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Abstract
Neural networks are susceptible to adversarial ex-
amples, including one pixel attacks. Existing one
pixel attacks iteratively generate candidate adver-
sarial examples and submit them to the network
until finding a successful candidate. However,
current attacks require a very large number of
queries, which is infeasible in many practical set-
tings. In this work, we leverage program synthesis
and identify an expressive program sketch that en-
ables the computation of adversarial examples
using significantly fewer queries. We introduce
OPPSLA, a synthesizer that instantiates the sketch
with customized conditions. Experimental results
show that OPPSLA achieves a state-of-the-art suc-
cess rate while requiring an order of magnitude
fewer queries than existing attacks.

1. Introduction
Over the past decade, many works have demonstrated that
deep neural networks (DNNs) are susceptible to adversarial
example attacks (Goodfellow et al., 2015; Kurakin et al.,
2017; Szegedy et al., 2014; Yuan et al., 2019; Madry et al.,
2018). Su et al. (2017) consider an extremely limited setting
for attacking an image classifier where the attacker is al-
lowed to change a single pixel and propose an attack, called
a one pixel attack. Since then, several works have proposed
one pixel attacks as well as few pixel attacks (Alatalo et al.,
2022; Nguyen-Son et al., 2021; Quan et al., 2021; Croce
& Hein, 2019; Croce et al., 2022). These kinds of attacks
are highly challenging because the perturbation region is
extremely small and the perturbation is not differentiable.
To cope, one and few pixel attacks iteratively generate can-
didate adversarial examples and submit them to the network,
until finding a successful candidate. However, existing ap-
proaches necessitate thousands of queries or more, mak-
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ing their attacks very expensive, or even infeasible, in a
real-world setting where the network limits the number of
queries. For example, many online classifiers allow the user
to pose a limited number of queries for free per month, after
which users can pay for more queries: Amazon Rekognition,
Microsoft Azure Computer Vision API, Clarifai moderation-
recognition API and Google Cloud Vision API allow at
most 5000 queries for free. To make few pixel attacks more
practical, the Sparse-RS attack (Croce et al., 2022) aims
at minimizing the number of queries posed to the network.
Sparse-RS obtains a state-of-the-art success rate with a few
thousand queries. However, in practical settings, this num-
ber is still high. To illustrate, our experiments show that
Sparse-RS obtains at best a success rate of 51% with 1000
queries (Section 5). This raises the question: Can we com-
pute one pixel attacks with a few hundred queries?

In this work, we draw inspiration from program synthesis
and propose to compute one pixel adversarial programs.
Given an image classifier and a training set of images, our
goal is to synthesize a program that, given a classifier and an
image to attack, generates an adversarial example by dynam-
ically identifying the most prominent pixel locations and
perturbations for the attack. Our programs are based on a
program sketch (Solar-Lezama, 2009). Like prior one pixel
attacks, an adversarial program generates candidate adver-
sarial examples and submits them to the network. However,
a synthesized program dynamically prioritizes the adver-
sarial example candidates, in order to reduce the number
of queries. This is obtained by the synthesized conditions.
Unlike prior one pixel attacks, the large number of queries
is only required for the synthesis process. We introduce
OPPSLA, a synthesizer for One Pixel Program Sketch for
adversariaL Attacks. OPPSLA employs a stochastic search
inspired by Metropolis-Hastings (Chib & Greenberg, 1995).
Our search produces grammatically correct programs, mini-
mizing the number of queries.

We evaluate OPPSLA on CIFAR-10 and ImageNet net-
works and show that it obtains a state-of-the-art success
rate. Further, it requires significantly fewer queries than
Sparse-RS (Croce et al., 2022), the current state-of-the-art
attack that minimizes the number of queries. We further
show that the number of queries posed to the classifier dur-
ing the synthesis is relatively low. Lastly, we show that
our adversarial programs transfer to other networks with
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a relatively small increase to the number of queries. This
makes our adversarial programs practical, because attackers
need not synthesize a program for every network.

2. Problem Definition
In this section, we define our problem. An image clas-
sifier is a function mapping a colored image to a score
vector over the possible classes C = {1, . . . , c}, that is:
N : [0, 1]d1×d2×3 → Rc. We focus on classifiers imple-
mented by a neural network, whose output layer returns a
vector N(x) ∈ Rc assigning a score for each class. Given
an input x, the classification of the network is the class with
the highest score, c′ = argmax(N(x)).

In one pixel attacks, an attacker perturbs a single pixel
with the goal of causing the network to misclassify. For-
mally, given a classifier N and an image x ∈ [0, 1]d1×d2×3

correctly-classified as class cx, the goal is to compute δ ∈
[−1, 1]d1×d2×3 such that ||δ||0 = 1, x+ δ ∈ [0, 1]d1×d2×3

and argmax(N(x + δ)) ̸= cx. Note that the attacker is al-
lowed to arbitrarily perturb the chosen pixel, in particular,
they can perturb every RGB channel. We address the prob-
lem of computing one pixel attacks in a black-box setting
(the attacker can only submit inputs to the classifier to obtain
their output), with a minimal number of queries.

3. Key Idea: Adversarial Programs
To compute minimal-query one pixel attacks, we propose to
rely on prioritizing programs. A prioritizing program con-
siders every possible candidate adversarial example, and its
goal is to quickly identify a successful candidate by relying
on a dynamic prioritization of the candidates. A prioritizing
program has a predefined structure, called a sketch (Solar-
Lezama, 2009), and its missing parts are the conditions
defining the prioritization. Namely, the task of identifying
a suitable DSL and a search algorithm is relevant only for
instantiating these conditions. Note that a prioritizing pro-
gram is guaranteed to find a successful adversarial example,
if exists one in our space of perturbations, and its goal is to
minimize the number of queries. We next present our sketch
and then the language of conditions.

3.1. A Sketch for One Pixel Attacks

At a high-level, the flow of our sketch is as follows (the full
sketch is in Appendix A). It first initializes a priority queue
with all possible location-perturbation pairs. Then, while the
queue is not empty, it pops the first pair, perturbs the image
accordingly, and submits to the network. If the perturbed
image is a successful adversarial example, it returns this
pair. Otherwise, it reorders the closest pairs to this (failed)
pair. Some pairs are pushed to the back of the queue, and
some pairs are conceptually pushed to the front of the queue

by eagerly checking them. We next provide details.

Our Perturbation Space The complete space of perturba-
tions is infinite, because every pixel’s RGB channel can be
perturbed to any value in [0, 1]. Even if we assume a finite
computer representation, the number of possible perturba-
tions is still too high for our sketch to explicitly maintain all
possible location-perturbation pairs. Instead, we adopt the
insight of Sparse-RS (Croce et al., 2022), showing that the
vast majority of successful one pixel adversarial examples
can be defined by a perturbation corresponding to one of
the eight corners of the RGB color cube. Thus, we focus
on perturbations in which every RGB channel is 0 or 1. In
total, the number of possible location-perturbation pairs is
8 · d1 · d2, where d1 · d2 is the number of pixels.

Distances over Pairs and Closest Pairs As described, the
sketch iteratively pops a pair from the location-perturbation
queue, and if its corresponding perturbed image is not a suc-
cessful adversarial example, the sketch reorders its closest
pairs. We define closest pairs with respect to two distance
metrics over the pairs: one for the location and another for
the pixel value. The distance between two locations l1 =
(i1, j1), l2 = (i2, j2) ∈ [d1] × [d2] is their L∞ distance:
||l1−l2|| ≜ max{|i1−i2|, |j1−j2|}. The distance between
two pixels p1 = (r1, g1, b1), p2 = (r2, g2, b2) ∈ [0, 1]3 is
their L1 distance: ||p1−p2|| ≜ |r1−r2|+|g1−g2|+|b1−b2|.
Given a pixel p and the set S = {0, 1}3 consisting of all
eight corners of the RGB cube, the farthest pixel in S is the
pixel p1 maximizing the pixel distance from p. Similarly,
the second farthest pixel in S is the next pixel maximizing
the pixel distance from p, and so on. We next define the
closest pairs. Given the queue of location-perturbation pairs
L and the last pair (l, p) that has been popped (i.e., it is not
in L): (1) the closest pairs with respect to the location are
all pairs in L whose location distance from (l, p) is 1 and
their perturbation is p, and (2) the closest pair with respect
to the perturbation is the next pair in L whose location is l.

Conditions for Reordering Since there are two kinds
of closest pairs and a pair can be pushed back or front,
our sketch has four conditions. The goal of the conditions
is to identify similarities between the failed pair and its
closest pairs. Each condition can express a different kind of
similarity, and thus some closest pairs are pushed back and
others are pushed front.

3.2. The Condition Language

Our language consists of conditions over pixel locations,
pixel values, and the network’s output, which is all the in-
formation our adversarial programs have because of the
black-box setting. The language leverages insights of prior
works, providing a post-hoc analysis of the network’s weak-
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(Program) P ::= (B1, B2, B3, B4)
(Condition) B ::= F > r | F < r
(Function) F ::= max(p) | min(p) | avg(p) |

score diff(N(x1), N(x2), c
′) |

center(l)
(Pixel) p ∈ [0, 1]3

(Location) l ∈ [d1]× [d2]
(Constant) r ∈ R
(Network) N ∈ (Rc)[0,1]

d1×d2×3

(Image) x ∈ [0, 1]d1×d2×3

(Class) c′ ∈ {1, . . . , c}

Figure 1. Syntax of the condition language.

nesses for one pixel attacks (Alatalo et al., 2022; Vargas
& Su, 2020). Alatalo et al. (2022) show that perturbing
pixels close to the center of the image is more likely to lead
to successful adversarial examples. Thus, our language in-
cludes a condition over the distance of a pixel location to the
center of the image. Alatalo et al. (2022) also observe that
changing a dark pixel, within a dark spot, sometimes leads
to successful adversarial examples. Inspired by this obser-
vation, our language supports conditions requiring high or
low values of the minimum, maximum and average of the
RGB values. Vargas & Su (2020) focus on CIFAR-10 classi-
fiers and provide a locality analysis. They show that nearby
pixels have a similar level of vulnerability. Our language
thus supports a condition that compares the difference in the
network’s confidence in the true class before and after the
perturbation to a given number.

Grammar Figure 1 shows the grammar of our condition
language. A program P consists of four conditions. A
condition B is an inequality constraint over a function F
and a real number r. A function F is: (1) max, min, or
avg over a pixel p ∈ [0, 1]3, (2) score diff that given
two output vectors N(x1), N(x2) and a class c′ returns the
difference between N(x1)c′ and N(x2)c′ , and (3) center
that given a location l ∈ [d1] × [d2] returns the location
distance from the center of the image.

Example As an example, these are the four conditions
synthesized for one of our adversarial programs:

• [B1] score diff(N(x), N(x[l← p]), cx) < 0.21,
• [B2] max(xl) > 0.19,
• [B3] score diff(N(x), N(x[l← p]), cx) > 0.25,
• [B4] center(l) < 8.

The first condition leads to pushing to the back of the queue
nearby pixels if the confidence difference is below 0.21,
while the third condition leads to pushing to the front nearby
pixels if the confidence difference is above 0.25. The second
condition leads to pushing to the back of the queue the next

Figure 2. Illustration of the abstract syntax tree representing a pro-
gram in our search space.

pair in the queue with the same location if the pixel at xl

has an RGB channel that is above 0.19 (i.e., it is not very
dark). The last condition leads to pushing to the front the
next pair with the same location if the (failed) pair is close
to the center of the image (the L∞ distance is at most 7).

4. OPPSLA: A Synthesizer for our Sketch
We next present OPPSLA, a synthesizer for instantiating the
sketch with conditions (its algorithm is in Appendix B).
OPPSLA relies on a stochastic search, inspired by the
Metropolis-Hastings algorithm (Chib & Greenberg, 1995),
that supports our typed conditions and unique scoring. Our
scoring does not count successes, but rather the number of
queries until reaching them. We begin with a background
on Metropolis-Hastings and then introduce our adaptations.

The Metropolis-Hastings (MH) Algorithm The MH al-
gorithm is a sampling algorithm based on Markov Chain
Monte Carlo (MCMC) (Andrieu et al., 2003). The goal of
MH is to effectively obtain random samples from a proba-
bility distribution that is difficult to directly sample. Instead,
MH relies on a score function S : P → R, mapping a candi-
date solution to a real-valued score. MH operates iteratively.
It begins from a random candidate P . At every iteration, it
defines the next candidate P ′ by mutating the current candi-
date P . It keeps (accepts) P ′ with a probability determined
by comparing the scores of P and P ′. If it keeps P ′, it sets
P = P ′. Generally, MH is unaware of structures posed on
the possible solutions (e.g., typed expressions). However,
prior works leverage MH even for structured search spaces
by enforcing the allowed structure by other means (Schkufza
et al., 2013; Goodman et al., 2008).

Our Stochastic Search Our stochastic search is inspired
by MH. Its search space is all programs that instantiate our
sketch. We represent a program in this space as an abstract
syntax tree, similarly to Gulwani et al. (2017), but only over
the four conditions. The root is the program P and it has
four children, one for each condition. Each condition node
has two children, one for the function F and one for the
number r. Figure 2 illustrates this tree. Given a program P ,
a mutation is computed by mutating its tree. A tree mutation
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involves uniformly randomly selecting a node (the root, a
condition, a function or a real number), and mutating all
nodes in its subtree. Each non-root node is replaced based
on its respective grammar rule to guarantee that the overall
condition is well-typed. Consequently, the mutated tree
corresponds to a well-typed program in our search space.

The Score Function By construction, every instantiation
of our sketch finds a successful adversarial example, if ex-
ists in our perturbation space. The goal is to find such an
example with a minimal number of queries. Thus, we define
the score function based on the average number of queries
over a given training set. Formally, given a program P , its
score is computed by first executing P on the classifier N
and every pair of an image and its true class in the given
training set. Let QP be the average number of queries sub-
mitted to N by P for inputs for which P finds a successful
adversarial example (we ignore inputs for which P does not
find a successful example, because their number of queries
is fixed). Then, our score is S(P ) = exp(−β · QP ), for
β ∈ R+. Since QP ≥ 0, this is a positive, monotonically de-
creasing function. The maximal score is 1 and it is obtained
for QP = 0.

5. Evaluation
We evaluate OPPSLA1 on CIFAR-10 (Krizhevsky et al.,
2009) and ImageNet (Deng et al., 2009). For CIFAR-10, we
use three pre-trained convolutional neural networks: VGG-
16-BN (Simonyan & Zisserman, 2015), ResNet18 (He et al.,
2016), and GoogLeNet (Szegedy et al., 2015). For Im-
ageNet, we use two pre-trained convolutional neural net-
works: DenseNet121 (Huang et al., 2017) and ResNet50 (He
et al., 2016). For every CIFAR-10 network, we run OPPSLA
with ten training sets, one for each class, each consisting
of 50 images. We evaluate the adversarial programs over
CIFAR-10’s test set, consisting of 1000 images for each
class (misclassified images are discarded). For every Im-
ageNet network, we run OPPSLA with 11 training sets,
each with a different class (great white shark, tiger shark,
hammerhead, electric ray, stingray, cock, hen, house finch,
junco, bulbul, jay) and consisting of ten images. We evalu-
ate the adversarial programs over a test set, consisting of 50
images for each class (misclassified images are discarded).

Comparison to Baselines We compare OPPSLA to
Sparse-RS (Croce et al., 2022), the state-of-the-art for one
pixel and few pixel attacks, and to One Pixel Attack (Su
et al., 2017), denoted by SuOPA. Unlike OPPSLA and
Sparse-RS, SuOPA considers every perturbation in [0, 1]3

(and not only the eight corners of the RGB color cube), and it
does not aim to minimize the number of queries. We let each

1https://github.com/TomYuviler/OPPSLA

Table 1. Transferability: the number of queries when running pro-
grams synthesized for another classifier.

Synthesized for: GoogLeNet ResNet18 VGG-16-BN
Target Avg. #Queries Avg. #Queries Avg. #Queries

GoogLeNet 104.07 135.32 140.92
ResNet18 215.16 115.23 139.00

VGG-16-BN 202.45 115.10 105.54

approach run on all images in the test set. We record the suc-
cess rate for every number of queries q ∈ {1, 2, . . . , 10000}.
We note that the minimal number of queries submitted by
SuOPA is 400 (determined by population size). We
also note that for ImageNet classifiers the number of one
pixel adversarial examples is over 400000, so our query
limit (q ≤ 10000) is very challenging. Figure 3 shows,
for a given maximal number of queries (up to 100, 500, or
10000) and a classifier, the success rate over the test set. For
CIFAR-10 classifiers, the results show that OPPSLA signif-
icantly outperforms both baselines in terms of computing
minimal-query one pixel attacks. In particular, if the number
of queries is smaller or equal than 100, OPPSLA success
rate is 59% higher than Sparse-RS’s success rate. When the
number of queries is a few thousand, the success rate of both
baselines comes close to OPPSLA’s success rate. However,
OPPSLA’s success rate is still higher. For ImageNet classi-
fiers, the results show that (1) for 10000 queries, OPPSLA’s
success rate is 12% higher than Sparse-RS’s success rate,
and (2) for a few hundred queries, OPPSLA often has a
higher success rate.

Transferability Transferability is the ability of an adver-
sarial attack, computed for a particular classifier, to be effec-
tive for other classifiers (Hashemi et al., 2020; Zhou et al.,
2018; Demontis et al., 2019; Wei et al., 2022). Transfer-
able attacks are practical since the attacker does not need
to have an unlimited access to the attacked network. In-
stead, they prepare the attack on a network that they trained
by themselves. To evaluate OPPSLA’s transferability, we
let it synthesize programs for one CIFAR-10 classifier and
then use these programs to attack another CIFAR-10 classi-
fier. We measure the average number of queries and check
whether it remains relatively low (recall that the success rate
is independent of the synthesis). Table 1 shows the results.
The diagonal is the baseline, showing the average number
of queries when running the programs on the classifiers they
are synthesized for. The results show that the programs
synthesized for VGG-16-BN and ResNet18 are transferable
with only a small increase to the number of queries. The
programs synthesized for GoogLeNet require more queries,
however, the number of queries remains very small.

Synthesis Queries Lastly, we study how many queries
OPPSLA requires during the synthesis. We remind that
OPPSLA runs once for a given classifier and a training set,

https://github.com/TomYuviler/OPPSLA
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Figure 3. OPPSLA vs. two baselines over one pixel attacks for CIFAR-10 classifiers and ImageNet classifiers.

and afterwards users may invoke the adversarial program on
as many images or classifiers (trained for the same task) as
they wish. In this experiment, we let OPPSLA synthesize
an adversarial program for the VGG-16-BN classifier and
a training set consisting of 50 Airplane images. We limit
it to 106 queries. We record the intermediate (accepted)
programs P . Then, we run each program on a test set
consisting of 1000 Airplane images and measure the average
number of queries. We compare to a fixed-prioritization
program (all conditions are False), which does not pose
any synthesis queries. Figure 4 shows the average number
of queries as a function of the number of synthesis queries
posed until generating the program P (left) and as a function
of the number of iterations (right). Results show that already
with ˜50000 synthesis queries, posed during six iterations,
OPPSLA reduces the average number of queries by 2.7x.
Namely, the average is 1000 queries per image over all
six iterations. This is about 2% of the maximum number
of queries which can be posed in six iterations, since the
maximal number of queries for each image in every iteration
is 8192. Afterwards, more synthesis queries and iterations

lower the average number of queries, but by up to 0.8%.

Importance of the Conditions and Stochastic Search
Appendix C provides an additional experiment showing
that our synthesized conditions and stochastic search enable
OPPSLA to reduce the number of queries.

6. Related Work
One Pixel Attacks Several works present one and few
pixel attacks. Su et al. (2017) design a one pixel attack based
on differential evolution. Narodytska & Kasiviswanathan
(2017) rely on random search to compute one and few pixel
attacks. CornerSearch (Croce & Hein, 2019) is a few pixel
attack minimizing the number of perturbed pixels using lo-
cal search. Sparse-RS (Croce et al., 2022) relies on random
search to compute few pixel attacks, for a given number of
perturbed pixels, which minimizes the number of queries
posed to the network.
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Figure 4. Number of queries as a function of the number of synthesis queries (left) and iterations (right).

Query-Efficient Attacks Several attacks minimize the
number of queries to the network. Square Attack (An-
driushchenko et al., 2020) proposes L2 and L∞ attacks
generated by localized squared perturbations randomly se-
lected. NP-Attack (Bai et al., 2020) proposes an L∞ attack
utilizing high-level image structure information to model
the distribution of adversarial examples efficiently. Ilyas
et al. (2018) propose an L∞ attack based on Natural Evo-
lutionary Strategies (Wierstra et al., 2008). Li et al. (2018)
leverage active learning to minimize the number of queries.

Program Synthesis The sketch technique (Solar-Lezama,
2009) has been shown to be successful in many applications,
e.g., code completions (Raychev et al., 2014), arithmetic and
sorting programs (Srivastava et al., 2013), entity matching
rules (Singh et al., 2017), lists manipulation (Feser et al.,
2015) and reinforcement learning policies (Verma et al.,
2018). Prior works for synthesizing conditional expressions
rely on divide-and-conquer (Alur et al., 2017; Ferdowsifard
et al., 2021), general decidable refinement types (Polikar-
pova et al., 2016), unification constraints (Alur et al., 2015),
and goal graphs (Albarghouthi et al., 2013).

7. Conclusion
We presented OPPSLA, a synthesizer for generating adver-
sarial programs for one pixel attacks. Our key insight is
to identify a program sketch for one pixel attacks, check-
ing the possible candidate adversarial examples according
to a dynamic prioritization. The dynamic prioritization is
determined by conditions, synthesized for a given network
and a training set. OPPSLA completes the sketch such that
the resulting program minimizes the number of queries on
the training set. To this end, it employs a stochastic search,
inspired by the Metropolis-Hastings algorithm, that synthe-
sizes well-typed conditions and considers a score function
evaluating candidate programs by their average number of
queries. We evaluate OPPSLA on several CIFAR-10 and Im-
ageNet classifiers and compare it to existing attacks. Results
show that OPPSLA obtains a state-of-the-art success rate

with significantly fewer queries. We also demonstrate that
our adversarial programs are transferable to other classifiers,
with a small increase to the number of queries.
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Alur, R., Cerný, P., and Radhakrishna, A. Synthesis through
unification. In CAV, 2015. URL https://doi.org/
10.1007/978-3-319-21668-3_10.

Alur, R., Radhakrishna, A., and Udupa, A. Scaling enu-
merative program synthesis via divide and conquer. In
TACAS, 2017. URL https://doi.org/10.1007/
978-3-662-54577-5_18.

Andrieu, C., de Freitas, N., Doucet, A., and Jordan,
M. I. An introduction to MCMC for machine learn-
ing. Mach. Learn., 50(1-2):5–43, 2003. URL https:
//doi.org/10.1023/A:1020281327116.

Andriushchenko, M., Croce, F., Flammarion, N., and
Hein, M. Square attack: A query-efficient black-
box adversarial attack via random search. In
ECCV, 2020. URL https://doi.org/10.1007/
978-3-030-58592-1_29.

Bai, Y., Zeng, Y., Jiang, Y., Wang, Y., Xia, S., and Guo,
W. Improving query efficiency of black-box adversarial
attack. In ECCV, 2020. URL https://doi.org/
10.1007/978-3-030-58595-2_7.

Chib, S. and Greenberg, E. Understanding the metropolis-
hastings algorithm. The american statistician, 49(4):
327–335, 1995.

https://doi.org/10.1007/978-3-031-17436-0_20
https://doi.org/10.1007/978-3-031-17436-0_20
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1007/978-3-030-58592-1_29
https://doi.org/10.1007/978-3-030-58592-1_29
https://doi.org/10.1007/978-3-030-58595-2_7
https://doi.org/10.1007/978-3-030-58595-2_7


One Pixel Adversarial Attacks via Sketched Programs

Croce, F. and Hein, M. Sparse and imperceivable adversarial
attacks. In ICCV, 2019. URL https://doi.org/
10.1109/ICCV.2019.00482.

Croce, F., Andriushchenko, M., Singh, N. D., Flammar-
ion, N., and Hein, M. Sparse-rs: A versatile frame-
work for query-efficient sparse black-box adversarial at-
tacks. In AAAI, 2022. URL https://ojs.aaai.
org/index.php/AAAI/article/view/20595.

Demontis, A., Melis, M., Pintor, M., Jagielski, M., Biggio,
B., Oprea, A., Nita-Rotaru, C., and Roli, F. Why do
adversarial attacks transfer? explaining transferability of
evasion and poisoning attacks. In USENIX Security Sym-
posium, 2019. URL https://www.usenix.
org/conference/usenixsecurity19/
presentation/demontis.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. URL https://doi.org/
10.1109/CVPR.2009.5206848.

Ferdowsifard, K., Barke, S., Peleg, H., Lerner, S., and
Polikarpova, N. Loopy: interactive program synthe-
sis with control structures. In OOPSLA, 2021. URL
https://doi.org/10.1145/3485530.

Feser, J. K., Chaudhuri, S., and Dillig, I. Synthesizing data
structure transformations from input-output examples. In
PLDI, 2015. URL https://doi.org/10.1145/
2737924.2737977.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and
harnessing adversarial examples. In ICLR, 2015. URL
http://arxiv.org/abs/1412.6572.

Goodman, N. D., Tenenbaum, J. B., Feldman, J., and Grif-
fiths, T. L. A rational analysis of rule-based concept
learning. Cogn. Sci., 32(1):108–154, 2008. URL https:
//doi.org/10.1080/03640210701802071.

Gulwani, S., Polozov, O., and Singh, R. Program synthesis.
Found. Trends Program. Lang., 4(1-2):1–119, 2017. URL
https://doi.org/10.1561/2500000010.

Hashemi, A. S., Bär, A., Mozaffari, S., and Fingscheidt,
T. Transferable universal adversarial perturbations using
generative models. CoRR, abs/2010.14919, 2020. URL
https://arxiv.org/abs/2010.14919.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016. URL
https://doi.org/10.1109/CVPR.2016.90.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
CVPR, 2017. URL https://doi.org/10.1109/
CVPR.2017.243.

Ilyas, A., Engstrom, L., Athalye, A., and Lin, J. Black-box
adversarial attacks with limited queries and information.
In ICML, 2018. URL http://proceedings.mlr.
press/v80/ilyas18a.html.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Ad-
versarial examples in the physical world. In ICLR,
2017. URL https://openreview.net/forum?
id=HJGU3Rodl.

Li, P., Yi, J., and Zhang, L. Query-efficient black-box
attack by active learning. In ICDM, 2018. URL https:
//doi.org/10.1109/ICDM.2018.00159.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In ICLR, 2018. URL https:
//openreview.net/forum?id=rJzIBfZAb.

Narodytska, N. and Kasiviswanathan, S. P. Simple black-
box adversarial attacks on deep neural networks. In
CVPR workshop, 2017. URL https://doi.org/
10.1109/CVPRW.2017.172.

Nguyen-Son, H., Thao, T. P., Hidano, S., Bracamonte, V.,
Kiyomoto, S., and Yamaguchi, R. S. OPA2D: one-pixel
attack, detection, and defense in deep neural networks. In
IJCNN, 2021. URL https://doi.org/10.1109/
IJCNN52387.2021.9534332.

Polikarpova, N., Kuraj, I., and Solar-Lezama, A. Pro-
gram synthesis from polymorphic refinement types. In
PLDI, 2016. URL https://doi.org/10.1145/
2908080.2908093.

Quan, W., Nagothu, D., Poredi, N. A., and Chen, Y. Cripi:
an efficient critical pixels identification algorithm for
fast one-pixel attacks. In Defense + Commercial Sens-
ing, 2021. URL https://doi.org/10.1117/12.
2581377.

Raychev, V., Vechev, M. T., and Yahav, E. Code
completion with statistical language models. In
PLDI, 2014. URL https://doi.org/10.1145/
2594291.2594321.

Schkufza, E., Sharma, R., and Aiken, A. Stochastic su-
peroptimization. In ASPLOS, 2013. URL https:
//doi.org/10.1145/2451116.2451150.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. In
ICLR, 2015. URL http://arxiv.org/abs/1409.
1556.

https://doi.org/10.1109/ICCV.2019.00482
https://doi.org/10.1109/ICCV.2019.00482
https://ojs.aaai.org/index.php/AAAI/article/view/20595
https://ojs.aaai.org/index.php/AAAI/article/view/20595
https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/3485530
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2737924.2737977
http://arxiv.org/abs/1412.6572
https://doi.org/10.1080/03640210701802071
https://doi.org/10.1080/03640210701802071
https://doi.org/10.1561/2500000010
https://arxiv.org/abs/2010.14919
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
http://proceedings.mlr.press/v80/ilyas18a.html
http://proceedings.mlr.press/v80/ilyas18a.html
https://openreview.net/forum?id=HJGU3Rodl
https://openreview.net/forum?id=HJGU3Rodl
https://doi.org/10.1109/ICDM.2018.00159
https://doi.org/10.1109/ICDM.2018.00159
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1109/CVPRW.2017.172
https://doi.org/10.1109/CVPRW.2017.172
https://doi.org/10.1109/IJCNN52387.2021.9534332
https://doi.org/10.1109/IJCNN52387.2021.9534332
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1117/12.2581377
https://doi.org/10.1117/12.2581377
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/2451116.2451150
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556


One Pixel Adversarial Attacks via Sketched Programs

Singh, R., Meduri, V. V., Elmagarmid, A. K., Madden, S.,
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Algorithm 1: OnePixelSketch(N , x, cx)

Input :A neural network classifier N , a colored image x ∈ [0, 1]d1×d2×3 and its true class cx.
Output :A location and perturbation of a successful adversarial example or ⊥.

1 L = initialize()
2 while L ̸= ∅ do
3 (l, p) = pop(L)
4 if argmax(N(x[l← p])) ̸= cx then return (l, p)
5 if [B1] then pushBack(L, closest loc(l, p))
6 if [B2] then pushBack(L, closest pert(L, l))
7 locQ = pertQ = [(l, p)]
8 while locQ ̸= ∅ or pertQ ̸= ∅ do
9 while locQ ̸= ∅ do

10 (l′, p′) = pop(locQ)
11 if [B3] then
12 for (l′′, p′′) ∈ closest loc(l′, p′) do
13 remove(L, (l′′, p′′))
14 if argmax(N(x[l′′ ← p′′])) ̸= cx then return (l′′, p′′)
15 locQ = locQ :: [(l′′, p′′)]
16 pertQ = pertQ :: [(l′′, p′′)]

17 while pertQ ̸= ∅ do
18 (l′, p′) = pop(pertQ)
19 if [B4] then
20 for (l′′, p′′) ∈ closest pert(L, l′) do
21 remove(L, (l′′, p′′))
22 if argmax(N(x[l′′ ← p′′])) ̸= cx then return (l′′, p′′)
23 locQ = locQ :: [(l′′, p′′)]
24 pertQ = pertQ :: [(l′′, p′′)]

25 return ⊥

A. One Pixel Attack Sketch
Our sketch (Algorithm 1) takes as input a classifier N , an image x, and its true class cx. It outputs a location-perturbation
pair that corresponds to a successful adversarial example or ⊥, if there is no such pair. The sketch begins by initializing a
priority queue L with all the possible location-perturbation pairs by the following order. The primary order of the pairs is by
the pixel distance from the corresponding pixel in x, from the farthest to the closest. That is, the first d1 · d2 pairs have the
farthest perturbation, the next d1 · d2 pairs have the second farthest perturbation, and so on. A secondary order sorts the pairs
by the pixel location, from the center of the image to the boundaries. For example, the first d1 · d2 pairs are sorted by the
location. We remind that we assume a black-box access to the classifier and thus we consider a prioritization relying only
on the pairs’ location and perturbation. After the initialization, the sketch enters its main loop, which continues until L is
empty. At each iteration, a location-perturbation pair (l, p) is popped from L. Then, its corresponding adversarial example is
generated. The adversarial example, denoted x[l← p], is identical to x except that at location l it has value p. This example
is submitted to N . If its classification is not cx, the pair (l, p) is returned. Otherwise, its closest pairs are reordered based on
four conditions (to be synthesized). The goal of the first two conditions is to identify pairs whose corresponding adversarial
examples are likely to be unsuccessful, and thus these pairs are pushed to the back of the queue. Similarly, the last two
conditions identify pairs whose corresponding adversarial examples are likely to be successful and are thus conceptually
pushed to the front. If the first condition is true, all closest pairs with respect to the location are pushed back (Line 5). If the
second condition is true, the closest pair with respect to the perturbation is pushed back (Line 6). The sketch continues by
identifying pairs to conceptually push to the front of L. This part is different from the previous reordering: it is defined
iteratively and it eagerly checks pairs. It has two conditions, one for reordering the closest pairs with respect to the location
and another one for reordering the closest pair with respect to the perturbation. If a condition is satisfied, then for every
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Figure 5. Illustration of our sketch.

closest pair, a candidate adversarial example is generated and submitted to N . If a candidate is successful, its pair is returned.
Otherwise, this process repeats for the closest pairs of this pair. Technically, this part begins by initializing a queue locQ,
for the closest pairs with respect to the location, and pertQ, for the closest pairs with respect to the perturbation. Both
queues are initialized with the (failed) pair (l, p). While the queues are not empty, a (failed) pair is popped from one of the
queues (first from locQ and, after it becomes empty, from pertQ). Then, if a condition is satisfied, its closest pairs are
eagerly checked. That is, every closest pair is removed from L and its corresponding example is submitted to N . If it is a
successful adversarial example, the pair is returned. Otherwise, this pair is added to locQ and pertQ, to check its closest
pairs. We note that the inner loops, Line 9–Line 16 and Line 17–Line 24, are identical, except that the first loop is for the
closest pairs with respect to the location and the second loop is for the closest pair with respect to the perturbation.

Illustration Figure 5 illustrates the operation of our sketch. The inputs are a network N , a 3× 3 colored image x, and its
true class cx (Figure 5(a)). The priority queue L is initialized with all location-perturbation pairs, a pair for each location
and a corner of the RGB cube (Figure 5(b)). The first nine pairs in L have the farthest perturbation from their corresponding
pixel in x, and they are ordered by their distance from the center of the image. The next nine pairs in L have the second
farthest perturbation from their corresponding pixel, and they are ordered by their distance from the center of the image.
An iteration of the main loop pops a pair from L (Figure 5(c)) and submits the corresponding adversarial example to N
(Figure 5(d)). If the example is not successful, it pushes to the back or front of the queue L the closest pixels with respect to
the location (Figure 5(e)) or perturbation (Figure 5(f)). This is determined by a condition for each case. Figure 5(g) and
Figure 5(h) show a push back to the closest pairs with respect to the location and perturbation.
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Algorithm 2: OPPSLA (N , DTr)
Input :A classifier N and a training set DTr consisting of pairs of images and their classes.
Output :An adversarial program.
P = random program() // randomly instantiate the sketch

QP = 0 // the average number of queries of P
cntP = 0 // the number of successful adversarial examples generated by P
for (x, cx) ∈ DTr do

if P (N, x, cx) ̸= ⊥ then
QP += Q(P,N, x, 1)
cntP += 1

QP /= cntP

SP = e−β·QP

for i = 1 to MAX ITER do
P ′ = mutate(P ) // pick a node in the tree and mutate its subtree

QP ′ = 0 // the average number of queries of P ′

cntP ′ = 0 // the number of successful adversarial examples generated by P ′

for (x, cx) ∈ DTr do
if P ′(N, x, cx) ̸= ⊥ then

QP ′ += Q(P ′, N, x, 1)
cntP ′ += 1

QP ′ /= cntP ′

SP ′ = e−β·QP ′

if random([0, 1]) < SP ′
SP

then
P = P ′

SP = SP ′

return P

B. The Algorithm of OPPSLA
OPPSLA (Algorithm 2) takes as input a classifier N and a training set DTr, consisting of pairs of images and their true
classes. It returns an adversarial program. OPPSLA begins with a random program P , computed by instantiating our sketch
with random well-typed conditions. It then computes the average number of queries of P by executing P on N and every
pair in DTr and counting the number of queries posed for inputs for which P returns a successful adversarial example.
Accordingly, the score SP is computed. Then, OPPSLA begins a loop for MAX ITER iterations (a hyper-parameter). An
iteration begins by mutating P to define the next program candidate P ′, as described before. Then, the average number of
queries of P ′ is computed (as described before), and accordingly the score SP ′ is computed. Then, P ′ is kept for the next
iteration based on the learned distribution. Technically, a random number in [0, 1] is sampled, and if it is smaller than the
ratio of the new score and old score, P is set to P ′. Namely, the smaller the average number of queries of P ′ compared to P ,
the higher the ratio, and thus the higher the probability of updating P with P ′.

C. Importance of the Synthesized Conditions and Stochastic Search
In this section, we present an additional experiment showing the importance of our conditions and stochastic search in
reducing the number of queries. We compare OPPSLA’s adversarial programs to several baselines. First, to understand the
importance of the synthesized conditions, we compare to a constant program that instantiates the sketch’s conditions with
False. That is, the prioritization of the location-perturbation pairs is fixed and determined by the initial ordering. Second,
to understand the importance of our stochastic search, we compare it to a random baseline that randomly samples 210
program instantiations (since OPPSLA runs the stochastic search for 210 iterations) and returns the one with the minimal
number of queries posed to the classifier on the training set. Note that OPPSLA and these two baselines have the same
success rate, since the success rate of all instantiations of our sketch is equal. The last baseline is Sparse-RS, the current
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Table 2. Impact of the synthesized conditions and the stochastic search on the number of queries to the classifier.

Classifier Approach Average #Queries Median #Queries

GoogLeNet

OPPSLA 104.07 9.0
Sketch+False 393.20 18.0
Sketch+Random 114.16 10.0
Sparse-RS 557.20 62.0

ResNet18

OPPSLA 115.23 19.0
Sketch+False 370.92 40.0
Sketch+Random 186.03 26.0
Sparse-RS 690.62 78.0

VGG-16-BN

OPPSLA 105.54 13.0
Sketch+False 232.78 19.0
Sketch+Random 152.12 13.0
Sparse-RS 706.10 84.0

state-of-the-art. We let each approach run on every CIFAR-10 classifier and every CIFAR-10 class’ training set. Table 2
presents the results. Compared to the constant program (Sketch+False), OPPSLA significantly lowers the number of
queries: the average is lowered by 3x and the median by 2x. Compared to the random baseline (Sketch+Random), OPPSLA
lowers the number of queries by 1.4x and the median by 1.2x. Sparse-RS incurs a significantly higher number of queries
compared to OPPSLA and the other baselines.


