 2.68% 243 min
@2 ACAS Xu.2.5 - 24 hrs [1.67%, 4.10%] 2.42% 240 min
@2 ACAS Xu 2.6 - 24 hrs [1.01%, 3.59%] 2.58% 248 min
¢o ACAS Xu 2.7 - 24 hrs [2.35%, 5.22%] 2.87% 240 min
@2 ACAS Xu 2.8 - 24 hrs [1.77%, 4.68%] 2.92% 248 min
@2 ACAS Xu29 - 24 hrs [0.18%, 2.77%] 2.59% 239 min
¢o ACAS Xu. 3.1 - 24 hrs [1.62%, 4.98%] 3.36% 242 min
¢o2 ACAS Xu 3.2 - 24 hrs [0%, 2.50%] 2.5% 243 min
@2 ACAS Xu.3.3 - 24 hrs [0%, 2.54%] 2.54% 245 min
¢o ACAS Xu 3.4 - 24 hrs [0.26%, 3.08%] 2.82% 244 min
¢2 ACAS Xu.3.5 - 24 hrs [0.92%, 3.60%] 2.68% 244 min
@2 ACAS Xu.3.6 - 24 hrs [1.71%, 4.48%] 2.77% 251 min
¢o ACAS Xu. 3.7 - 24 hrs [0.14%, 2.64%] 2.49% 213 min
¢2 ACAS Xu 3.8 - 24 hrs [0.75%, 3.28%] 2.54% 216 min
@2 ACAS Xu3.9 - 24 hrs [2.11%, 5.20%] 3.09% 242 min
¢o ACAS Xu 4.1 - 24 hrs [0.33%, 3.04%] 2.71% 246 min
¢2 ACAS Xu.4.3 - 24 hrs [1.3%, 3.61%] 2.31% 243 min
@2 ACAS Xu 4.4 - 24 hrs [0.79%, 3.57%] 2.79% 247 min
¢o ACAS Xu 4.5 - 24 hrs [0.71%, 4.03%] 3.33% 240 min
¢o ACAS Xu 4.6 - 24 hrs [1.65%, 4.72%] 3.08% 244 min
@2 ACAS Xu 4.7 - 24 hrs [1.67%, 4.33%] 2.66% 248 min
¢o ACAS Xu 4.8 - 24 hrs [1.68%, 4.17%] 2.49% 241 min
¢o ACAS Xu 4.9 - 24 hrs [0.10%, 2.61%] 2.51% 247 min
@2 ACAS Xu.5.1 - 24 hrs [1.06%, 3.76%] 2.7% 240 min
¢o ACAS Xu5.2 - 24 hrs [0.86%, 3.58%] 2.72% 248 min
¢o ACAS Xu 5.4 - 24 hrs [0.75%, 3.25%] 2.5% 239 min
@2 ACAS Xu.5.5 - 24 hrs [1.66%, 4.35%] 2.68% 247 min
¢o ACAS Xu. 5.6 - 24 hrs [1.81%, 4.45%] 2.64% 240 min
¢o ACAS Xu.5.7 - 24 hrs [1.75%, 5.15%] 3.40% 246 min
@2 ACAS Xu.5.8 - 24 hrs [1.96%, 4.65%] 2.70% 241 min
@2 ACAS Xu5.9 - 24 hrs [1.62%, 4.40%] 2.77% 241 min
Mean 2.83% 242 min

Table 8: Comparison of Count ingProVe and exact counters on different benchmark setups.

